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SUMMARY

Spinocerebellar ataxia type 7 (SCA7) is a retinal-cerebellar degenerative disorder caused by CAG-

polyglutamine (polyQ) repeat expansions in the ataxin-7 gene. As many SCA7 clinical phenotypes 

occur in mitochondrial disorders, and magnetic resonance spectroscopy of patients revealed 
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altered energy metabolism, we considered a role for mitochondrial dysfunction. Studies of SCA7 

mice uncovered marked impairments in oxygen consumption and respiratory exchange. When we 

examined cerebellar Purkinje cells in mice, we observed mitochondrial network abnormalities, 

with enlarged mitochondria upon ultrastructural analysis. We developed stem cell models from 

patients and created stem cell knockout rescue systems, documenting mitochondrial morphology 

defects, impaired oxidative metabolism, and reduced expression of nicotinamide adenine 

dinucleotide (NAD+) production enzymes in SCA7 models. We observed NAD+ reductions in 

mitochondria of SCA7 patient NPCs using ratiometric fluorescent sensors and documented 

alterations in tryptophan-kynurenine metabolism in patients. Our results indicate that 

mitochondrial dysfunction, stemming from decreased NAD+, is a defining feature of SCA7.

Graphical Abstract

In Brief

Ward et al. document altered metabolism and mitochondrial dysfunction in SCA7 patients, mice, 

and human stem cell-derived neurons. They link these abnormalities to reduced nicotinamide 

adenine dinucleotide in specific subcellular compartments. Given the role of mitochondrial 

impairment in neurodegeneration, their results have therapeutic implications for SCA7 and related 

neurological disorders.
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INTRODUCTION

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurological disorder characterized by 

cerebellar and retinal degeneration (Garden and La Spada, 2008). SCA7 patients develop 

atrophy of the cerebellar cortex and the brainstem and exhibit extensive loss of cerebellar 

Purkinje cells (Martin et al., 1994; Michalik et al., 2004). An important feature of SCA7 that 

allows it to be distinguished from the more than 30 other SCAs, is retinal degeneration. Full-

field electroretinograms of SCA7 patients reveal marked dysfunction of cone photoreceptor 

cells prior to rod photoreceptor abnormalities, establishing SCA7 as a cone-rod dystrophy 

(To et al., 1993). As retinal disease progresses, rod photoreceptors become involved, and the 

visual impairment proceeds to complete blindness. SCA7 is a degenerative disorder with a 

broad phenotypic spectrum: some SCA7 patients present as children and succumb to disease 

in less than a decade, whereas other patients remain undiagnosed until middle age and 

display a slowly progressive course. SCA7 is caused by a CAG/polyglutamine (polyQ) 

repeat expansion in the gene encoding ataxin-7; the polyQ tract ranges in size from 4 to 35 

glutamines in normal subjects but expands to 37 to >300 glutamines in affected patients 

(David et al., 1997; Stevanin et al., 2000). There are nine recognized polyQ repeat diseases, 

including spinobulbar muscular atrophy (SBMA), Huntington’s disease (HD), dentatorubral-

pallidoluysian atrophy (DRPLA), and six forms of SCA (SCA 1, 2, 3, 6, 7, and 17). 

Numerous studies have shown that the initiating event in disease pathogenesis is misfolding 

of the polyQ expansion tract to an altered conformation that is resistant to protein 

degradation (Paulson et al., 2000; Ross, 1997), indicating that SCA7 shares a common 

pathogenic basis with Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic 

lateral sclerosis, and tauopathy.

Mitochondria are cellular organelles that are principally responsible for the production of 

cellular energy in the form of ATP and are the only organelle, other than the nucleus, 

containing their own DNA. Although the mitochondrial genome encodes fewer than 40 

genes, many of these mitochondrial gene products are crucial for proper functioning of the 

oxidative phosphorylation pathway, where chemical energy is used to power ATP 

production. Defects in the mtDNA affecting the five multi-protein complexes of the 

respiratory chain cause a number of different disease syndromes (reviewed in DiMauro and 

Schon, 2003). These so-called mitochondrial respiratory chain disorders are quite variable in 

their phenotypes because of the unique features of mitochondrial genome inheritance and 

propagation within cells. However, despite the phenotypic variability, one recurrent theme in 

mitochondrial disease is the propensity for involvement of the CNS and skeletal muscle, 

tissues that constantly demand high levels of energy for their function. For mitochondrial 

diseases exhibiting CNS involvement, ataxia due to cerebellar degeneration is a common 

feature, with one particular syndrome known as NARP (neuropathy, ataxia, and retinitis 

pigmentosa) repeatedly occurring in patients who display a combination of neuropathy, 

ataxia, and retinal degeneration.

As mitochondrial dysfunction in mitochondrial genetic disease can often produce ataxia and 

retinal degeneration, which are defining features of SCA7, and nuclear genetic defects can 

cause various inherited ataxias with phenotypic overlap with SCA7, we hypothesized a 

potential role for mitochondrial dysfunction in SCA7. In infantile-onset SCA7, which is 
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typically caused by repeat expansions of more than 180 CAGs, progression is very rapid and 

patients present with a much broader spectrum of clinical phenotypes than the adult version 

of the disease, showing hypotonia, muscle wasting, developmental delay, and congestive 

heart failure (Whitney et al. (2007). Such infantile-onset SCA7 patients succumb to multi-

organ failure (Ansorge et al., 2004; van de Warrenburg et al., 2001; Whitney et al., 2007). 

Given the multi-system and severe nature of infantile-onset SCA7, most patients undergo a 

diagnostic odyssey, with the work-up focused on ruling out lipid storage diseases and 

mitochondrial disorders (Garden et al., 1993; van de Warrenburg et al., 2001). Even the adult 

form of SCA7 can phenocopy mitochondrial encephalopathies, as these diseases affect 

similar cell types (Garden et al., 1993). Apart from a limited number of case reports, which 

did reveal abnormal mitochondria in SCA7 patient skeletal muscle and liver (Cooles et al., 

1988; Forsgren et al., 1996; Han et al., 2010; Modi, 2000), a thorough investigation of 

mitochondrial involvement in SCA7 has not yet been pursued.

Here we evaluated the potential role of mitochondrial dysfunction in SCA7 through careful 

study of metabolic and mitochondrial function in SCA7 patients and in SCA7 mice that 

recapitulate childhood-onset disease (Yoo et al., 2003). Independent lines of investigation 

revealed compelling evidence for impaired energy metabolism and abnormal mitochondrial 

function. Indeed, SCA7 patients displayed impaired brain energy metabolism, and SCA7 

mice exhibited decreased oxygen consumption and respiration in metabolic cage studies. In 

degenerating cerebellar Purkinje cells, we documented abnormal mitochondrial network 

size, and upon ultrastructural analysis, we observed enlarged individual mitochondria. We 

created induced pluripotent stem cells (iPSCs) from SCA7 patients and related controls and 

also developed isogenic cell lines transduced with either normal or polyQ-expanded 

ataxin-7. Biochemical studies of neural progenitor cells (NPCs) expressing polyQ-expanded 

ataxin-7 revealed markedly impaired oxidative metabolism and reduced expression of 

enzymes required for salvage of nicotinamide adenine dinucleotide (NAD+). Using recently 

developed ratiometric NAD+ biosensors, we measured NAD+ levels in nucleus, cytosol, and 

mitochondria, and documented significantly decreased NAD+ in the nucleus and 

mitochondria of SCA7 patient NPCs. Metabolomics analysis of SCA7 patients also revealed 

perturbations in the tryptophan-kynurenine pathway, which provides intermediates for NAD
+ biosynthesis. Our results suggest that mitochondrial dysfunction, likely due to decreased 

mitochondrial NAD+, is a defining feature of SCA7 disease pathogenesis.

RESULTS

SCA7 Shares Clinical Features with Mitochondrial Disorders

SCA7 is unique among the dominant cerebellar ataxias, as affected patients typically 

develop retinal degeneration and manifest numerous extra-cerebellar findings, in 

combination with degeneration of the cerebellum and brainstem (Martin et al., 1994; 

Michalik et al., 2004). Given the presence of retinal involvement and the breadth of 

neuropathology in SCA7, the clinical picture of SCA7 is reminiscent of disorders 

characterized by mitochondrial dysfunction. Indeed, many SCA7 clinical phenotypes are 

commonly observed in mitochondrial disorders, as 11 of the top 20 disease phenotypes seen 

in patients with mitochondrial diseases are prominent features of the disease course in most 
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SCA7 patients (Figure S1A). To directly determine if SCA7 patients display significant 

bioenergetics defects, we performed brain 31-phosphorus (31P) magnetic resonance 

spectroscopy (MRS) on a series of 12 SCA7 patients (Table S1) and 13 unaffected controls, 

all previously recruited as part of a large study of inherited SCA (Garali et al., 2017). To 

quantify metabolic energy status, patients and controls carried out a visual task, consisting of 

a pre-task resting phase, performance of the visual task, and a post-task recovery phase, 

during which they were subjected to 31P MRS of the visual cortex. As expected, controls 

exhibited a significant increase in the ratio of inorganic phosphate to phosphocreatinine 

(Pi/P-Cr) during performance of the visual task (Figure 1A), which reflects increased 

mitochondrial ATP production, the latter being obtained via an elevation in ADP and 

reflected by a proportional increase in Pi/P-Cr. SCA7 patients, however, did not display a 

significant alteration in the Pi/P-Cr ratio (Figure 1A), because of impaired mitochondrial 

oxidative metabolism. To further assess the likelihood that SCA7 is a mitochondrial 

disorder, we used unbiased hierarchical clustering of SCA7 clinical features with disease 

phenotypes of known mitochondrial disorders using a bioinformatics algorithm (http://

www.mitodb.com) (Scheibye-Knudsen et al., 2013). This analysis yielded a “mito-score” for 

SCA7 of 93 on a scale of 0–100; as a mito-score >50 indicates significant overlap with 

mitochondrial disease (Scheibye-Knudsen et al., 2013), this analysis placed SCA7 in 

association with a number of bona fide mitochondrial disorders, including 3-

methylglutaconic aciduria type III (MGCA3) and two forms of optic atrophy (Figure S1B). 

