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Abstract

Background: De novo genome assembly of next-generation sequencing data is one of the most important current
problems in bioinformatics, essential in many biological applications. In spite of significant amount of work in this
area, better solutions are still very much needed.

Results: We present a new program, SAGE, for de novo genome assembly. As opposed to most assemblers, which
are de Bruijn graph based, SAGE uses the string-overlap graph. SAGE builds upon great existing work on
string-overlap graph and maximum likelihood assembly, bringing an important number of new ideas, such as the
efficient computation of the transitive reduction of the string overlap graph, the use of (generalized) edge multiplicity
statistics for more accurate estimation of read copy counts, and the improved use of mate pairs and min-cost flow for
supporting edge merging. The assemblies produced by SAGE for several short and medium-size genomes compared
favourably with those of existing leading assemblers.

Conclusions: SAGE benefits from innovations in almost every aspect of the assembly process: error correction of
input reads, string-overlap graph construction, read copy counts estimation, overlap graph analysis and reduction,
contig extraction, and scaffolding. We hope that these new ideas will help advance the current state-of-the-art in an
essential area of research in genomics.
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Background
Next-generation sequencing (NGS) technologies are caus-
ing an unprecedented revolution in biological sciences.
The ability to obtain the genome sequence of a species
quickly and at a relatively low cost has tremendous bio-
logical applications to cancer research, genetic disor-
ders, disease control, neurological research, personalized
medicine, etc. NGS technologies such as Illumina, 454,
APG, Helicos, Pacific Biosciences, and Ion Torrent [1]
produce huge outputs at ever decreasing costs, enabling
ambitious projects such as the Genome 10 K Project,
[2] (www.genome10k.org) whose goal is to obtain the
genomes of 10,000 vertebrate species, the 1000 Genomes
Project, [3] (www.1000genomes.org) that proposes to
obtain the genomes of 1000 genetically varying humans,
or the Human Microbiome project, [4] (commonfund.
nih.gov/Hmp) whose aim is to characterize the microbial
communities found at several different sites on the human
body.
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NGS machines produce short pieces of DNA, called
reads, that often need to be assembled together into
longer sequences. The ability to de novo assemble
genomic data is crucial for the success of many applica-
tions including gene expression analysis, structural varia-
tion detection, and metagenomics, [5]. There is increased
demand in both computing power and algorithmic ideas
in order to cope with the increasingly popular NGS data.
Great work has been done on creating improved assem-
bly programs, e.g., [6-15], as well as surveying various
techniques, [5], or critically and thoroughly evaluating the
existing assemblers [16,17]; we refer the reader to the
latter three papers for references to other genome assem-
bly programs or related work. In spite of considerable
advances, much improvement is still needed in the current
state-of-the-art technology for de novo genome assembly
[18].

Reads that overlap significantly offer a good indication
that they may come from the same region of the genome.
Two main approaches are used in building assemblies.
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Both use overlaps between the reads but in different ways.
In the string-overlap graph approach [19,20] sufficiently
long overlaps between reads are used as edges to con-
nect vertices that represent reads. In the de Bruijn graph
approach [21,22] reads are broken into k-mers that are
used as vertices connected by edges representing over-
laps of length k − 1. However, regardless of the model,
the problems underlying both approaches can be shown
to be NP-hard [23]. The de Bruijn graph approach seems
counterintuitive, as it breaks the reads into shorter k-
mers, which appears contrary to the technological efforts
to produce longer reads. Nevertheless, most of the top
assemblers to date use the de Bruijn graph approach.

We propose a new assembler, SAGE (String-overlap
Assembly of GEnomes), that is string-overlap graph
based. SAGE includes innovations in almost every aspect
of the assembly process: error correction of input reads,
string-overlap graph construction, read copy counts esti-
mation, overlap graph analysis and reduction, contig
extraction, and scaffolding. We have tested SAGE on short
and medium-size genomes against several of the very best
assemblers, ABySS [9], SGA [12], SOAPdenovo2 [11], and
SPAdes [14] and showed that it performs very well.

Implementation
The algorithms used in SAGE are described here. Some of
the existing ideas are included as well in order to give a
complete description.

Error correction
All NGS datasets contain errors that make any usage of
such data, and genome assembly in particular, very dif-
ficult. We have used a new program, RACER [24], that
consistently exceeds the error correcting performance of
existing programs. All datasets have been corrected with
RACER before being assembled with SAGE.

