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The emphasis of neuronal alterations and adaptations have long been themain focus of the
studies of the mechanistic underpinnings of drug addiction. Recent studies have begun to
appreciate the role of innate immune system, especially toll-like receptor 4 (TLR4) signaling
in drug reward-associated behaviors and physiology. Drugs like opioids, alcohol and
psychostimulants activate TLR4 signaling and subsequently induce proinflammatory
responses, which in turn contributes to the development of drug addiction. Inhibition
of TLR4 or its downstream effectors attenuated the reinforcing effects of opioids, alcohol
and psychostimulants, and this effect is also involved in the withdrawal and relapse-like
behaviors of different drug classes. However, conflicting results also argue that TLR4-
related immune response may play a minimal part in drug addiction. This review discussed
the preclinical evidence that whether TLR4 signaling is involved in multiple drug classes
action and the possiblemechanisms underlying this effect. Moreover, clinical studies which
examined the potential efficacy of immune-base pharmacotherapies in treating drug
addiction are also discussed.
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INTRODUCTION

Neuronal alterations and adaptations have long been the main focus of the studies of the mechanistic
underpinnings of drug addiction (Kalivas and O’Brien, 2008; Otis and Mueller, 2017). The emphasis
of dopaminergic and glutamatergic signaling in brain reward circuits yield extensive important
progress in the study of drug addiction (Sesack and Grace, 2010; Lee et al., 2013; Ma et al., 2014;
Zhang et al., 2016). However, they ignore the potential contributions of non-neuronal cells (e.g.,
microglia and astrocytes) to the synaptic and behavioral adaptations underlying addiction-like
behaviors (Kashima and Grueter, 2017). Recent studies have begun to illustrate the role of innate
immune system, especially toll-like receptor 4 (TLR4) in drug reward associated behaviors and
physiology (Hutchinson et al., 2012; June et al., 2015; Northcutt et al., 2015). This review will briefly
discuss the innate immune system and TLR4 signaling. Different classes of drugs including opioids,
alcohol and psychostimulants will be reviewed to discuss whether TLR4 signaling can be used as a
potential therapeutic target for the treatment of drug addiction. Furthermore, clinical studies which
examined the potential efficacy of immune-base pharmacotherapies in treating drug addiction are
also discussed.
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THE TOLL-LIKE RECEPTOR 4-RELATED
IMMUNE SYSTEM AND NEURONAL
DISORDERS
The innate immune system, an evolutionary defense strategy, has
been well characterized (Chaplin, 2010; Yu et al., 2018). TLRs are
a group of pattern recognition receptors (PRRs) in the innate
immune system which detect and respond not only to exogenous
pathogen associated molecular patterns (PAMPs), but also to
endogenous danger associated molecular patterns (DAMPs)
(Koropatnick et al., 2004; Hennessy et al., 2010; Dunne et al.,
2011). Activation of TLRs promotes the maturation of antigen
presenting cells, like dendritic cells (DC), which subsequently
directs the induction of adaptive immunity (Apetoh et al., 2007;
Liu et al., 2010; Gaudino and Kumar, 2019). In this regard, TLR
agonists have been studied as vaccine adjuvants for cancer or
infectious disease (Caron et al., 2005; Sfondrini et al., 2006;
Kronenberger and Zeuzem, 2009). However, considering the
fact that activation of TLRs leads to the promotion of
inflammatory cytokine production, the inhibitors of TLRs also
have significant potential as therapeutic agents for inflammatory
disorders, such as rheumatoid arthritis (Klareskog et al., 2004;
Feldmann, 2009). As a result, the exploitation of TLRs-based
therapeutics may be promising for the treatment of multiple
infectious and inflammatory diseases.

Apart from their crucial roles in immune system-related
diseases, recent studies also suggest that TLRs, especially
TLR4, was widely involved in drug addiction-related behaviors
(Hennessy et al., 2010; Crews et al., 2017b; Kashima and Grueter,
2017). We will discuss this topic later in detail. In response to
pathogen and danger signals, TLR4 and its co-receptor MD-2 can
signal through two different pathways, the myeloid
differentiation primary response protein 88 (MyD88)-
dependent and MyD88-independent pathway (Takeda and
Akira, 2004) (Figure 1). In MyD88-dependent pathway, the
signal transduces through Interleukin 1 receptor associated
kinase 4 and 1 (IRAK4 and IRAK1) and the following TNF
receptor associated factor 6 (TRAF6). The activation of TRAF6
leads to phosphorylation of inhibitors of nuclear factor κBKinases
(IKKs), which in turn activates the IκB. The activation of IκB leads
to its degradation and the initiation of activation of NFκB and the
production of proinflammatory cytokines, for example, Tumor
Necrosis Factor (TNF), IL-1β, and IL-6 (Kawai and Akira, 2007).
In contrast, MyD88-independent pathway adopts the adaptor
protein TRIF and transduces the signal through TRAF3, TBK1,
and IKKε, which then phosphorylates interferon regulatory factor
3 (IRF3). IRF3 then translocates to the nucleus and promotes the
transcription of type 1 interferons (Takeda and Akira, 2005).