Hence, both 31P MRS evaluation of SCA7 patients and consideration of SCA7 clinical 

symptomatology provide compelling evidence for mitochondrial dysfunction as a central 

feature of the SCA7 disease process.

SCA7 Mice Exhibit Abnormal Metabolism

As oxidative metabolism occurs in mitochondria, we initiated our assessment of 

mitochondrial function in SCA7 by examining metabolic physiology in the SCA7 266Q 

knockin mouse model, as these SCA7 mice recapitulate a rapidly progressive juvenile-onset 

form of disease (Yoo et al., 2003). To quantify metabolic function in living mice, we used 

the Oxymax/Comprehensive Lab Animal Monitoring (CLAMS) cage system to determine 

the oxygen consumption rate (OCR) and the respiratory exchange rate (RER) for 

symptomatic SCA7 266Q knockin mice and wild-type littermate controls. We found that 

SCA7 mice consumed significantly less oxygen overall with no difference for time of day 

(Figures 1B and 1C). We also measured RER and observed a significant decrease in RER in 

SCA7 mice (Figures 1D and 1E), suggesting reduced reliance on glucose oxidation. Taken 

together, these findings indicate that metabolic function is impaired in SCA7.

Altered Adipose Tissue Stores and Blood Glucose Levels in SCA7 Mice

To further characterize the nature of the abnormal metabolism detected in SCA7 266Q 

knockin mice, we evaluated their adipose tissue and found that SCA7 fat depots are visibly 

smaller in comparison with littermate controls (Figure 2A). Analysis of inguinal white 

adipose tissue (iWAT) revealed that SCA7 mice and littermate controls possess iWAT depots 

that are comparable as a fraction of total body weight at disease onset, but with disease 

progression, SCA7 mice display a rapid decrease in iWAT volume in proportion to total 

body weight, which worsens with disease course (Figure 2B). This dramatic loss of adipose 
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tissue occurs despite the fact that food consumption by SCA7 mice and littermate controls 

was comparable (Figure 2C) but was accompanied by a significant drop in body weight in 

SCA7 mice (Figure S2A). We also assessed fasting blood glucose levels and found that 

SCA7 mice and littermate controls display similar blood glucose levels at disease onset, but 

SCA7 mice exhibit markedly reduced blood glucose levels, once visibly affected with 

significant neurological abnormalities (Figures 2D, S2B, and S2C) but prior to late-stage 

disease (Figure S2D). Decreases in adipose tissue content and blood glucose levels imply an 

abnormal regulation of energy metabolism in symptomatic SCA7 mice. Coupled with the 

results of metabolic cage experiments, these findings confirm that metabolic respiration is 

compromised in symptomatic SCA7 mice.

SCA7 Cerebellar Purkinje Cells Have a Fragmented Mitochondrial Network Consisting of 
Enlarged Individual Mitochondria

Purkinje cells in the cerebellum are among the most metabolically active of all neurons 

(Howarth et al., 2010), as they process an enormous amount of information from the 

brainstem and deep cerebellar nuclei to provide the only efferent output leaving the 

cerebellar cortex for regulation of voluntary movement. In SCA7, Purkinje cell degeneration 

is prominent; hence, we immunostained cerebellar sections from SCA7 266Q knockin mice 

and littermate controls with an antibody directed against the outer mitochondrial membrane 

protein Tom20. We then skeletonized and quantified the Tom20 immunopositive signal to 

evaluate mitochondrial content and morphology in the soma of Purkinje cells (Figure 2E). 

By quantifying Tom20 fluorescence as a function of overall cell size, we determined the 

mitochondrial area and observed a marked reduction in mitochondrial area in SCA7 mice 

(Figure 2F). When we measured the length of the mitochondrial network in Purkinje cells, 

we documented a significant reduction in average mitochondrial network length in SCA7 

mice in comparison with littermate controls (Figure 2G). A decrease in mitochondrial 

network length is consistent with a more fragmented mitochondrial network, which has been 

associated with decreased respiration and defective bioenergetics (Knott et al., 2008; 

Westermann, 2012). To further characterize the morphology of mitochondria at the single 

organelle level, we pursued ultra-structural analysis on ultrathin sections of cerebellum from 

SCA7 and control mice. Inspection of the resultant electron micrographs revealed that 

individual mitochondria in SCA7 mice are obviously larger in both the soma and dendrites 

of cerebellar Purkinje cells (Figures 3A and 3B). To quantify this apparent difference, we 

measured the area, perimeter, and feret diameter of individual mitochondria from SCA7 

mice and littermate controls and documented that individual mitochondria in SCA7 

cerebellar Purkinje cells are much larger in size than mitochondria in control Purkinje cells 

for all of these readouts (Figures 3C–3H). We also evaluated mitochondrial morphology by 

assessing circularity and aspect ratio and found that despite the increase in size, 

mitochondria in SCA7 cerebellar Purkinje cells are similar in shape to mitochondria in 

control Purkinje cells (Figures S3A–S3D), and mitochondrial protein content in SCA7 and 

control cerebellum is similar (Figures S3E and S3F). To assess the status of mitochondria in 

peripheral tissues, we immunostained skeletal muscle sections from SCA7 266Q knockin 

mice and littermate controls and noted marked increases in mitochondrial content, size, and 

network length in SCA7 skeletal muscle, which was accompanied by significant increases in 

the protein expression levels of Drp1 and Mfn1 (Figure S4). We also analyzed liver sections 
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from SCA7 266Q knockin mice and matched controls, and although we noted significantly 

increased Tom20 immunofluorescence and mitochondrial network length, mitochondrial 

area and mitochondria-associated protein expression levels were comparable (Figure S5).

Development, Comparison, and Validation of Different SCA7 Human Stem Cell Models

To determine if the metabolic and mitochondrial defects in SCA7 mice occur in SCA7 

patients, we derived iPSCs from SCA7 patients and their related, unaffected relatives (Figure 

S6A) using retroviral transduction (Takahashi and Yamanaka, 2006). Prior to the use of 

iPSCs and their derivatives, we confirmed their identity, pluripotency, and ploidy. After 

generating NPCs, we examined mitochondrial network length via Tom20 immuno-staining 

and noted a marked reduction in mitochondrial network length in the most severely affected 

SCA7 patient with a CAG-70 (70Q) repeat expansion mutation but observed only modest 

decreases in SCA7 patients with CAG-50 (50Q) and CAG-65 (65Q) repeat expansion 

mutations (Figure 4A). We completed a battery of other assays and did not detect disease-

specific phenotypes, despite using multiple clones per genotype. As prior modeling efforts in 

the CAG-polyQ disease field have shown that greatly expanded CAG repeat alleles are often 

necessary to elicit disease-specific phenotypes, and stem cell modeling using lines of 

identical genetic background can greatly reduce spurious effects, we derived a SCA7 stem 

cell model system that would permit direct comparison of ataxin-7-113Q and normal 

ataxin-7. To achieve this, we used CRISPR/Cas9 genome editing to first knock out the 

ATXN7 gene in patient iPSCs with a guide RNA proximal to the CAG repeats, ensured its 

efficiency in a surveyor nuclease assay (Figure S6B), verified indels in each ATXN7 allele, 

and finally confirmed absence of ataxin-7 protein expression (Figure S6C). We then 

reintroduced expression of either normal length ataxin-7-10Q or polyQ-expanded 

ataxin-7-113Q with eGFP separated by a 2A peptide, or empty vector-eGFP for control 

purposes, each carried on a lentiviral vector (Figure 4B). The decision to derive vector only, 

ataxin-7-10Q, and ataxin-7-113Q isogenic iPSC lines reflects the technical challenges 

encountered with precise genome editing of repetitive sequence contained on a homology 

stretch that spans the repeat region. Nonetheless, this knockout rescue system permits direct 

comparison of lines that differ only in the expression of the polyQ expansion tract within the 

ataxin-7 protein, as we confirmed equivalent levels of expression of ataxin-7-10Q and 

ataxin-7-113Q protein in the iPSC derivatives and continued to monitor expression levels in 

all subsequent studies. Indeed, when we compared our SCA7 patient-derived NPCs with our 

SCA7 knockout rescue NPCs, we found that accumulation of aggregated ataxin-7 protein 

was similar between SCA7 10Q, 65Q, and 70Q NPCs upon filter trap assay (Figure 4C), 

while only ataxin-7-113Q NPCs exhibited marked accumulation of aggregated ataxin-7 

protein upon filter trap analysis (Figure 4D). The existence of polyQ length-dependent 

disease phenotypes in this “SCA7 knockout rescue system” was also evident when we 

studied cell toxicity, as only the SCA7 65Q NPC line displayed significant levels of cell 

death, with both SCA7 50Q and SCA7 70Q NPCs showing cell death levels comparable 

with control SCA7 10Q NPCs (Figure 4E); however, we documented markedly increased 

cell death in ataxin-7-113Q NPCs in comparison with non-transduced NPCs, eGFP-only 

expressing NPCs, and ataxin-7-10Q NPCs (Figure 4F). These studies thus validate the utility 

of the SCA7 knockout rescue NPC model as a system for further study of SCA7 metabolic 

and mitochondrial disease phenotypes.
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Polyglutamine-Expanded Ataxin-7 Yields Mitochondrial Abnormalities and Bioenergetics 
Defects in Transduced NPCs