Bidirected graph
Assume a dataset of n input reads of length � each,
sequenced from a genome of length L. The string-overlap
graph [20] has the reads as vertices. There is an edge
between two vertices if there is an overlap between the
sequences of the reads in the vertices (or their reverse
complements) of length higher than a given threshold, M,
the minimum overlap size. In order to avoid the complica-
tion due to double strandedness of DNA, [25] introduced
the bidirected overlap graph, where a read and its reverse
complement are represented by the same vertex and an
edge has an orientation at each end point, depending on
whether the read or its reverse complement is used in
producing the overlap defining the edge. Three possible
types of edges are thus obtained. Each edge has a string
associated with it, obtained from the strings of the reads
according to their overlaps. For instance, two strings xy

and yz (y is the overlap) produce the string xyz for the
edge. Assuming no errors in the reads, a consistent path
through the graph (for each vertex, the orientation of the
ingoing edge must match the orientation of the outgoing
edge) spells a substring of the genome. That is also the way
of associating a string with a path in the graph.

String-overlap graph construction
In order to efficiently find all overlaps of length at least
M between reads, we make the following observation.
Whenever two reads share an overlap of length M or more
bases, there exists a prefix or suffix of length at least M
in one of the reads that occurs as a substring of the other
read. Therefore, we build a hash table with all prefixes and
suffixes of all reads (and reverse complements) of length
min{64, M}. A fast computation of these is enabled by a
2-bit representation of the DNA bases and computation
of the prefixes and suffixes as 64-bit integers by fast bit
operations.

After the hash table is built, a search is performed for
all substrings of length min{64, M} of all reads. This is
done in one pass through all reads with expected constant
time search per substring and fast computation of the
next substring, again using efficient bit operations. Each
successful search is followed by a fast check for a valid
overlap. Whenever an overlap is found, the corresponding
edge is inserted in the graph.

Space-efficient transitive reduction
The string-overlap graph can be very large and a transitive
reduction is performed to significantly decrease its size.
An edge e = (r1, r2) is transitive if there is a read r3 and
edges e1 = (r1, r3), e2 = (r3, r2) such that the string of the
edge e is the same as the one of the path (e1, e2). Notic-
ing that the overlaps producing the edges e1 and e2 are
longer, and thus more reliable, than the one producing e,
the transitive edge e can be eliminated.

Myers [20] gave a linear expected time algorithm for
transitive reduction. While Myers’ algorithm is very effi-
cient, the graph has to be built before being reduced,
thus creating a space bottleneck. We have modified Myers’
algorithm to reduce the graph as it is being built. Myers’
essential observation is that the edges adjacent to a vertex
have to be considered in increasing order of their lengths.
We maintain this order and in addition attempt to reduce
the graph as locally as possible. That is, we build only
the part of the graph necessary to determine the transi-
tively reducible edges for a given vertex v. These edges are
marked for elimination but not yet removed. Once all ver-
tices whose transitive reduction can be influenced by the
edges incident with v have been investigated, the edges
of v marked for elimination can be removed, thus reduc-
ing the space during construction. The running time for
building the transitively reduced graph remains the same
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as if the complete string-overlap graph is first constructed
and then transitive edges are removed, however the space
decreases very much. This is essential for the entire SAGE
algorithm since graph construction is the most space
consuming step.

Graph simplification
The next step is further simplifying the graph. First, any
path consisting exclusively of vertices of indegree and out-
degree one is compressed to a single edge, subsequently
called composite edge; edges that are not composite are
called simple. The string spelled by the composite path
is stored with the new edge along with the informa-
tion concerning the reads corresponding to the collapsed
vertices.

Our error correction procedure is very effective, how-
ever, errors remain in the corrected dataset. The correct-
ing step does not remove any reads in order to avoid
breaks in coverage. Overlaps between a correct read and
one containing errors most likely result in short “dead-
end” paths in the graph. Composite path compression
might produce dead-end paths consisting of single edges.
Whenever the number of reads in one such edge is lower
than an experimentally determined threshold, the edge is
removed.

Sometimes such erroneous paths can connect back into
the graph, resulting in “bubbles”. A bubble is the event of
two disjoint single paths between two vertices such that
their strings are highly similar but their number of reads
is very different. In such a case, if one of the two paths has
much lower coverage, then it is removed.