The involvement of TLR4 signaling has been suggested in
several neuronal disorders, including neurodegenerative
disorders, depression, impulsive behaviors and addiction
(Landreth and Reed-Geaghan, 2009; Gesuete et al., 2014;
Aurelian et al., 2016; Garcia Bueno et al., 2016; Crews et al.,
2017b; Gasiorowski et al., 2018; Nie et al., 2018; Liu et al., 2019).
TLR4 is mainly expressed in cells of innate immune system,
including microglia and astrocytes (Vaure and Liu, 2014).
Consistent to this, several microglia inhibitors attenuated some

drug addiction-related behaviors in animal studies. In this review,
we will focus on the role of TLR4 in regulating addiction-related
behaviors from different drug classes.

ROLE OF TOLL-LIKE RECEPTOR 4 IN
DIFFERENT CLASSES OF DRUG
ADDICTION
Opioids
Evidence of a Role of Toll-Like Receptor 4 in Opioid
Addiction
It is reported that opioids such as morphine can induce
neuroinflammation in the central nervous system (Narita
et al., 2006; Yang et al., 2010). Furthermore, this
neuroinflammation has been associated with morphine
analgesia, dependence, tolerance and withdrawal effects
(Eidson and Murphy, 2013; Jacobsen et al., 2014; Mattioli
et al., 2014; Eidson et al., 2017; Shah and Choi, 2017). It has
been shown that morphine can directly bind to myeloid
differentiation protein 2 (MD-2), the accessory receptor of
TLR4, and activate TLR4 signaling by inducing the
oligomerization of TLR4/MD-2. TLR4/MD-2 knockout
animals showed enhanced morphine-induced analgesia,
suggesting that blockade of TLR4/MD-2 inhibited morphine-
induced proinflammatory responses (Wang et al., 2012b).
Inhibition of TLR4 by the levo-isomer of naloxone,
(+)-naloxone, attenuated morphine-induced conditioned place
preference (CPP). This isomer of naloxone (26.3 mg/kg), which is
inactive at opioid receptors, also reduced remifentanil self-
administration. Furthermore, genetic knockout of TLR4 or
MyD88 decreased oxycodone-induced CPP (Wang et al.,
2012b). These results suggest that activation of TLR4 is
involved in the rewarding effect of opioids. In addition, in vivo
microdialysis study showed that (+)-naloxone decreased
morphine-induced elevation of dopamine concentration in the
shell region of nucleus accumbens (NAc) (Hutchinson et al.,
2012). Together, they suggested that the TLR4/MD-2 signaling,
along with classic opioid receptors, mediates opioid reward-
related behaviors.

However, recent studies which contradict the role of TLR4 in
opioid addiction add more complexity to this hypothesis. For
example, Phil et al. reported that neither (+)-naloxone nor
(+)-naltrexone (3 and 100 μM) inhibit LPS induced TLR4
activation in vitro (Skolnick et al., 2014). Stevens et al. also
reported that morphine inhibits LPS-induced activation of
TLR4 in a concentration-dependent manner, furthermore, this
effect was not affected by naltrexone (Stevens et al., 2013). In
correspondence of this discrepancy, Watkins lab pointed out the
lack of translational potential of (+)-naloxone and (+)-naltrexone
from in vivo studies considering the lack of biotransformation in
in vitro systems (Watkins et al., 2014). In addition, apart from the
difference in methodology, they also mentioned that not all
agonist-antagonist relationships are equal under different
conditions (Watkins et al., 2014). This explanation somewhat
makes sense since antagonists could not bind to the receptors if
they are fully occupied by respective agonists. Another
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explanation is that there might be different signaling pathways
involved in these interactions thus much effort should be spent to
determine the exact signaling underlying the test agents (Watkins
et al., 2014). Moreover, mixed results from in vivo studies need
further consideration. The most intriguing finding is that TLR4
mutant and null mice maintained opioid induced tolerance,
hyperalgesia and physical dependence, suggesting a minimal
role of TLR4 in opioid actions (Mattioli et al., 2014).
Additionally, acute injection of (+)-naltrexone immediately
before extinction test had no effect in opioid-seeking
behaviors. Meanwhile, acute or chronic delivery of
(+)-naltrexone did not affect the extended access heroin self-
administration behavior either (Theberge et al., 2013). More
importantly, it was found that (+)-naltrexone or (+)-naloxone
also reduced food self-administration (Tanda et al., 2016; Yue
et al., 2020), suggesting a lack of behavioral specificity of TLR4
antagonists on drug-maintained operant behaviors (Tanda et al.,
2016). These results question the validity of TLR4 hypothesis and
should be further addressed before it is translated to the clinic.
One possible explanation is the selectivity of TLR4 (+)-isomer
ligands. Studies have identified non-stereoselective actions of
naloxone at sites other than TLR4 (Wang and Burns, 2009;
Burns and Wang, 2010; Wang et al., 2012a). Future studies
that carefully examine how (+)-isomers act on non-TLR4 are
needed to dissect the exact role of TLR4 in opioid addiction.