To determine if expression of polyQ-expanded ataxin-7 elicits metabolic and mitochondrial 

phenotypes in human stem cell-derived NPCs, we immunostained knockout rescue NPCs 

expressing either GFP only, ataxin-7-10Q, or ataxin-7-113Q with an antibody directed 

against Tom20 (Figure 5A), compared mitochondrial network length, and documented a 

marked, polyQ length-dependent reduction in mitochondrial network length (Figure 5B). To 

functionally assess mitochondrial respiration, we performed a bioenergetics profile of non-

transduced, GFP-only, ataxin-7-10Q, and ataxin-7-113Q NPCs by performing extracellular 

flux analysis. We found that ataxin-7-113Q-expressing NPCs display a markedly reduced 

OCR and greatly increased extracellular acidification rate (ECAR) at baseline to yield a 

dramatically low OCR/ECAR ratio compared with non-transduced, GFP-only, and 

ataxin-7-10Q NPCs (Figure 5C). This diminished OCR/ECAR ratio persists in 

ataxin-7-113Q NPCs upon treatment with the ATP synthase inhibitor oligomycin, the 

uncoupling agent FCCP, and complex I + III inhibition with combined antimycin and 

rotenone treatment (Figure 5C).

Biosensor Quantification Reveals Reduced NAD+ in Specific Subcellular Compartments in 
SCA7 Patient NPCs

One possible explanation for impaired oxidative metabolism in SCA7 could be diminished 

NAD+, as NAD+ provides substrate for production of NADH, the key electron donor in 

production of a chemiosmotic gradient that drives oxidative phosphorylation at the inner 

mitochondrial membrane, and microarray expression analysis of SCA7 266Q knockin mice 

had previously revealed a significant reduction in the expression of NMNAT1 (Gatchel et al., 

2008), which catalyzes synthesis of NAD+ from nicotinamide mononucleoside (NMN) in 

the salvage pathway. The vast majority of NAD+ is generated via addition of AMP to NMN 

in the salvage pathway; however, as NAD+ is abundantly required in different subcellular 

compartments, mammalian cells possess three distinct NMN adenylyltransferases in these 

different compartments: nuclear NMNAT1, cytosolic NMNAT2, and mitochondrial 

NMNAT3 (Revollo et al., 2004). To broadly evaluate NMNAT enzyme expression in SCA7, 

we performed qRT-PCR analysis of NMNAT1, NMNAT2, and NMNAT3 on RNAs obtained 

from GFP-only, ataxin-7-10Q, and ataxin-7-113Q NPCs and observed marked reductions in 

NMNAT1, NMNAT2, and NMNAT3 gene expression in ataxin-7-113Q NPCs, though 

reductions in NMNAT2 and NMNAT3 were also observed in ataxin-7-10Q NPCs (Figures 

6A–6C). We similarly evaluated Sirt3 and Sirt6, two sirtuin family members with links to 

NAD+ metabolism, and documented reductions in Sirt3 expression in ataxin-7-10Q and 

ataxin-7-113Q NPCs but noted comparable expression levels of Sirt6 (Figures S6D and 

S6E). Immunoblot analysis revealed a reduction in NMNAT1 protein expression in 

ataxin-7-113Q NPCs but indicated a similar reduction in NMNAT1 protein expression in 

ataxin-7-10Q NPCs (Figure 6D). Although these findings imply that NAD+ production may 

be impaired in SCA7, they do not provide direct evidence for altered NAD+ metabolism in 

SCA7. Hence, to accurately quantify NAD+ levels and do so at the subcellular level, we 

turned to a recently developed set of NAD+ biosensors. In this ratiometric system, NAD+ 

binding yields a loss of fluorescence at an excitation wavelength of 488 nm but does not 

affect a second excitation peak at 405 nm, permitting normalization (Cambronne et al., 
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2016). In the presence of reduced NAD+, one would expect increases in relative F488/F405 

fluorescence, which we validated in all three NAD+ biosensors by measuring a respective 

increase in the F488/F405 fluorescence in the nucleus, cytosol, and mitochondria of HeLa 

cells treated with the NAD+ depleting drug FK866 (Figure S6F). We then resorted to the use 

of patient NPC lines, as the knockout rescue system is incompatible with the biosensors 

because of the presence of GFP. When we compared NAD+ levels in control and SCA7 

NPCs, we documented a significant decrease in NAD+ levels, as reflected by an increase in 

the 488/405 fluorescence ratio, in the nucleus and mitochondria of SCA7 NPCs (Figure 6E). 

There was also a strong trend toward reduced cytosolic NAD+ levels in SCA7 NPCs, but this 

difference was not statistically significant (p = 0.09). These findings indicate that metabolic 

and mitochondrial dysfunction in SCA7 may result from reduced NAD+ availability in 

certain subcellular compartments.

Metabolomics Analysis of SCA7 Patients Reveals Perturbations in the Tryptophan-
Kynurenine Pathway

Besides the salvage pathway that recycles nicotinamide to produce NAD+, there is a de novo 
pathway for NAD+ synthesis in which tryptophan is converted to kynurenine and then 

ultimately to quinolinate, which is a key precursor to NAD+ (Figure S7). To further assess 

the status of NAD+ production in SCA7, we performed metabolomics analysis on plasma 

samples from 13 fasted SCA7 patients (Table S1) and 35 fasted controls, as part of a larger 

biomarker study in SCA patients (Garali et al., 2017). Using high-resolution mass 

spectrometry coupled to liquid chromatography (LC-HRMS), we detected and quantified 

tryptophan and related metabolites from the tryptophan-kynurenine pathway (Table S2). 

Although tryptophan, kynurenine, and the kynurenine/tryptophan ratio were comparable in 

SCA7 patients and controls (Figures 7A–7C), we observed a trend toward increased levels of 

5-hydroxytryptophan in SCA7 patient plasma samples (Figure 7D), indicating reduced flux 

to the NAD+ precursor quinolinate. Furthermore, we found that kynurenic acid and 

xanthurenic acid were significantly increased in plasma samples of SCA7 patients compared 

with controls (Figures 7E–7F). Increased production of kynurenic acid and xanthurenic acid 

in SCA7 patients likely reflects increased activity of kynurenine aminotransferase (KAT), 

which would hamper the synthesis of the quinolinate precursor and therefore NAD+ (Figure 

S7). Interestingly, the same metabolomics analysis was performed on patients with SCA1, 

SCA2, and SCA3, but such alterations in the tryptophan- kynurenine pathway were not 

present in these SCA patients (data not shown). These results indicate that tryptophan 

metabolism and the formation of NAD+ intermediates are specifically altered in SCA7 

patients and thus corroborate our findings of reduced NAD+ levels in human stem cell 

models of SCA7.

DISCUSSION

Mitochondrial dysfunction is emerging as a unifying feature of many neurodegenerative 

disorders, including AD, PD, and HD (Filosto et al., 2011; Golpich et al., 2017; Lin and 

Beal, 2006). Despite the importance of mitochondrial function for CNS regions that are 

selectively vulnerable in SCA7, mitochondrial dysfunction in SCA7 has not yet been 

carefully examined. To determine the role of mitochondrial dysfunction in SCA7 patients, 
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we performed 31P MRS of the visual cortex and documented direct evidence for impaired 

mitochondrial oxidation, on the basis of the inability of SCA7 patients to increase ATP 

production during completion of a visual task. Changes in the Pi/P-Cr ratio have been linked 

to altered mitochondrial oxidative metabolism (Chance et al., 1981; Wiener et al., 1986), and 

previous MRS analysis of patients with HD, a polyQ repeat disease associated with 

mitochondrial energy deficiency, similarly revealed no change in the Pi/P-Cr ratio during 

visual stimulation (Adanyeguh et al., 2015; Mochel et al., 2012). Importantly, such brain 

metabolic alterations could be corrected when HD patients were treated with triheptanoin, a 

drug that directs key substrates to the Krebs cycle (Adanyeguh et al., 2015). In addition to 

evaluating mitochondrial dysfunction in SCA7 patients, we pursued an in-depth analysis of 

the metabolic physiology of SCA7 266Q knockin mice (Yoo et al., 2003), which recapitulate 

juvenile-onset disease. Metabolic cages were used to derive accurate measures of OCR and 

RER and revealed significant deficits in both OCR and RER in SCA7 mice. Similar studies 

of metabolic physiology have been completed for one other related polyQ disorder, HD, and 

revealed no differences in basal metabolic rate in one case and an increase in OCR in the 

other case (Hamilton et al., 2015; Weydt et al., 2006). Our detection of decreased OCR and 

RER in SCA7 mice thus provides evidence for physiologically relevant decreases in 

metabolic processes in a polyQ repeat disease.

After performing in vivo metabolic studies, we considered the morphology of the 

mitochondrial network and of individual mitochondria in cerebellar neurons in SCA7 mice, 

as bioenergetics defects can reflect abnormalities in mitochondrial dynamics (Knott et al., 

2008; Mishra and Chan, 2016). We observed fragmentation of the mitochondrial network in 

SCA7 cerebellar Purkinje cells, suggesting that the integrity of the mitochondrial network 

was not being maintained properly, likely because of defective mitochondrial dynamics. 