Egde multiplicity
Assuming complete coverage and no errors, the genome
would be represented as the string corresponding to a
path in the graph. The number of times an edge is tra-
versed by this path equals the number of times the string
associated with the edge occurs in the genome. Myers [20]
introduced the A-statistics to identify unique, or single-
copy, edges. We generalize these statistics in order to
be able to obtain accurate estimates of the number of
occurrences of the string associated with each edge in the
genome.

Given an edge e containing k reads such and whose asso-
ciated string has length d, assuming the reads are sampled
uniformly from the genome the probability that e has mul-
tiplicity m, that is, its string occurs m times in the genome,
is given in (1).

Pr(m|e) =
(

n
k

) (
md
L

)k (
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L
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In order to estimate the actual number of copies e has in
the genome, we define the logarithm of the ratio between
the probability of e having m or m + 1 copies; see (2).
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For m = 1, this log-odds ratio gives the A-statistics of
Myers [20].

Genome and insert size estimation
When defining the edge multiplicity probability and
log-odds ratios, the genome length L is necessary but
unknown. The values R(e, 1) are used to estimate L using
the bootstrap algorithm of Myers [20]. The arrival rate for
a unique edge of length d and k reads is expected to be
close to that of the entire genome, which gives the esti-
mate: L ≈ nd

k . Edges of length 1000 or more are initially
assumed unique. Subsequent estimates of L are used for
computing the R(e, 1) ratios and only those edges with
R(e, 1) ≥ 20 are kept as unique in future iterations. This
bootstrap procedure is repeated until the set of unique
edges does not change. In practice this happened in five
iterations or less and a good estimate for L was obtained;
see Table 1.

Often the dataset does not include information con-
cerning the insert size, that is, the distance between the
two reads of the same mate pair. The mean, μ, and stan-
dard deviation, σ , of the insert size distribution are esti-
mated by considering only those mate pairs that belong
to the same edge in the string-overlap graph where the
distance between the reads in the edge is known.

Maximum likelihood assembly
Assembling a genome as the shortest string that con-
tains the given reads suffers from an important drawback,
that of overcompressing the genome or overcollapsing the
repeats. This was already noticed by Myers [19], where

Table 1 Estimated genome sizes for the datasets in Table 3

Dataset Actual size Estimated size Difference (%)

1 4,215,606 4,225,613 0.24%

2 1,042,519 1,353,267 29.81%

3 2,190,731 2,210,896 0.92%

4 1,892,775 1,887,639 -0.27%

5 4,277,185 4,717,507 10.29%

6 2,343,476 2,342,227 -0.05%

7 4,639,675 4,681,050 0.89%

8 3,843,301 4,204,996 9.41%

9 100,286,070 107,544,824 7.24%
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Table 2 Predicted read copy count comparison for the
datasets in Table 3

Dataset MB09 SAGE

1 3.19 82.71

2 4.85 71.87

3 7.24 59.91

4 9.37 58.61

5 5.31 65.90

6 9.40 56.26

7 - 65.40

8 - 66.67

9 - 73.22

Predicted read copy count comparison between the algorithm of [26], denoted
MB09, and the procedure used by SAGE. The values given are the percentages of
correctly predicted copy counts. The MB09 algorithm could not process the last
3 datasets from Table 3.

the maximum likelihood reconstruction of the genome
was proposed, that is, instead of the shortest genome,
the one that is most likely to have produced the genome
is searched for. Medvedev and Brudno [26] considered a
very interesting approach to maximum likelihood assem-
bly that is suitable for our purpose.

Our goal is to produce good estimates for the read copy
counts, that is, for each read, the number of times its
sequence appears in the genome. For a read ri, assume
its copy count is ci. The ci values are unknown. What is
known are their observed values, say xi, and the likelihood,
L, that needs to be maximized, shown in (3).

L =
∏

i

(
n
xi

) (ci
L

)xi (
1 − ci

L

)n−xi
(3)

Maximizing L is the same as minimizing its negative
logarithm, see (4).

− log(L) =
∑

i

(−xi log ci − (n − xi) log(L − ci)
) + C (4)

where C is a constant independent of the ci’s.
For each i, the path in the graph spelling the genome

sequence traverses the edge containing the read ri exactly
ci times. Since − log(L) is separable convex, maximiz-
ing the likelihood is reduced to a convex min-cost bidi-
rected flow problem in a network build on the string-
overlap graph. First, each convex cost function is given
a three-piece linear approximation. Then the bidirected
flow problem is reduced to a directed flow problem that
is solved using the CS2 algorithm [27] downloaded from
www.igsystems.com/cs2. We refer to [26] for details.