Possible Mechanisms Underlying the Role of Toll-Like
Receptor 4 in Opioid Action
Neuronal mechanism of opioid addiction involves the inhibition
of GABAergic tone on the mesolimbic dopaminergic reward
pathway from ventral tegmental area (VTA) to nucleus
accumbens (NAc), resulting in an increase in dopamine
release in the NAc (Coller and Hutchinson, 2012; Fields and
Margolis, 2015; Volkow and Morales, 2015). Meanwhile, opioids
induced glia activation was thought to contribute to their
reinforcing and rewarding-like effects, which is achieved
possibly through the modulation of TLR4 (Jacobsen et al.,
2014). A recent study showed that opioids, like morphine,
interacts with MD2 and this binding is TLR4 dependent (Shah
et al., 2016). Once activated by opioids, TLR4 increases the levels
of pro-inflammatory cytokines and chemokines, which
subsequently affect the neuronal transmission and plasticity
that is associated with opioid-induced reward (Langlois and
Nugent, 2017; Zhang et al., 2020). Therefore, immune factors
like TNFα or IL-1β that can modulate synaptic functions may
participate in opioid reward. TNFα is a downstream effector of
TLR4 signaling and inhibition of TNFα blocked TLR4-mediated
morphine-induced neuroinflammation (Kawai and Akira, 2010;
Eidson et al., 2017). TNFα is shown to regulate synaptic
transmission by affecting the activity of GABAA receptors,
AMPA receptors and presynaptic metabotropic glutamate
receptors (Bezzi et al., 2001; Stellwagen et al., 2005; Domercq
et al., 2006; Stellwagen and Malenka, 2006; Pascual et al., 2012;
Lewitus et al., 2014). It may also contribute to opioid reward by
altering the opioid sensitivity as shown by a genetic human study
(Reyes-Gibby et al., 2008). Like TNFα, activation of TLR4 also
leads to an increase in IL-1β expression (Latz et al., 2013). IL-1β

mediates long-term potentiation (LTP) which is important to
learning and memory (Rizzo et al., 2018). As addiction can be
viewed as a type of aberrant reward memory, IL-1β may play a
role in the perception of opioid reward (Song et al., 2006). On the
other hand, it has been shown that IL-1β suppresses postsynaptic
GABA receptor activities through the activation of protein kinase
C (PKC) in neurons. Meanwhile, IL-1β inhibits glial glutamate
transporter activity, resulting in a deficiency in glutamate supply.
This shortage in turn leads to the attenuation of glutamate-
glutamine cycle-dependent GABA synthesis. These processes
are widely involved in synaptic plasticity which may underlie
TLR4-related drug actions (Wang et al., 2000). Though the exact
role of TLR4 signaling in mediating opioid addiction remains
unclear, it should be noted that activation of TLR4 mediated
central immune response by drug of abuse can only work in
concert with the well-established neuronal mechanisms of
reward, as the central immune signaling alone cannot produce
related behavioral effects (Coller and Hutchinson, 2012).