Ultrastructural analysis, however, clearly revealed that individual mitochondria in SCA7 

cerebellar Purkinje cells are significantly enlarged not just in Purkinje cell soma but also in 

dendrites. Although a fragmented mitochondrial network often occurs when individual 

mitochondria are reduced in size, the relationship between the size of the overall 

mitochondrial network at micron scale and the size of individual mitochondria at nanoscale 

is not always absolute (Rafelski, 2013). Indeed, yeast mutants, which lack normal 

mitochondrial fusion or fission and thus possess abnormally small or abnormally large 

individual mitochondria, can nonetheless maintain a mitochondrial network of normal size 

(Sesaki and Jensen, 1999). Purkinje cells are exquisitely sensitive to mitochondrial 

morphology defects, because if mitochondria are too large, they cannot enter the narrow 

neuronal projections of their elaborate dendritic network (Narendra and Youle, 2012). The 

presence of functioning mitochondria in Purkinje cell dendrites is essential, as Purkinje cells 

are highly electrically active and thus continually pumping ions across the synapses located 

in their dendrites, processes that require quick access to large quantities of ATP (Howarth et 

al., 2010). Studies of other cerebellar ataxias, such as autosomal recessive spastic ataxia of 

Charlevoix-Saguenay (ARSACS), confirm the importance of mitochondrial size regulation 

for proper Purkinje cell function, as loss-of-function of sacsin in knockout mice yielded 

abnormally enlarged mitochondria, which were precluded from entering the narrow neuronal 

projections of Purkinje cell dendrites, resulting in Purkinje cell degeneration (Girard et al., 

2012). Similarly in mice, neuron-specific loss of function of Drp1, a key regulator of 
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mitochondrial fission, yields abnormally enlarged mitochondria and severe Purkinje cell 

degeneration, with a paucity of mitochondria found in Purkinje cell dendrites (Narendra and 

Youle, 2012). Detection of abnormally enlarged individual mitochondria in SCA7 cerebellar 

Purkinje cells suggests that mitochondrial abnormalities likely play a central role in 

promoting degeneration of this crucial neuron subtype. Interestingly, despite the presence of 

a fragmented mitochondrial network in cerebellar neurons in SCA7 mice, we found that the 

mitochondrial network is actually increased in the skeletal muscle and liver of SCA7 266Q 

knockin mice, with evidence for increased mitochondrial protein content in skeletal muscle. 

These findings are consistent with previous studies that reported mitochondrial 

abnormalities in liver and skeletal muscle biopsies from SCA7 patients (Cooles et al., 1988; 

Forsgren et al., 1996; Han et al., 2010; Modi, 2000).

Although mouse models of SCA7, and of other polyQ repeat diseases, recapitulate many of 

the defining clinical features of these disorders, there has been great interest in producing 

neural cells from affected patients by reprogramming terminally differentiated fibroblasts 

into iPSCs. Here we derived iPSCs from two different SCA7 pedigrees to permit comparison 

of affected patients with their genetically related unaffected relatives. Despite taking this 

approach, which should reduce variability because we are comparing individuals with 

closely related genomes, we did not observe consistent phenotype differences between 

SCA7 patients and unaffected controls. To create a more powerful stem cell model for 

SCA7, we used genome editing with CRISPR-Cas9 in order to produce isogenic lines that 

would differ only in expression of mutant ataxin-7 protein. Although contraction of the CAG 

repeat expansion to an inframe, normal-sized repeat was not achieved because of the 

challenges of homologous recombination with targeting fragments containing repetitive 

sequences, we did produce cell lines with complete knockout of ataxin-7 and transduced one 

such validated cell line with lentivirus constructs expressing normal ataxin-7, polyQ-

expanded ataxin-7, or nothing (i.e., empty vector). We confirmed comparable expression of 

ataxin-7 by immunoblot analysis of transduced iPSCs and their NPC derivatives and then 

evaluated mitochondrial network size and metabolic function, after demonstrating that 

expression of polyQ-expanded ataxin-7 yielded disease-relevant phenotypes in comparison 

with NPCs expressing normal ataxin-7 or no ataxin-7. We detected fragmentation of the 

mitochondrial network in the ataxin-7-113Q NPCs and documented marked impairment in 

mitochondrial bioenergetics by extracellular flux analysis. These findings corroborated 

observed phenotypes in SCA7 mice, independently validating the existence of mitochondrial 

dysfunction in SCA7. As this analysis included evaluation of human neural cells lacking 

ataxin-7, our results indicate that loss of function of ataxin-7 is well tolerated, as non-

transduced and GFP-empty transduced ataxin-7 knockout NPCs exhibited mitochondrial 

networks and bioenergetics comparable with ataxin-7-10Q NPCs. With the potential 

application of dosage reduction therapies such as antisense oligonucleotides or RNAi for 

SCA7 and related polyQ ataxias (Ramachandran et al., 2014, 2016; Scoles et al., 2017), 

absence of deleterious phenotypes in human ataxin-7 knockout neural derivatives is 

encouraging, because non-allele-selective interventions are currently envisioned.

So what then is the mechanistic basis for mitochondrial dysfunction in SCA7? The co-

existence of bioenergetics defects with aberrant mitochondrial morphology does not allow us 

to distinguish between defective mitochondrial dynamics or impaired metabolism as the 
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initiating event in the pathogenic cascade, though they are not mutually exclusive. Ataxin-7 

is a transcription factor core component of the STAGA co-activator complex (Helmlinger et 

al., 2004; Palhan et al., 2005), and we, and others, have reported that transcription 

dysregulation contributes to SCA7 disease pathogenesis (La Spada et al., 2001; Yoo et al., 

2003). When we considered the results of microarray expression analysis of the SCA7 

mouse model used in this study, we noted a marked reduction in the expression of the gene 

encoding NMNAT1 in SCA7 266Q cerebellum (Yoo et al., 2003). NMNAT1 is required for 

generation of NAD+ by the recycling of nicotinamide via the salvage pathway, which is the 

principal pathway by which NAD+ levels are maintained. NAD+ is emerging as an important 

regulator of cellular function, and its depletion has been linked to a number of 

neurodegenerative disorders (Long et al., 2015; Ryu et al., 2016; Wang et al., 2016; 

Williams et al., 2017). Although NMNAT1 is found in the nucleus, and NMNAT2 and 

NMNAT3 operate respectively in the cytosol and mitochondria, previous work has shown 

that NAD+ levels in one compartment can affect NAD+ levels in other compartments (Rustin 

et al., 1996), indicating that reduced NAD+ production in the nucleus could affect 

mitochondrial NAD+ availability, which in turn would decrease levels of NADH, the 

electron donor that drives oxidative metabolism at the inner mitochondrial membrane. 

Furthermore, reduced NAD+ in the nucleus alone is sufficient to impair mitochondrial 

oxidative phosphorylation, as NAD+ is the required co-factor for Sirt1, which deacetylates 

PGC-1α to activate it (Rodgers et al., 2005). PGC-1α co-activates the expression of genes 

that promote mitochondrial biogenesis or encode many of the enzymes required for both 

Krebs cycle and oxidative phosphorylation pathway function (Kelly and Scarpulla, 2004).

In light of the importance of NAD+ production for mitochondrial bioenergetics, we 

measured the expression of NMNAT1, NMNAT2, and NMNAT3 in our SCA7 knockout 

rescue stem cell model and noted a marked reduction in NMNAT1 gene expression in 

ataxin-7-113Q expressing NPCs in comparison with ataxin-7-10Q expressing NPCs. For 

NMNAT2 and NMNAT3, however, marked reductions were documented in both 

ataxin-7-113Q and ataxin-7-10Q expressing NPCs, and NMNAT1 immunoblot analysis 

revealed similar reductions in NMNAT protein expression in ataxin-7-113Q and 

ataxin-7-10Q expressing NPCs. These findings indicate that altered NAD+ production could 

be occurring in SCA7, but these results were not definitive. To directly measure NAD+ 

levels, and do so in the different subcellular compartments where NMNAT1, NMNAT2, and 

NMNAT3 function, we used a set of recently developed ratiometric fluorescent biosensors 

(Cambronne et al., 2016). Using this technique, we determined that NAD+ levels are 

significantly reduced in the nucleus and mitochondria of ataxin-7-113Q-expressing NPCs in 

comparison with ataxin-7-10Q-expressing NPCs, with a trend toward a significant reduction 

noted in the cytosol of ataxin-7-113Q NPCs. Direct measurement of NAD+ levels in 

subcellular compartments in SCA7 thus provides evidence for reduced NAD+ in 

mitochondria as a key contributor to the impaired mitochondrial oxidation detected in SCA7 

mice and patients. Indeed, previous work indicates that mitochondria NAD+ levels are 

regulated separately from nuclear or cytosolic NAD+, because knockdown of NMNAT3 

yielded a marked decrease in mitochondrial NAD+ without affecting nuclear or cytosolic 

NAD+ levels (Cambronne et al., 2016). In addition to the salvage pathway that recycles 

nicotinamide to generate NAD+, metabolism of tryptophan to kynurenine and then to 
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quinolinate provides a key substrate precursor for de novo synthesis of NAD+. To determine 

if altered tryptophan metabolism is also contributing to the shortage of NAD+ in SCA7, we 

performed metabolomics analysis on SCA7 patients and documented marked increases in 

kynurenic acid and xanthurenic acid, which suggests a metabolic detour to the detriment of 

quinolinate formation and therefore NAD+ synthesis. Hence, we propose that reduced 

mitochondrial NAD+ in SCA7 is contributing to the mitochondrial dysfunction observed in 

this disorder. As numerous efforts are under way to achieve NAD+ repletion as a treatment 

for age-related diseases, including neurodegenerative disorders (Guarente, 2016), our results 

may have therapeutic implications for SCA7 and also for other related neurodegenerative 

diseases, in which mitochondrial involvement is likely.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Albert La Spada (al.laspada@duke.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines—Fibroblasts were generated from dermal biopsies from SCA7 patients and 

controls, upon informed consent and in compliance with UCSD and Duke IRB protocols. 