Read copy counts estimation
As explained in the previous section, the solution to the
bidirected flow problem gives an estimation of the copy
counts ci’s of the reads. Crucial are the bounds we set
on the capacities of the edges. For vertices, we must set
a lower bound of 1 since the reads in vertices must be
included in the assembly. For edges, we use the R(e, m)

statistics that we introduced previously. We consider only
long edges (1000 bp or more) for which the statistics
should work well. For one such edge e, if R(e, 1) ≥ T , for
some threshold T (T = 3 works well in practice), then we
set the lower and upper bounds on the capacity of the edge
as l(e) = u(e) = 1. If R(e, 1) < 3, then we find the smallest
m such that R(e, m − 1) ≤ −T and R(e, m) ≥ T and set
the lower bound l(e) = m and the upper bound to some
large value, u(e) = ∞. In case the above procedure fails to
assign lower bounds, we set l(e) = 1 and u(e) = ∞. For
the composite edges shorter than 1000 bp but containing

Table 3 The datasets used for evaluation

Dataset Organism Accession Reference Genome Read Number Number of Coverage
number genome length length of reads base pairs

1 Bacillus subtilis DRR000852 NC_000964.3 4,215,606 75 3,519,504 263,962,800 62.62

2 Chlamydia trachomatis ERR021957 NC_000117.1 1,042,519 37 7,825,944 289,559,928 277.75

3 Streptococcus pseudopneumoniae SRR387784 NC_015875.1 2,190,731 100 4,407,248 440,724,800 201.18

4 Francisella tularensis SRR063416 NC_006570.2 1,892,775 101 6,907,220 697,629,220 368.57

5 Leptospira interrogans SRR397962 NC_005823.1 4,277,185 100 7,127,250 712,725,000 166.63

6 Porphyromonas gingivalis SRR413299 NC_002950.2 2,343,476 100 9,497,946 949,794,600 405.29

7 Escherichia coli SRR072099 NC_000913.2 4,639,675 36 30,355,432 1,092,795,552 235.53

8 Clostridium thermocellum SRR400550 NC_009012.1 3,843,301 36 31,994,160 1,151,789,760 299.69

9 Caenorhabditis elegans SRR065390 WS222 100,286,070 100 67,617,092 6,761,709,200 67.42

The datasets are sorted increasingly by the total number of base pairs. All datasets and reference genome sequences are obtained from the NCBI, except C.elegans
that is from www.wormbase.org.

www.igsystems.com/cs2
www.wormbase.org.
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at least 30 reads, we assign l(e) = 1 and u(e) = ∞. The
remaining edges receive the trivial l(e) = 0, u(e) = ∞.

The estimation of the copy counts obtained using the
above procedure is very good. Table 2 gives the compari-
son between our procedure and the one of [26]. The latter
one works well for synthetic datasets, as reported in [26],
but not for real data.

Further graph simplification
Based on the flow computed above, several further sim-
plifications are performed to the graph. For a vertex, r,
with only one incoming edge, (s, r) and outgoing edges
(r, ri), 1 ≤ i ≤ k, we remove the vertex r and its adjacent
edges and add edges (s, ri), 1 ≤ i ≤ k. The flow on the
edge (s, ri) is the same as it was on the edge (r, ri). A similar
modification is done for vertices with only one outgoing
edge.

For a vertex r that has a self loop (r, r) and only two adja-
cent edges, (s, r) and (r, t), we remove the vertex r and its
edges and replace them with (s, t). Note that the flow on
(s, t) is the same as it was on either (s, r) or (r, t).

Mate pair support
A vertex having more than one incoming edge and more
than one outgoing edge is “ambiguous”. Mate pairs are
used in connection with the flow to solve some of these
ambiguities. For a vertex r, an incoming edge (s, r) and an
outgoing edge (r, t), we say that a mate pair (r1, r2) sup-
ports the path (s, r, t) through r if all paths of length within
the range μ ± 3σ from r1 to r2 include the path (s, r, t).
Note that this is significantly more general than simply
having r1 on the edge (s, r) and r2 on the edge (r, t). There
may be many paths of length μ ± 3σ between r1 and r2.