Clinical Implications for Toll-Like Receptor 4-Related
Innate Immune Modulation in Opioid Addiction
With the knowledge that TLR4-related glial activity may play a
role in opioid addiction preclinically, exploration of novel
pharmacological treatments for opioid addiction by targeting
the glial activity remains a promising choice (Zhang et al.,
2020). One of the most studied existing medication is
ibudilast, which is a non-selective phosphodiesterase inhibitor
and TLR4 antagonist (Ruiz-Perez et al., 2016). Ibudilast is widely
used in Asia for the treatment of asthma and post-stroke dizziness
(Gibson et al., 2006), which showed a well safety and tolerability
of a single dose (30 mg) and a 30-mg twice daily 2-week regimen
in healthy subjects (Rolan et al., 2008). Recently, Comer lab has
carefully examined the potential of ibudilast on opioid-induced
analgesia, subjective and withdrawal symptoms in opioid-
dependent volunteers. They found that ibudilast (40 mg, bid,
1 week) enhanced the oxycodone-induced analgesia as measured
by subjective pain ratings (Cooper et al., 2017). Moreover,
volunteers who received ibudilast (20 and 40 mg, bid, 2 weeks)
also had lower ratings of withdrawal symptoms (Cooper et al.,
2016). However, ibudilast did not affect oxycodone-induced
subjective drug effect ratings (e.g., “high, good effect, I would
pay”) (Cooper et al., 2017). In contrary, another study by Metz
et al. reported that ibudilast decreased the rating of drug like
following 15 mg oxycodone in opioid-dependent volunteers
(Metz et al., 2017). Ibudilast also significantly decreased the
drug breakpoint value under 15 mg oxycodone condition, but
not under 30 mg oxycodone condition. They also observed
similar results that craving for heroin, cocaine and tobacco
was also reduced under active ibudilast compared with placebo
(Metz et al., 2017). It seems contradicting on whether ibudilast
could decrease the subjective and reinforcing effects based on
these results. However, they may reconcile at some point since
Metz et al. found ibudilast reduced the craving following 15 mg,
but not 30 mg oxycodone, while Comer lab examined higher
doses of opioid (e.g., 30 mg morphine or 25, 50 mg/70 kg
oxycodone). The discrepancy may also attribute to the limited
sample volume and too few trails (Zhang et al., 2020). Meanwhile,
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considerable individual variability may also add up to weaken the
power of these studies. Therefore, future investigations with
increased sample size are urgently needed to verify the clinical
potential of glia modulators on opioid addiction.

Despite the clinical results of ibudilast are conflicting, the
therapeutic potential of glial modulators in preventing opioid
abuse should not be underestimated. Currently, other glial
modulators are being examined for their ability in treating
opioid use disorders as well. For example, minocycline
increased accuracy on a cognition task in individuals with
opioid use disorder, suggesting an effect like cognition
enhancement. However, the pain threshold or tolerance,
opioid craving and withdrawal weren’t changed by
minocycline treatment (Arout et al., 2019). Another glial
modulator, cannabidiol, was shown to decrease opioid-induced
craving and anxiety in drug-abstinent individuals with opioid use
disorder (Hurd et al., 2015; Hurd et al., 2019). These results, albeit
complex, suggesting a promising role of glial modulators in
treating opioid addiction. Further studies with more dose

regimen, greater sample size and prolonged trials are needed
to figure out their exact roles.

Alcohol
Evidence of a Role of Toll-Like Receptor 4 in Alcohol
Addiction
Studies have suggested that TLR4 affects some behavioral effects
of ethanol (Pandey, 2012; Wu et al., 2012; Pascual et al., 2015;
Blednov et al., 2017a). Both pharmacological inhibition of TLR4
and genetic deficiency of TLR4 or MyD88 significantly decreased
the duration of loss of righting reflex (LORR) and reduced
recovery time in motor impairment (rotarod test).
Importantly, these effects were not due to changes of ethanol
pharmacokinetics (Wu et al., 2012; Blednov et al., 2017a). In
addition, TLR4-deficient mice showed lower sensitivity to
pentobarbital-induced sedative effect and faster recovery from
diazepam-induced motor impairment, suggesting a crosstalk
between TLR4 and GABAergic functions (Blednov et al.,
2017a). Chronic exposure of ethanol increases the expression
of many cytokines (TNF-α, IL-1β) and chemokines (CX3CL1,
MCP-1) in the mice striatum and serum (Pascual et al., 2015).
Interestingly, mice lacking TLR4 or TLR2 receptors are protected
against ethanol-induced cytokine release (Pascual et al., 2015).
These mice also showed less ethanol abstinence-induced
behavioral changes such as increased anxiety (Pascual et al.,
2015). Combined, these results suggest a clear involvement of
TLR4 signaling in some acute and chronic effects of ethanol.