Age, genotype, and sex of each resultant cell line is defined in Figure S6A. Low passage 

fibroblast cultures were treated with the retroviral reprogramming factors Oct4, Sox2, Klf4, 

and c-Myc, as described previously (Takahashi et al., 2007). After 15-20 days, individual 

colonies with stem cell morphology were isolated and transferred to feeder free conditions 

and thereafter maintained on Matrigel (BD Bioscience) coated plates and grown in mTesr1 

media (StemCell Technologies) as clonal lines. Thereafter, cells were passaged manually by 

cutting colonies with a needle and scraping resulting sections off the plate before 

transferring to a new dish. All iPSCs were maintained in 4% O2/5% CO2 at 37°C with daily 

medium changes. Characterization of resulting iPSC lines and NPC differentiation is 

described below in Method Details.

Animals—All animal experimentation adhered to NIH guidelines and was approved by and 

performed in accordance with the University of California, San Diego and Duke University 

Institutional Animal Care and Use Committees. The development of the SCA7 266Q mice 

has been previously described ((Yoo et al., 2003). SCA7 266Q animals were maintained on 

the FVB/NJ background and then backcrossed onto the C57BL/6J strain background. Mice 

were housed in a temperature- and humidity-controlled environment on a 12-hour light/dark 

cycle with food and water ad libitum. Hemizygous and age-matched wild-type littermates 

were used for all experiments. Ages and sample sizes are indicated in each associated figure 

legend. Because of challenges with breeding the SCA7 266Q line, only female mice were 

used in metabolic experimentation and quantification of fat percentage, food intake, and 

glucose levels. For microscopy experimentation, females and males were used in equal 

numbers, or as close to equal numbers as possible, and studies were performed by an 

examiner blinded to the treatment.
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Human subject studies—The patient study (NCT 01470729) was sponsored by the 

Assistance-Publique des Hôpitaux de Paris and approved by the local ethical committee 

(AOM10094, CPP Ile de France VI, Ref: 105-10). All participants were over 18 years and 

signed a written informed consent before they participated in the study. The patient group 

consisted of 6 men and 6 women aged from 22 to 76 years old. Sample sizes are indicated in 

each associated figure legend.

METHOD DETAILS

31-Phosphorus functional magnetic resonance spectroscopy (31P-MRS)—31P-

MRS data were acquired on a 3-Tesla whole-body Siemens Magnetom Trio scanner, as 

previously described (Adanyeguh et al., 2015; Mochel et al., 2012). A6-cm31P transmit/

receive surface coil (RAPID Biomedical GmbH; Rimpar, Germany) was used to collect free 

induction decays at the three phases from the visual cortex of 12 SCA7 patients and 13 

healthy controls. The ratio of inorganic phosphate (Pi) to PCr (Pi/P-Cr ratio) was calculated 

to evaluate the brain response to cortical activation.

Metabolomics analysis on plasma samples—Details about reagents, sample 

preparations, experimental settings and data-processing were as published previously (Garali 

et al., 2017). Metabolomics features related to tryptophan metabolism were identified based 

on their mass over charge ratio (m/z), their MS/MS spectra, and their retention times using 

an in-house database generated from available commercial standards (Garali et al., 2017).

MitoDB analysis: SCA7 was queried against the MitoDB database < http://

www.mitodb.com> with incidence of 100% ataxia, 83% visual acuity, 30% visual 

impairment, 69% optic atrophy, 43% pigmentary retinopathy, 70% ophthalmoplegia, 50% 

pyramidal signs, 50% extrapyramidal symptoms, 50% spasticity, and 25% hearing loss.

Mouse phenotyping studies: For neurological dysfunction studies, mice were visually 

inspected by a blinded examiner for obvious neurological signs and examined using a 

composite neurological evaluation tool (ledge test, clasping, kyphosis and gait were scored 

on a scale of 0 (normal) to 3 (severely impaired)), as described previously (Guyenet et al., 

2010). Females and males were used in equal numbers, or as close to equal numbers as 

possible, and studies were performed by a blinded examiner. For survival studies, animals 

were monitored daily and pronounced dead when respiration or heartbeat was no longer 

present.

Fluorescence microscopy: Ten-week-old mice were deeply anesthetized with isoflurane 

and perfused with 4% PFA. Brains were dissected, immersed in 30% sucrose, and cut on a 

vibrating microtome into 30 um sagittal sections. These free-floating sections were 

incubated in blocking solution containing 10% goat serum, 1% BSA, and 0.3% Triton X-100 

for 1 hr at RT. The quadriceps muscles and livers were removed and snap-frozen in an 

isopentane bath cooled by liquid nitrogen and stored at −80°C until use. 5-μm cross sections 

were cut using a cryostat at −20°C, collected on glass slides, and dried at RT for 10 min. The 

sections were fixed in 1.5% PFA followed by incubation in 0.05% Triton X and 

subsequently blocked via incubation in 5% BSA in PBS for 1 hr at RT. Primary antibodies, 
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anti-Calbindin antibody (Sigma-Aldrich, C9848) and anti-Tom20 (Santa Cruz, sc11415), 

were diluted 1:500 in blocking solution and sections were incubated overnight at 4°C. After 

2 washes with PBS, sections were incubated with anti-mouse superclonal AlexaFluor 488 

and anti-rabbit AlexaFluor 555 (Fisher) at 1:500 and 1:250 dilutions, respectively, for 1 hr at 

RT. Sections were then washed one time in PBS, incubated in PBS supplemented with 

1:5000 Hoechst 33342 for 10 min at RT, and washed again before mounting on glass slides 

with Prolong Gold anti-fade reagent (Life Technologies). Images were taken on a 

fluorescence microscope (Z1 Axio Observer Apotome or LSM 880 inverted confocal 

microscope with AiryScan, Zeiss). Equivalent numbers of fields were captured for each 

condition. Each Purkinje cell soma was manually encircled based on Calbindin staining and 

morphometry parameters were quantified by an ImageJ plugin, as described previously 

(Dickey and Strack, 2011). Mitochondrial area was calculated as a percentage of the soma 

area. Average mitochondrial length was quantified in microns.

Electron microscopy and mitochondrial ultrastructure: Eight and half-week-old mice 

were deeply anesthetized with isoflurane and perfused with a fixative solution made of 2% 

PFA and 2.5% glutaraldehyde in PBS. Brains were dissected and placed in fixative solution 

overnight at 4°C. The brains were cut on a vibrating microtome into 50 um sagittal sections. 

Ultrathin sections were prepared from equivalent regions within the cerebellum and imaged 

at 4000x on a Carl Zeiss Libra 120kV PLUS Energy Filtered Transmission Electron 

Microscope at the Salk Institute Biophotonics Core. Individual mitochondria were traced in 

ImageJ and measured for area, perimeter, feret diameter (caliper length), circularity (4πA/

p2), and aspect ratio (major axis/minor axis).

Metabolic studies Indirect calorimetry in metabolic cages: Female 8.5-week-old mice 

were housed in the Oxymax/CLAMS metabolic cage system from Columbus Instruments for 

4 days with ad libitum access to food and water on a 12 hr light/dark cycle. VO2 and RER 

were measured by the Oxymax system after a 24 hr acclimation period.

Glucose measurement and iWAT dissection: Glucose was measured using the NovaMAX 

glucometer system via tail venipuncture after 6 hr of fasting. The whole mouse was weighed 

just prior to anesthetization, then sacrified and the inguinal white adipose tissue from the 

right side of each mouse was surgically excised and weighed as described previously (Lim et 

al., 2012). Variance in sample size between groups at different time points occurred due to 

increased sampling rate of both genotypes at later time points for other lines of 

experimentation.

RT-PCR analysis: RNA was extracted from cells using TRIzol reagent (Thermo Fisher), 

and DNase-treated with TURBO DNA-free kit (ThermoFisher) according to manufacturer’s 

instructions. One microgram (ug) of RNA was reverse transcribed using the High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, Life Technologies) according to 

manufacturer’s instructions. cDNA was then amplified using a Taqman probe against 

NMNAT1.

Protein isolation and immunoblotting analysis: Cells were harvested in RIPA buffer (50 

mM Tris, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100, 150 mM NaCl) 
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supplemented with 1% protease inhibitor cocktail (Roche) and homogenized by passing 5 

times through a 23-gauge needle. Lysate was then centrifuged at 10000 x g for 10 min at 

4°C. Supernatant was quantified via BCA assay (Pierce; ThermoFisher). Fifteen micrograms 

of protein were separated on 4%–12% Bis-Tris gels (Life Technologies), transferred to 

PVDF membranes (Millipore), and blocked with 3% Bovine Serum Albumin (Sigma-

Aldrich) for at least 1 hr at RT. Membranes were then probed with rabbit anti-ATXN7 

(Thermo, PA1-749) 1:1000, mouse anti-polyQ 1C2 (Millipore MAB1574), rabbit anti-

TOMM20 (Novus NBP1-81556) 1:1000, mouse anti-MFN1 (Abcam ab57602) 1:1000, 

mouse anti-DRP1 (Abcam ab56788) 1:1000 or mouse anti-beta actin (Abcam, ab8226) 

1:10000 in 3% BSA in PBS overnight at 4°C. After 3 washes with 1x phosphate buffered 

saline supplemented with 0.1% Tween20 (PBS-T), membranes were incubated with HRP 

secondary antibodies (1:10000 Santa Cruz sc-2005 [anti-mouse], sc-2004 [anti-rabbit]) in 

PBS-T for 1 hr at RT. After treatment with ECL detection reagent (Denville), the membranes 

were visualized by autoradiography. For the filter trap assay, 30 mg of protein was loaded in 

a PR-600 24 slot blot filtration manifold unit (Hoefer, Fisher Scientific) with a cellulose 

acetate membrane. Vacuum was applied until lysate had run through, membrane was 

blocked in 5% nonfat dried milk in PBS for 1 hr at RT, and then incubated in mouse anti-

polyQ 1C2 (Millipore MAB1574) 1:1000 overnight at 4°C. Membranes were then incubated 

in anti-mouse secondary antibody (1:5000; Santa Cruz sc-2005) for 1 hr at RT, and 

visualized as above.