The support required in SAGE for merging a pair of
adjacent edges is at least 5. When edges (s, r) and (r, t) are
merged, an edge (s, t) is added with flow equal to the min-
imum flow on (s, r) and (r, t). The edge with lower flow
out of (s, r) and (r, t) is then deleted and the other has its

Table 4 NGA50 comparison; best results in bold

NGA50 ABySS SGA SOAP2 SPAdes SAGE

1 423,890 68,419 551,507 441,472 924,197

2 301,840 97,593 225,668 696,260 669,089

3 23,245 21,876 26,356 18,167 30,232

4 25,749 23,314 23,294 23,762 23,961

5 117,711 83,128 132,993 38,735 182,864

6 35,564 37,013 42,835 32,926 54,125

7 101,741 10,038 98,665 36,300 96,980

8 52,944 23,747 54,744 52,142 54,883

9 18,210 20,436 31,973 20,468 32,442

Avg. 122,322 42,840 132,004 151,137 229,864

Table 5 NGA75 comparison; best results in bold

NGA75 ABySS SGA SOAP2 SPAdes SAGE

1 162,208 40,124 306,202 306,452 306,386

2 160,704 51,570 125,082 339,321 307,765

3 9,847 7,570 6,785 6,052 10,040

4 14,491 13,117 13,117 13,638 13,377

5 58,556 40,333 64,594 22,071 87,232

6 20,005 18,062 19,982 15,716 25,176

7 56,943 5,270 54,790 18,706 54,784

8 28,805 8,618 25,243 25,255 29,529

9 7,126 7,596 13,232 8,122 14,095

Avg. 57,632 21,362 69,892 83,926 94,265

flow decreased by the minimum of the two. If both have
the same flow, then both are deleted. Often, r has only
four adjacent edges and so it is completely resolved by this
procedure.

In order to save space, we compute the paths of length
up to μ + 3σ from each node and then consider the reads
on all edges incident to that node.

Due to lack of coverage in some regions or errors in the
reads, some mate pairs may have no path to connect them
in the graph. We can still use their support in such cases as
follows. Consider a mate pair (r1, r2) such that r1 belongs
to the edge e1 and r2 belongs to the edge e2. If the sum of
the distances from r1 to the end of the edge e1 and from
the corresponding end of e2 to r2 is less than μ + 3σ , then
(r1, r2) supports the edges (e1, e2) merging. This type of
support from mate pairs is less reliable and we strengthen
it by considering only edges with non-zero flow or having
sufficiently long associated paths (at least 100 bp).

Assuming sufficient support is accumulated to merge
the edges e1 and e2, the distance between their ends is esti-
mated based on μ. If they overlap, there will be no gap,
otherwise the gap is filled with N’s.

Table 6 Max alignment; best results in bold

Max ABySS SGA SOAP2 SPAdes SAGE

1 800,991 241,307 1,014,436 1,037,023 1,016,322

2 359,339 210,791 339,457 696,260 669,089

3 125,616 125,616 125,563 74,151 125,616

4 87,729 87,426 87,417 87,801 87,862

5 413,583 319,895 320,270 137,901 550,746

6 172,567 167,699 167,686 154,317 172,565

7 326,073 54,214 325,634 162,291 326,332

8 186,547 106,016 186,433 195,919 186,424

9 213,835 239,959 382,096 171,314 383,476

Avg. 298,476 172,547 327,666 301,886 390,937
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Table 7 Genome coverage (%); best results in bold

Coverage ABySS SGA SOAP2 SPAdes SAGE

1 99.04 98.67 98.63 98.63 98.95

2 98.57 98.04 94.65 99.36 99.49

3 83.30 82.82 81.54 82.01 83.19

4 95.61 93.07 92.58 93.80 93.56

5 99.49 98.77 98.75 95.15 99.67

6 97.97 95.08 95.62 95.95 97.77

7 95.62 94.10 94.80 95.09 95.42

8 95.78 92.63 92.81 94.08 95.85

9 95.49 95.19 95.28 95.48 96.94

Avg. 95.65 94.26 93.85 94.40 95.65

Finally, the set of output contigs consists of the strings
of minimum required length (default is 100) that are
associated with edges of non-zero flow.

SAGE overview
We present here a brief overview of the main stages of
SAGE using all the procedures presented above.