Binge drinking represents the initial stage of alcohol addiction,
which has a link with anxiety (Chikritzhs et al., 2001; Naimi et al.,
2003; Edenberg et al., 2004; Ducci et al., 2007). It is also suggested
that TLR4-GABAA α2 subunit pathway regulates alcohol binge
drinking in rodents (Spanagel et al., 1995; Roberts et al., 1996;
Foster et al., 2004). By infusing a GABAA α2 siRNA vector in
central nucleus of amygdala (CeA) of alcohol-preferring rats (P
rats), Juan et al. reported a significant and specific reduction of
alcohol binge drinking, reduced α2 subtype GABAA receptor
expression, decreased GABAA receptor density and inhibition of
TLR4(Liu et al., 2011). Moreover, TLR4 siRNA infusion to the
CeA also decreased binge drinking behaviors without affecting
sucrose intake, suggesting a specificity on alcohol-related
behaviors (Liu et al., 2011). Similarly, another study showed
that TLR4 or MCP-1 siRNA in CeA or VTA of P rats
decreased the corresponding gene expression and binge
drinking behavior (June et al., 2015). A further study also
showed that α2 subtype of GABAA receptor activates TLR4
signals in neurons in VTA (Balan et al., 2018). Studies from
inhibitors also support the central role of TLR4 in binge drinking
as TLR4 inhibitor T5342126 decreased ethanol drinking (Bajo
et al., 2016).

However, a recent comprehensive study has shown that
manipulations of TLR4 may have minimal impact on excessive
ethanol drinking behavior (Harris et al., 2017). By using the
multiple models: TLR4-KO rats, selective Tlr4 knockdown in
mouse NAc and inhibitor (+)-naloxone in different species,
Harris et al. demonstrated that either genetic deletion of TLR4
or pharmacological inhibition of TLR4 or Tlr4 knockdown did
not affect alcohol intake using two-bottle choice procedure and

FIGURE 1 | The Toll-like receptor 4 (TLR4) signaling pathway. TLR4 and
its co-receptor MD-2 can signal through two different pathways, the myeloid
differentiation primary response protein 88 (MyD88)-dependent and MyD88-
independent pathway. In MyD88-dependent pathway, the signal
transduces through Interleukin 1 receptor associated kinase 4 and 1 (IRAK4
and IRAK1) and the following TNF receptor associated factor 6 (TRAF6). The
activation of TRAF6 leads to phosphorylation of inhibitors of nuclear factor κB
Kinases (IKKs), which in turn activates the IκB. The activation of IκB leads to its
degradation and the initiation of activation of NFκB and the production of
proinflammatory cytokines, for example, Tumor Necrosis Factor (TNF), IL-1β
and IL-6 (Kawai and Akira, 2007). In contrast, MyD88-independent pathway
adopts the adaptor protein TRIF and transduces the signal through TRAF3,
TBK1 and IKKε, which then phosphorylates interferon regulatory factor 3
(IRF3). IRF3 then translocates to the nucleus and promotes the transcription of
type 1 interferons. Drugs of abuse like opioids, alcohol and psychostimulants
may activate TLR4 signaling and induce pro-inflammatory responses.
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drinking-in-the-dark assay (Harris et al., 2017). Meanwhile,
specific Tlr4 knockdown in mouse NAc did not alter ethanol
intake and preference for ethanol in the 24 h continuous access
two-bottle test. These results suggest that TLR4 was not
important to the excessive drinking behavior and subsequently
question the hypothesis that TLR4 is a critical component in
mediating alcohol response. One explanation is that Harris et al.
examined a Tlr4 knockdown in the NAc while previous studies
tested in the CeA or VTA. The difference in brain regions tested
may lead to discrepancy in findings. In addition, while Harris
used two-bottle and drinking-in-the dark tests, previous studies
adopted binge-drinking model in P rats. It seems reasonable that
increased GABAergic responses in P rats contribute to their
altered binge-drinking behaviors. Nevertheless, they also
reported consistent results that TLR4-KO rats had reduced
duration of LORR, and CeA deletion of Tlr4 changed GABAA

α2 subtype receptor function (Harris et al., 2017). These results at
least suggest essential role of TLR4 signaling in mediating acute
behavioral effects of ethanol (Alfonso-Loeches et al., 2010;
Pascual et al., 2015; Blednov et al., 2017b). More studies are
needed to disentangle the exact role of TLR4 signaling in alcohol
addiction-related effects.

Possible Mechanisms Underlying the Role of Toll-Like
Receptor 4 in Alcohol Action
Alcohol intake increases gut permeability, allowing translocation
of bacterial toxins like LPS through the intestines into blood
stream (Parlesak et al., 2000; Leclercq et al., 2012; Leclercq et al.,
2014). LPS in the bloodstream reaches the liver and stimulate
TLR4 in liver Kupffer cells, resulting in an increase in pro-
inflammatory cytokines and chemokines (Roh and Seki, 2013)
which can cross the blood-brain barrier and activate the glia cells
in the brain (Montesinos et al., 2016). On the other hand, alcohol
can activate glial TLR4 (Blanco et al., 2005; Fernandez-Lizarbe
et al., 2009) and induce translocation to the lipid raft and
promoting the activation of downstream effectors (Blanco
et al., 2005; Blanco et al., 2008; Fernandez-Lizarbe et al.,
2009). This activation contributes to ethanol-induced
neuroinflammation and neurodegeneration (Alfonso-Loeches
et al., 2010; Pascual et al., 2011; Alfonso-Loeches et al., 2012).
Both chronic and acute exposure to ethanol cause TLR4-
associated signaling response in vivo and in vitro (Blanco
et al., 2004; Valles et al., 2004; Blanco et al., 2005; Blanco and
Guerri, 2007). Conversely, inhibition of TLR4 blocks the
proinflammatory responses and prevents cell damage (Blanco
et al., 2005).