Immunohistochemistry: Cells were grown in coated 96-well plates or chamber slides, fixed 

in 4% paraformaldehyde for 10 min, and permeabilized in 0.3% Triton X-100 in PBS for 10 

min. Cells were then blocked with 5% BSA for at least 1 hr before incubation with chicken 

anti-GFP (Abcam, ab13970) 1:2000, rabbit anti-Tom20 (Santa Cruz, SC11415) 1:500, 

mouse anti-SSEA4 (Cell Signaling CS 4755) 1:500, mouse anti Tra-1-60 (Cell Signaling CS 

4746) 1:500, mouse anti Tra-1-81 (Cell Signaling CS 4745) 1:500, rabbit anti-Pax6 

(Covance, PRB-278P) 1:500, or mouse anti-Nestin (Abcam, ab6142) 1:1000 overnight at 

4°C. Cells were washed 3 times with PBS, then incubated with AlexaFluor 488, AlexaFluor 

555, and/or AlexaFluor 647 (Fisher) at 1:500 dilutions for 1 hr at RT. To stain nuclei, cells 

were incubated with 1:10000 Hoechst 33342 (Life Technologies). Cells were preserved in 

Prolong Gold anti-fade reagent (Life Technologies) and imaged on a fluorescence 

microscope (Z1 Axio Observer Apotome, Zeiss). Mitochondrial length was quantified using 

an ImageJ mitochondrial morphometry plugin as described previously (Dickey and Strack, 

2011).

Stem cell modeling iPSC characterization: Standard G-banding chromosome analysis of 

iPSC clones was performed by Molecular Diagnostic Services (San Diego, CA). Digital 

karyotyping was performed by hybridization to the Illumina Infinium 

HumanCoreExomeBeadChip (module version 1.9.4) following the manufacturer’s 

instructions. Analysis was performed using the cnvPartition program (Illumina) and gada R 

package < http://www.creal.cat/jrgonzalez/software.htm#ancla-MAD>, in addition to 

manual analysis.
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Guide RNA design and efficacy: The target sequence for the guide RNA was designed and 

selected using the E-CRISP design site based on proximity to CAG repeat region and limited 

off-target effects (http://www.e-crisp.org/E-CRISP/). The target sequence 

(CGGGCCGCGGATGACGTCAGG) was incorporated into a synthesized GeneArt DNA 

String (Life Technologies), as described (Yang et al., 2014). This fragment and the pUC57 

expression vector were simultaneously digested with EcoR1 and Pst1 restriction enzymes, 

ligated together, and transformed into DH5α bacteria. Surveyor nuclease assay was 

performed by PCR amplifying the region surrounding the putative cut site with the following 

primers: SCA73.1F 5′-GAGCGGAAAGAATGTCGGAGCG-3′ and SCA73.327R 5′-

CAGGAACTTTGGAAGCCTCAACCC-3′. The PCR product was hybridized and treated 

with Surveyor Nuclease S and Surveyor Enhancer S according to manufacturer instructions 

(Transgenomic, Inc.).

CRISPR/Cas9 gene editing and screening: One clonal line of patient iPSCs was treated 

overnight with 5 uM ROCK inhibitor (Ri) (Tocris), then dissociated to single cells with 

Accutase (StemPro, ThermoFisher), and passed through a 40 μm nylon mesh (BD 

Biosciences) to ensure single cells prior to transfection. Using Human Stem Cell 

Nucleofector Kit 2 and Amaxa program B16 (Lonza), 2 × 106 cells were nucleofected with 9 

mg of the CMV::Cas9-2A-EGFP vector or CMV::Cas9D10A-2A-EGFP (gifts from Kiran 

Musunuru; Addgene, #44719 and #44720) and 3 μg of the U6::gRNA vector. Transfected 

cells were plated in mTeSR supplemented with 5 μM Ri for 48 hr before FACS. GFP-

expressing cells were selected using the BD influx at the UCSD Human Embryonic Stem 

Cell Core Facility. Isolated colonies were selected, expanded, and genomic DNA was 

extracted (DNeasy kit, QIAGEN) for PCR and sequencing analysis. All clones were initially 

screened by PCR using the PCRx enhancer system (Invitrogen, Life Technologies). Several 

clonal lines were further investigated by TOPOcloning (ThermoFisher) the PCR product, 

selecting 10 resulting bacterial clones, isolating DNA (QIAprep kit, QIAGEN), and 

sequencing (Eton Bioscience; San Diego, CA). One resulting clonal line was selected for 

further studies.

NPC differentiation: NPCs were generated from iPSCs described above with STEMdiff 

Neural Induction Medium (NIM) (StemCell Technologies) according to manufacturer’s 

‘monolayer culture protocol’ instructions and maintained in Neural Progenitor Medium 

(NPM) for 5-15 passages in 4% O2/5% CO2 at 37°C with medium changes every 2-3 days 

per manufacturer’s instructions.

Lentivirus generation and treatment: EGFP-2A-puroR-2A, EGFP-2A-puroR-2A-

Atxn7cDNA (10 CAG), and EGFP-2A-puroR-2A-Atxn7cDNA (113 CAG) cassettes were 

cloned into pSico lentiviral constructs. Lentiviral particles were produced using standard 

techniques, NPCs were transduced with lentivirus, and experiments were all performed after 

48 to 72 hr.

Extracellular flux analysis: For Seahorse analysis (XF96, Agilent Technologies), NPCs 

were seeded at a density of 3×10å4/well in XF96 plates. After 48 hr, cells were tested for 
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both OCR and ECAR (extracellular acidification rate) following manufacturer’s instructions 

with the injection of Seahorse XF Cell Mito Stress Test Kit (Agilent Technologies).

NAD+ measurement: HeLa cells were plated at a concentration of 1.6 × 104 cells/well in a 

96 well plate. Each well was transfected with lipofectamine and 0.2 ug plasmid for either 

cytoplasmic, nuclear, or mitochondrial NAD sensor (or cpV control) (Cambronne et al., 

2016), treated with 10 nM FK866 for 11 – 18 hr, and analysis run 48-72 hr post-transfection. 

Each NPC line was plated at 1-2 × 105 cells/well in a 96 well plate. Each well was treated 

with 0.1 uL lentivirus prepared with either cytoplasmic, nuclear, or mitochondrial NAD 

sensor, or cpV control lentiviral vectors and analysis run 72 hr post-transduction. NPC 

experiments were performed 3 times as technical replicates, with 2 clones each from 2 

controls or 2 SCA7 patients.

Flow cytometry analysis: Cells were prepared for analysis by removing media and 

dissociating with 25 uL of accutase per well (incubated at 37°C for ~10 min), followed by 

dilution and trituration with 100 uL of FACS buffer (PBS with 2% FBS, 2 mM EDTA, 25 

mM HEPES) to single cells (125 uL total volume in each well). Analysis was performed on 

a BD Canto-flow cytometer with the following parameters: FSC voltage − 220, SSC voltage 

− 300, FITC voltage − 320, AmCyan voltage − 300. Events were recorded for 90 uL total 

per well. Events were gated for live cells by FSC-A x SSC-A, single cells by FSC-W x FSC-

A, and then for cells that expressed the sensor by 405 nm excitation (AmCyan) x 488 nm 

excitation (FITC). The final gate was determined based upon a non-transfected control. Post-

capture final analysis was performed using FlowJo based on the gates above. Statistics were 

determined using the “Derive Parameters” function for the AmCyan/FITC gate, which gave 

the per-cell 488/405 fluorescence ratio. The median for each well was calculated and then 

averaged with other wells from the same treatment/cell line.

QUANTIFICATION AND STATISTICAL ANALYSIS

All sample sizes, details, and statistical tests can be found in accompanying figure legends. 

Statistical analysis was done using Microsoft Excel, Prism 6.0 (GraphPad), SigmaPlot 

(Systat Software), Origin (Origin Labs), and galaxy workflow4metabolomics (Giacomoni et 

al., 2015). Statistical significance was defined at p < 0.05. For one-way and two-way 

analysis of variance (ANOVA), if statistical significance (p < 0.05) was achieved, then we 

performed post hoc analysis corresponding to the experiment, as specified, to account for 

multiple comparisons. All t tests were two-tailed Student’s t tests, and level of significance 

(alpha) was always set to 0.05. Statistical analysis of metabolomics data relied upon non-

parametric Wilcoxon tests, with the level of significance (alpha) also set to 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SCA7 patients display impaired oxidative metabolism on magnetic resonance 

spectroscopy

• Oxygen consumption and respiration are markedly decreased in SCA7 model 

mice

• Mitochondrial fragmentation occurs in SCA7 mouse Purkinje cells and iPSC-

derived neurons

• NAD+ is markedly reduced in nucleus and mitochondria of SCA7 patient-

derived neurons
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Figure 1. Both SCA7 Patients and SCA7 Mice Exhibit Impaired Metabolic Respiration
(A) Results of31P functional magnetic resonance spectroscopy on 12 spinocerebellar ataxia 7 

(SCA7) patients and 13 normal controls during performance of a visual task. A significant 

increase in the ratio of inorganic phosphate to phosphocreatinine (Pi/P-Cr) during 

performance of the visual task in comparison with recovery occurred for normal controls, 

but no change in Pi/P-Cr was noted for SCA7 patients. *p < 0.05 (two-tailed t test). Error 

bars represent within-subject differences of corrected SEM on normalized data.