Indeed, the activation of innate immunity and TLR4 signaling
appear to be essential for alcohol addiction-like behaviors
(Pascual et al., 2011). The persistent activation of
neuroinflammation exacerbates the neurodegeneration of key
brain regions involved with excessive alcohol consumption,
thus underlying at least partly the mechanisms that regulate
the development of alcohol addiction (Crews et al., 2015;
Flores-Bastias and Karahanian, 2018). Alcohol consumption
promotes innate immune activation that are linked to
alterations in executive function, reward and negative affect-
craving-anxiety that contribute to alcohol use disorders

(Vetreno and Crews, 2014; Crews et al., 2017a). Alcohol-
induced cell damage in brain regions like prefrontal cortex
may cause an executive dysfunction over behavioral inhibition
(like binge drinking) and also a lack of inhibition in mesolimbic
areas, which is turn increase drinking motivation (Crews et al.,
2011; Crews et al., 2015). The loss of control over progression
from initial intoxication and binge drinking stage to compulsive
drinking stage may lead to the development of alcohol addiction.

Clinical Implications for Toll-Like Receptor 4-Related
Innate Immune Modulation in Alcohol Addiction
Most recent studies have examined the potential of ibudilast in
treating alcohol use disorders (AUD). In a recent randomized,
double-blinded and placebo-control study, ibudilast was tested
for its safety, tolerability and initial efficacy in mild-severe AUD
outpatients (Ray et al., 2017). Ibudilast (50 mg, bid) was well-
tolerated with no severe adverse events in the trial. However,
ibudilast was not able to affect subjective response to alcohol as
shown by craving, stimulation, sedation, positive or negative
mood, “like” or “wanting” alcohol (Ray et al., 2017).
Nevertheless, ibudilast was associated with mood
improvements and decreased tonic level of craving after stress
and alcohol cue exposure (Ray et al., 2017). Further analysis
revealed that ibudilast attenuated the stimulating and mood-
altering effects of alcohol among individuals with higher
depressive ratings (Ray et al., 2017). This study suggested a
possible mood-modulating effect of ibudilast in treating AUD
and which may contribute to the reduced alcohol craving after
stress or cue exposure. A more recent study further examined
whether ibudilast affect other appetitive behavior, like food
craving in AUD participants (Cummings et al., 2018). They
found that ibudilast did not affect tonic high-fat/high-sugar
food craving, indicating a specificity of modulating drinking
behaviors (Cummings et al., 2018). These results provide the
first evidence of whether ibudilast could be used for the treatment
of alcohol addiction. However, it is still unclear whether ibudilast
could decrease the subjective effect or alcohol intake since only
few studies have examined this effect with limited participants
and trails. More extensive studies are warranted to examine the
potential of ibudilast on alcohol intake, withdrawal and relapse.
Meanwhile, other neuroimmune modulators, like minocycline,
PDE-4 inhibitor apremilast or selective PPARα agonist
fenofibrate are undergoing clinical trials to determine their
efficacy in reducing alcohol use, craving and related
neuroinflammation (Erickson et al., 2019). More importantly,
future studies that determine the effect of combination of
neuroimmune pharmacotherapies with established medications
for alcohol addiction are also warranted (Stopponi et al., 2013).

Psychostimulants
Evidence of a Role of Toll-Like Receptor 4 in
Psychostimulants Addiction
There is a large body of literature that psychostimulants like
cocaine and methamphetamine can activate and modulate
neuroimmune responses (Loftis and Janowsky, 2014;
Lacagnina et al., 2017). In vitro studies suggest that
psychostimulants directly modulate the TLR4 signaling
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activity. For example, cocaine exposure increases the expression
of TLR4 in BV-2 cells in a dose-dependent manner (Periyasamy
et al., 2018), and brain TLR4 expression was higher in mice self-
administering cocaine than in those self-administering saline
(Northcutt et al., 2015; Brown et al., 2018; Periyasamy et al.,
2018), indicating an upregulation of TLR4 signaling by cocaine
exposure. Similarly, methamphetamine treatment increases the
expression of TLR4 in cultured astrocytes (Du et al., 2017) while
silencing TLR4 expression using siRNA abolishes
methamphetamine-induced expression of IL-1β and IL-18 (Du
et al., 2017). In vivo evidence are consistent with these findings in
that mice pretreated with the TLR4 inhibitor TAK-242 showed
significantly decreased expression of IL-1β and IL-18 in striatum
induced by methamphetamine (Du et al., 2017). All these results
suggest that psychostimulants can activate TLR4 which may
contribute to the behavioral effects of the drug.