(B) Metabolic cage measurement of the oxygen consumption rate (VO2; mL/kg/h) quantified 

by area under the curve (AUC) over the course of 72 h. White panels indicate light (day) 

periods, and gray panels indicate dark (night) periods; 8.5-week-old wild-type (WT) control 

and SCA7 mice; n = 5 mice/genotype; **p < 0.01 (two-tailed t test). Error bars indicate 

SEM.

(C) Quantification of average measurements of oxygen consumption rate (OCR) during light 

and dark intervals from (B). **p < 0.01 (two-tailed t test). Error bars indicate SEM.

(D) Respiratory exchange ratio (RER) (CO2 emission/O2 consumption), quantified by area 

under the curve (AUC) over the course of 72 h. White panels indicate light (day) periods, 

and gray panels indicate dark (night) periods; 8.5-week-old WT and SCA7 mice; n = 5 mice/

genotype; *p < 0.05 (two-tailed t test). Error bars indicate SEM.

(E) Quantification of average measurements of RER during light and dark intervals from 

(D). *p < 0.05 and **p < 0.01 (two-tailed t test). Error bars indicate SEM.
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Figure 2. SCA7 Mice Exhibit Reduced Fat Stores, Decreased Blood Glucose Levels, and Altered 
Mitochondrial Network Integrity
(A) Representative images of inguinal white adipose tissue (iWAT) from two SCA7 and two 

WT mice at 8.5 weeks of age.

(B) iWAT was dissected and weighed as a proportion of body weight at indicated ages. WT 

and SCA7 mice; n = 3–6 mice/genotype at 30, 40, and 50 days of age; n = 20 mice/genotype 

at 60 days of age; **p < 0.01 and ****p < 0.0001 (two-tailed t test).

(C) Cumulative food intake over time course for WT and SCA7 mice; n = 3 mice/genotype.

(D) Blood glucose levels after 6 h of fasting at indicated ages. WT and SCA7 mice; n = 3–6 

mice/genotype at 30, 40, and 50 days of age; n = 20 mice/genotype at 60 days of age; **p < 

0.01 (two-tailed t test).

(E) Representative images of skeletonized Tom20 signal within a Purkinje cell body to 

exhibit extremes of length measurement. The average length of the depicted WT 

mitochondria is 14 μm, while average length of the depicted SCA7 mitochondria is 5 μm. 

Scale bar, 5 μm

(F) Quantification of average mitochondrial content by measuring Tom20 

immunofluorescence signal as a percentage of calbindin immunofluorescence. Data are 

represented as mean ± SEM, and each dot represents the result for an individual Purkinje 

cell soma; 8.5-week-old WT and SCA7 mice; n = 3 mice/genotype, n = 180–190 cells/

genotype; ****p < 0.0001 (two-tailed t test).

(G) Quantification of average length of the mitochondrial network. Data are represented as 

mean ± SEM, and each dot represents the results for an individual Purkinje cell soma; 8.5-

week-old WT and SCA7 mice; n = 3 mice/genotype, n = 180–190 cells/genotype; ****p < 

0.0001 (two-tailed t test). Error bars indicate SEM.

Ward et al. Page 25

Cell Rep. Author manuscript; available in PMC 2019 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. SCA7 Purkinje Cells Display Abnormal Mitochondrial Morphology
(A) Representative images of WT Purkinje cell soma and dendrites at 8.5 weeks of age. Red 

arrowheads indicate mitochondria. Red outlines demarcate the cytosol of a Purkinje cell 

soma and dendrite to delineate the analyzed area. Bottom: zoom of the yellow boxed region. 

Scale bars, 1 μm.

(B) Representative images of SCA7 Purkinje cell soma and dendrites at 8.5 weeks of age. 

Red arrowheads indicate mitochondria. Red outlines demarcate the cytosol of a Purkinje cell 

soma and dendrite to delineate the analyzed area. Bottom: zoom of the yellow boxed region. 

Scale bars, 1 μm.

(C) Representative graph of the area of individual mitochondria within a single Purkinje cell 

soma from (A) and (B). Each dot represents an individual mitochondrion;black bars 

represent the medians.
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(D) Quantification of the medians represented in (C) from the soma and dendrites of 

analyzed Purkinje cells; 8.5-week-old WT and SCA7 mice; n = 3 mice/genotype, n = 12–19 

cells/genotype; **p < 0.01 and ***p < 0.001 (two-tailed t test).

(E) Representative graph of the perimeter of individual mitochondria within a single 

Purkinje cell soma from (A) and (B). Each dot represents an individual mitochondrion; black 

bars represent the medians.

(F) Quantification of the medians represented in (E) from the soma and dendrites of 

analyzed Purkinje cells; 8.5-week-old WT and SCA7 mice; n = 3 mice/genotype, n = 12–19 

cells/genotype; *p < 0.05 and ***p < 0.001 (two-tailed t test).

(G) Representative graph of the feret diameter of individual mitochondria within a single 

Purkinje cell soma from (A) and (B). Each dot represents an individual mitochondrion; black 

bars represent the medians.

(H) Quantification of the medians represented in (G) from the soma and dendrites of 

analyzed Purkinje cells; 8.5-week-old WT and SCA7 mice; n = 3 mice/genotype, n = 12–19 

cells/genotype; *p < 0.05 and ***p < 0.001 (two-tailed t test). Error bars indicate SEM.
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Figure 4. SCA7 Stem Cell Neural Derivatives Exhibit PolyQ Length-Dependent Disease 
Phenotypes
(A) Graph of average mitochondrial length of control (10Q) and SCA7 patient (50Q, 65Q, 

70Q) neuronal progenitor cells (NPCs) on the basis of Tom20 immunostaining. 

Quantification of average mitochondrial length analyzed using ImageJ mitochondrial 

morphometry plugin. Each dot represents the average mitochondrial length from an 

individual cell, and data are represented as mean ± SEM. Two control patient lines (one or 

two clones per line) and two SCA7 patient lines (two clones per line); n = 70–100 cells/

genotype. ***p < 0.001 (one-way ANOVA with post hoc Tukey’s multiple-comparison test).

(B) Ataxin-7-knockout NPCs were transduced with empty vector, ataxin-7-10Q, or 

ataxin-7-113Q lentivirus vector. Non-transduced (NT) cells serve as a negative control for 

transfection. Protein lysates were immunoblotted with anti-ataxin-7 or antiexpanded polyQ 

tract antibody, as indicated. β-Actin immunoblotting analysis was performed as a loading 

control.

(C) Protein lysates from control and SCA7 patient NPCs of the indicated CAG repeat allele 

size were filtered through nitrocellulose and then immuno-blotted with anti-expanded polyQ 

tract antibody.
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(D) Protein lysates from non-transduced ataxin-7-knockout NPCs or from ataxin-7-knockout 

NPCs transduced with empty vector, ataxin-7-10Q, or ataxin-7-113Q lentivirus vector were 

filtered through nitrocellulose and then immunoblotted with anti-expanded polyQ tract 

antibody.

(E) Control and SCA7 patient NPCs of the indicated CAG repeat allele size were analyzed 

for percentage of live cells by fluorescence-activated cell sorting (FACS) for side scatter 

(SSC-A) and forward scatter (FSC-A). n = 2 clones/genotype except for SCA7 50Q, for 

which one clone was available; n = 8 replicates/clone. ***p < 0.001 (one-way ANOVA with 

post hoc Tukey’s multiple-comparison test).

(F) Non-transduced ataxin-7-knockout NPCs or ataxin-7-knockout NPCs transduced with 

empty vector, ataxin-7-10Q, or ataxin-7-113Q lentivirus vector were analyzed for percentage 

of live cells by FACS for side scatter (SSC-A) and forward scatter (FSC-A). Isogenic lines, 

one clone per genotype, n = 3 technical replicates. *p < 0.05, ***p < 0.001, and ****p < 

0.0001 (ordinary one-way ANOVA with post hoc Tukey’s multiple-comparison test). Error 

bars indicate SEM.
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Figure 5. SCA7 Stem Cell Neural Derivatives Display PolyQ Length-Dependent Mitochondrial 
Morphology and Metabolic Defects
(A) Representative images of Tom20 immunostaining for ataxin-7-knockout NPCs 

transduced with empty vector, ataxin-7-10Q, or ataxin-7-113Q lentivirus vector. Scale bar, 5 

μm.

(B) Quantification of average mitochondrial length on the basis of Tom20 immunostaining 

and ImageJ mitochondrial morphometry analysis. Each dot represents an individual cell, 

data are represented as mean ± SEM. Isogenic lines, one clone per genotype, n = 34–57 

cells/genotype. *p < 0.05 and ***p < 0.001 (one-way ANOVA with post hoc Tukey’s 

multiple-comparison test).

(C) Extracellular flux analysis to measure oxygen consumption rate (OCR) as a function of 

extracellular acidification rate (ECAR) for non-transduced ataxin-7-knockout NPCs or 

ataxin-7-knockout NPCs transduced with empty vector, ataxin-7-10Q, or ataxin-7-113Q 

lentivirus vector.

Oligomycin, FCCP, or antimycin/rotenone (A/R) treatments were given at the indicated time 

points. Data are represented as mean ± SEM. Isogenic lines, one clone per genotype, n = 5 

wells/genotype. Two-way ANOVA with post hoc Dunnett’s multiple-comparison test at each 

time point. Asterisks indicate comparison between ataxin-7-113Q and each other genotype 

condition (****p < 0.0001). Error bars indicate SEM.
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Figure 6. SCA7 Stem Cell Neural Derivatives Exhibit Altered NAD+ Salvage Pathway Enzyme 
Expression and Reduced NAD+ Levels in the Nucleus and Mitochondria
(A) qRT-PCR analysis of NMNAT1 gene expression for ataxin-7-knockout NPCs transduced 

with empty vector, ataxin-7-10Q, or ataxin-7-113Q lentivirus vector. Isogenic lines, one 

clone per genotype, n = 3/genotype. *p < 0.05 (one-way ANOVA with post hoc Tukey’s 

multiple-comparison test).

(B) qRT-PCR analysis of NMNAT2 gene expression for ataxin-7-knockout NPCs transduced 

with empty vector, ataxin-7-10Q, or ataxin-7-113Q lentivirus vector. One clone per genotype 

(all on isogenic background), n = 3/genotype. *p < 0.05 (one-way ANOVA with post hoc 

Tukey’s multiple-comparison test).

(C) qRT-PCR analysis of NMNAT3 gene expression for ataxin-7-knockout NPCs transduced 

with empty vector, ataxin-7-10Q, or ataxin-7-113Q lentivirus vector. One clone per genotype 
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(all on isogenic background), n = 3/genotype. ***p < 0.001 (one-way ANOVA with post hoc 

Tukey’s multiple-comparison test).

(D) NMNAT1 immunoblot analysis of protein lysates from ataxin-7-knockout NPCs 

transduced with empty vector, ataxin-7-10Q, or ataxin-7-113Q lentivirus vector. β-Actin 

immunoblot served as a loading control. Bottom: quantification of NMNAT1 protein 

expression normalized to β-actin. **p < 0.01 (one-way ANOVA with post hoc Tukey’s 

multiple-comparison test).

(E) SCA7 patient NPCs or control NPCs were transfected with a nicotinamide adenine 

dinucleotide (NAD+) biosensor linked to a nuclear localization signal (top), cytosolic 

localization signal (middle), or mitochondrial localization signal (bottom). After excitation 

at 488 nm to monitor NAD+ binding, which reduces fluorescence, and excitation at 405 nm, 

which elicits fluorescence in the absence of NAD+ binding to normalize sensor expression 

level, we calculated the emission ratio for SCA7 patient NPCs and control NPCs. An 

increased fluorescence ratio for SCA7 patient NPCs indicated a reduced level of NAD+. 

NPC lines, two clones per genotype, n = 2/genotype; n = 3 technical replicates. *p < 0.05 

(unpaired t test). Error bars indicate SEM.
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Figure 7. Metabolomics Analysis Reveals Altered Tryptophan Metabolism in SCA7 Patients
(A–F) We performed high-resolution mass spectrometry in combination with liquid 

chromatography (LC-HRMS) on plasma samples from 13 fasted SCA7 patients and 35 

fasted controls. Depicted are boxplot representations for analyte signal areas in log-10, 

corresponding to (A) tryptophan, (B) kynurenine, (C) kynurenine/tryptophan ratio, (D) 5-

hydroxytryptophan, (E) kynurenic acid, and (F) xanthurenic acid. **p < 0.01 and ***p < 

0.001 (two-tailed t test). Error bars indicate SEM.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-Calbindin Sigma-Aldrich Cat# C9848; RRID:AB_476894

Rabbit anti-Tom20 Santa Cruz Cat# sc-11415; RRID:AB_2207533

Anti-mouse superclonal AlexaFluor 488 Fisher Cat# A28175; RRID:AB_2536161

Anti-rabbit AlexaFluor 555 Fisher Cat# A-21428; RRID:AB_2535849

Anti-rabbit AlexaFluor 647 Fisher Cat# A27040; RRID:AB_2536101

Rabbit anti-ATXN7 Thermo Cat# PA1-749; RRID:AB_2061308

Mouse anti-polyQ 1C2 Millipore Cat# MAB1574; RRID:AB_94263

Rabbit anti-TOMM20 Novus Cat# NBP1-81556; RRID:AB_11003249

Mouse anti-MFN1 Abcam Cat# ab57602; RRID:AB_2142624

Mouse anti-DRP1 Abcam Cat# ab56788; RRID:AB_941306

Mouse anti-beta actin Abcam Cat# ab8226; RRID:AB_306371

Anti-mouse HRP secondary antibody Santa Cruz Cat# sc-2005; RRID:AB_631736

Anti-rabbit HRP secondary antibody Santa Cruz Cat# sc-2004; RRID:AB_631746

Chicken anti-GFP Abcam Cat# ab13970; RRID:AB_300798

Mouse anti-SSEA4 Cell Signaling Cat# 4755; RRID:AB_1264259

Mouse anti Tra-1-60 Cell Signaling Cat# 4746; RRID:AB_2119059

Mouse anti Tra-1-81 Cell Signaling Cat# 4745; RRID:AB_2119060

Rabbit anti-Pax6 Covance Cat# PRB-278P; RRID:AB_291612

Mouse anti-Nestin Abcam Cat# ab6142; RRID:AB_305313

Bacterial and Virus Strains

DH5-a Life Technologies 18265017

Biological Samples

Patient and control primary fibroblasts This paper N/A

Chemicals, Peptides, and Recombinant Proteins

mTesR1 medium Stem Cell Technologies Cat. 85850

Matrigel BD Biosciences 356234

Prolong Gold anti-fade reagent ThermoFisher P36930

cOmplete ULTRA mini protease inhibitor Roche 5892791001

GE Healthcare Amersham ECL Prime Western Blotting 
Detection Reagent

Denville Scientific E3018

ROCK inhibitor (Ri) Y-27632 dihydrochloride Tocris 125410

Accutase ThermoFisher A1110501

STEMdiff Neural Induction Medium StemCell Technologies 05835

STEMdiff Neural Progenitor Medium StemCell Technologies 05833

FK866 chemical Life Technologies XP00165BOX

Hoechst 33342 Life Technologies H3570
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

TURBO DNA-free kit ThermoFisher AM1907

High-Capacity cDNA Reverse Transcription Kit ThermoFisher 4368814

TaqMan Universal Master Mix II Life Technologies 4440040

BCA assay Pierce; ThermoFisher 23225

Surveyor Nuclease Kit Transgenomic 706025

Amaxa Human Stem Cell Nucleofector Kit 2 Lonza VPH-5022

DNeasy Blood and Tissue Kit QIAGEN 69504

PCRx enhancer system Invitrogen, Life Technologies 11495017

TOPO-TA cloning kit ThermoFIsher 451641

QIAprep Spin Miniprep Kit QIAGEN 27106

Seahorse XF Cell Mito Stress Test Kit Agilent 103015-100

Experimental Models: Cell Lines

HeLa cells N/A N/A

Experimental Models: Organisms/Strains

SCA7 266Q mice H. Zoghbi Yoo et al., 2003

Oligonucleotides

NMNAT1 Taqman probe Life Technologies Hs00978912_m1

ATXN7 gRNA (CGGGCCGCGGATGACGTCAGG) Life Technologies Customized GeneArt DNA string

SCA73.1F 5′-GAGCGGAAAGAATGTCGGAGCG-3′ IDT N/A

SCA73.327R 5′-CAGGAACTTTGGAAGCCTCAACCC-3′ IDT N/A

Recombinant DNA

Oct4, Sox2, Klf4, c-Myc plasmids (Yamanaka factors) A. Muotri Chailangkarn et al., 2016

pUC57 N/A A. Muotri Thomas et al., 2017

CMV::Cas9-2A-eGFP Addgene RRID:Addgene_44719

CMV::Cas9D10A-2A-EGFP RRID:Addgene_44720

EGFP-2A-puroR-2A This paper N/A

EGFP-2A-puroR-2A-Atxn7cDNA (10 CAG) This paper N/A

EGFP-2A-puroR-2A-Atxn7cDNA (113 CAG) This paper N/A

Cytoplasmic NAD sensor L. Cambronne Cambronne et al., 2016

Nuclear NAD sensor L. Cambronne Cambronne et al., 2016

Mitochondrial NAD sensor L. Cambronne Cambronne et al., 2016

Cytoplasmic cpVenus control L. Cambronne Cambronne et al., 2016

Nuclear cpVenus control L. Cambronne Cambronne et al., 2016

Mitochondrial cpVenus control L. Cambronne Cambronne et al., 2016

Software and Algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

MitoDB database Scheibye-Knudsen et al., 
2013

www.mitodb.com

GraphPad Prism GraphPad Software N/A

ImageJ N/A https://imagej.nij.com/ij/

ImageJ mitochondrial morphometry plugin Dickey and Strack, 2011 From author

cnvPartition progra Illumina N/A

gada R package http://www.creal.cat/jrgonzalez/software.htm#ancla-MAD

E-CRISP design site Heigwer et al., 2014 http://www.e-crisp.org/E-CRISP/

SigmaPlot Systat Software https://systatsoftware.com/

Origin Origin Labs https://www.originlab.com/

galaxy workflow4metabolomics Giacomoni et al., 2015 https://galaxy.workflow4metabolomics.org/
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