Pharmacological antagonism of TLR4 also showed consistent
results. Indeed, (+)-naloxone blocked cocaine-induced
proinflammatory signaling both in vitro and in vivo
(Northcutt et al., 2015). More importantly, evidence showed
that TLR4 signaling at least partially contributed to cocaine-
induced elevation of NAc dopamine (Northcutt et al., 2015).
(+)-Naloxone ameliorated the robust increase in NAc dopamine
induced by cocaine while it alone did not produce any effect
(Ducci et al., 2007). Conversely, activation of TLR4 in the VTA by
local LPS injection was sufficient to produce an elevation of
dopamine in the NAc (Nie et al., 2018), suggesting a mediating
role of TLR4 in cocaine-induced dopamine release. Behavioral
studies further strengthened this notion as pretreatment of
(+)-naloxone blocked the development of cocaine CPP and
responding for cocaine injection (Northcutt et al., 2015).
However, (+)-naloxone did not decrease the responding for
food, which suggests that general operant behaviors are intact
(Northcutt et al., 2015). In addition, a recent study has shown that
TLR4 contributes to the drug-induced reinstatement of cocaine
seeking (Brown et al., 2018). Local antagonism of TLR4 in the
VTA decreased cocaine-seeking but not sucrose-seeking behavior
(Brown et al., 2018). Collectively, these results showed that
psychostimulant drugs activate TLR4 signaling which in turn
contributes to the reinforcing and relapse-related effects of
the drugs.

However, inconsistent evidence exists that pharmacological
blockade of TLR4 by (+)-naloxone and (+)-naltrexone which
attenuated cocaine self-administration also decreased food-
maintained responding, suggesting a non-specific effect (Tanda
et al., 2016). Meanwhile, pretreatment with (+)-naloxone and
(+)-naltrexone did not affect the increased dopamine levels
induced by cocaine (Tanda et al., 2016). Furthermore, a more
recent study shows that TNF-α, an inflammatory cytokine
downstream TLR4, suppresses cocaine-induced behavioral
sensitization by depressing cocaine-induced synaptic changes
in NAc core (Lewitus et al., 2016). Indeed, activation of
microglia by cocaine increases TNF-α production, which
subsequently limits the cocaine-induced changes to NAc
circuity, and finally restrains the development of cocaine-
induced behavioral sensitization. More importantly, after a
period of abstinence, mild activation of TLR4 can reactivate

microglia and reduce both synaptic strength in the NAc and
locomotor activity to cocaine (Lewitus et al., 2016). Thus, it
suggests that augmenting microglia responses through TLR4
or others might be a reasonable approach to treat addiction.
Nonetheless, another study showed that TLR4 knockout (KO)
mice had a deficit in low-frequency stimulation-induced
NMDAR-dependent long-term depression (LTD) in NAc core,
which contributed to an attenuation in drug reward learning
(Kashima and Grueter, 2017). These mixed results about the role
of TLR4 in psychostimulants action make it difficult to draw
specific conclusions here. Explanations for this discrepancy may
involve differences in addiction-related behaviors and stages of
addiction studied. These differences promote continued
examination of the effect of TLR4 in drug addiction.

Possible Mechanisms Underlying the Role of Toll-Like
Receptor 4 in Psychostimulants Action
Studies have shown that cocaine and methamphetamine bind to
the accessory receptor of TLR4, MD-2, which stabilizes the
conformation of TLR4/MD-2 heterodimers. Methamphetamine
binding activates TLR4 and NF-Kβ and upregulates the microglia
activation marker CD11b and IL-6 in the VTA, which can be
abolished by TLR4 antagonists LPS-RS and TAK-242 (Bachtell
et al., 2015; Wang et al., 2019). Meanwhile, the TLR4 antagonist
(+)-naloxone or (+)-naltrexone docked to the same pocket of
MD-2, competing with other molecules, suggesting a potential
modulatory role of TLR4 antagonist in psychostimulants-
induced TLR4 activation (Northcutt et al., 2015). TLR4
activation by cocaine or methamphetamine leads to the
increased levels of proinflammatory cytokines or chemokines,
which subsequently contributes to abnormal neuronal excitatory
and toxicity. This non-neuronal mechanism is believed to work in
combination with the well-known neuronal circuity, such as
psychostimulants-induced alterations of dopamine transporters
functions (Hall et al., 2004), to achieve the associated
development of drug addiction. It remains unclear how these
two mechanisms synergize and result in addiction-like behaviors.
However, alterations in synaptic plasticity and neuronal
transmission induced by immune response are believed to play
a part.

Clinical Implications for Toll-Like Receptor 4-Related
Innate Immune Modulation in Psychostimulants
Addiction
Currently, there are no FDA-approved medications for the
treatment of psychostimulants addiction. However,
accumulating evidence suggests that targeting
neuroinflammation might be a promising strategy for
developing a potential pharmacotherapy to treat stimulants
addiction. In 2010, a case study reported that minocycline
improved the psychotic symptoms in a female patient who
had methamphetamine use disorder, suggesting a promising
role of minocycline in treating methamphetamine addiction
(Tanibuchi et al., 2010). However, there were no follow-up
clinical studies which further examined the potential of
minocycline in methamphetamine use disorders since then.
On the other hand, ibudilast, which has been shown to reduce
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methamphetamine self-administration and reinstatement in
animals, was examined for its efficacy clinically. Ibudilast was
able to reduce several methamphetamine–related subjective
effects (Worley et al., 2016). Further study also demonstrated
that ibudilast may improve attention during early abstinence
frommethamphetamine dependence (Birath et al., 2017). Despite
the limitations of these early-stage studies, they provide first
evidence that ibudilast might serve as a potential
pharmacotherapy for methamphetamine use disorders.
However, a most recent study showed that ibudilast did not
affect methamphetamine abstinence (Heinzerling et al., 2020).
This randomize trials included 64 participants for ibudilast group
and 61 for placebo. Urine specimens for drug screens were
collected twice a week. Nonetheless, there was no correlation
between serum ibudilast levels and methamphetamine use during
treatment. This study suggests that ibudilast might not be able to
affect methamphetamine abstinence, yet it’s hard to conclude that
ibudilast has no effect on methamphetamine action since no
further evidence reported whether ibudilast could affect
methamphetamine intake or craving. Actually, a pilot
randomized clinical research demonstrated that ibudilast
reduced the increased levels of peripheral markers of
inflammation induced by methamphetamine treatment in
patients, which have implications for the development of
treatment for psychostimulants addiction (Li et al., 2020).
These results are encouraging, though more studies are needed
to examine the long-term effect of ibudilast on both peripheral
and central neuroinflammation markers and how these
modulations link to clinical outcomes.

FUTURE DIRECTIONS

While significant effort has been made to illustrate the role of
TLR4-related immune response in drug addiction, it is early to
reach a solid conclusion. Since debates are remained about
whether TLR4 is essential to drugs of abuse, further studies
should further examine the link between TLR4-related
immune activation and different stages of drug addiction.
Meanwhile, it is generally believed that TLR4-related immune
response activated by drugs of abuse work in concert with
established neuronal mechanisms, which contribute to the
rewarding and reinforcing effects. However, it remains elusive
how non-neuronal activation communicates with the
mesocorticolimbic reward system which underlies drug

addiction-related behaviors. Thus, examinations of the
interactions between these two systems would add valuable
information to the knowledge of the mechanism underlying
drug addiction. More importantly, these studies would further
suggest the potential and novel therapeutic targets for the
treatments of drug addiction. Moreover, randomized clinical
trial which examines the potential efficacy of immune-based
pharmacotherapies in drug addiction is in its infancy as
conflicting results from clinical data weakens the translational
value of the immune-based therapies. Current clinical trials have
limited sample size and test restricted time window, dosage effects
and drug actions. Consequently, future clinical studies including
more participants, examining long-term efficacy and multiple
dose-effects of immune-based pharmacotherapies for different
stages of drug addiction are warranted.

SUMMARY

Emerging evidence suggest an important role of the
neuroimmune system, especially TLR4, in addiction-related
effects of different classes of drugs such as opioids, alcohol
and psychostimulants. Drugs of abuse activate TLR4 signaling
and the modulation of TLR4 signaling has been shown to be
involved in different stages of drug addiction (binge or
intoxication, withdrawal and relapse). Accordingly,
pharmacological strategies such as non-specific microglia
inhibition is a potentially promising approach to treat drug
abuse. This is a burgeoning field that requires more
mechanistically based studies for target validation and future
clinical trials with clinically approved drugs to repurpose for the
treatment of drug addiction.
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