SAGE Algorithm

1. Use RACER to correct the input dataset
2. Build transitively reduced string-overlap graph
3. Compress composite paths
4. Remove dead-ends and bubbles
5. Compute edge statistics
6. Estimate genome size
7. Estimate mean and std. dev. of insert size
8. Compute min-cost bidirected flow
9. Reduce single-edge and loop vertices

10. Compute mate pair support
11. Resolve ambiguous vertices
12. Merge contigs without connecting paths
13. Output assembly

Table 8 Unaligned contigs; best results in bold

Bad contigs ABySS SGA SOAP2 SPAdes SAGE

1 1 0 8 3 0

2 10 16 16 10 19

3 3 26 29 30 14

4 0 1 2 11 1

5 0 1 0 266 0

6 0 0 0 423 0

7 1 4 1 2 2

8 1 0 11 1 3

9 978 304 272 363 267

Table 9 Misassemblies; best results in bold

Indel/mm ABySS SGA SOAP2 SPAdes SAGE

1 1 0 0 1 10

2 1 1 1 1 1

3 149 108 118 115 169

4 94 35 34 28 26

5 8 2 7 114 11

6 10 5 15 8 17

7 26 4 5 22 25

8 18 1 9 6 32

9 1399 144 246 713 1196

Results and discussion
Assemblers
We have chosen for comparison several leading de novo
assembly programs, according to their ranking by the
Assemblathon 1 competition [16] and the GAGE survey
[17] which rank ALLPATHS [8] and SOAPdenovo [10],
both de Bruijn graph based, at the top. We have tested
against the improved SOAPdenovo2 [11], but we could
not use ALLPATHS since it is unable to assemble single-
library real datasets. We have also included ABySS [9] as
one of the most widely used and frequently updated pro-
grams and SPAdes [14] as one of the best new assemblers
for bacterial genomes [28], both de Bruijn graph based.
Our comparison is by no means exhaustive. The main
point is to show that SAGE is competitive.

The most notable exception from the domination of the
de Bruijn graph-based assemblers is the recent SGA pro-
gram [12], which is string-overlap graph based. SGA uses
compressed data structures to keep the memory require-
ments low, with the main aim of being able to run on
low-end computing clusters. Nevertheless, SGA is a suc-
cessful assembler, ranked third in the Assemblathon 1
competition [16]. Our efforts are complementary to those
of [12] in the attempt of producing better assemblers that
are string-overlap graph based.

Table 10 Local misassembles; best results in bold

Indel/mm ABySS SGA SOAP2 SPAdes SAGE

1 0 0 13 1 11

2 11 5 41 9 26

3 100 87 85 78 96

4 46 46 47 46 56

5 29 42 58 159 28

6 11 17 40 10 14

7 80 1 71 17 83

8 9 0 69 6 164

9 6282 2209 2703 839 1474
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Table 11 Average number of indels and mismatches per
100 kbp; best results in bold

Indel/mm ABySS SGA SOAP2 SPAdes SAGE

1 8.65 2.18 7.14 5.78 5.61

2 825.09 833.32 817.64 834.67 893.48

3 2407.49 2417.37 2387.42 2368.18 2402.27

4 518.38 522.02 527.28 509.66 530.76

5 19.01 18.89 45.86 581.17 15.58

6 10.80 35.81 13.83 22.33 26.75

7 36.20 8.82 29.77 17.77 47.86

8 14.45 3.15 73.19 28.18 46.04

9 50.08 34.33 34.84 76.92 47.63

Datasets
We compare the assemblers on real datasets only. We
have downloaded a number of datasets from the NCBI
web site (www.ncbi.nlm.nih.gov), with varied read length
and genome size, together with a C.elegans dataset, from
www.wormbase.org, that has been previously used by
[12]. As noticed by [12], the genome of C.elegans is an
example of an excellent test case for assembly algorithms
due to its long (100 MB) and accurate reference sequence,
free of SNPs and structural variants. The accession num-
bers for all datasets and their reference genomes are given
in Table 3, together with all their parameters.

Evaluation method
The most recent version of each assembler has been used
and each program was run for all possible k-mers or
minimum overlap sizes on each dataset. The k-mer or
minimum overlap size producing the highest scaffold N50
value is reported. N50 is representative for the quality of
the assembly, however producing high values of N50 is
not sufficient by itself, as it says nothing of the quality of

the contigs. In particular, misassembled contigs can artifi-
cially increase N50. Therefore, we have used the QUAST
comprehensive evaluation tool [29] to compare the quality
of the assemblies.

The most relevant parameter is NGA50, which is com-
puted by aligning the contigs to the reference genome,
splitting them at misassembly breakpoints, eliminating
unaligned parts, and then computing the N50 of the
obtained contigs with respect to the length of the refer-
ence genome.

We present also the NGA75, the length of the largest
alignment, the fraction of genome covered, the number
of unaligned contigs, the average number of indels and
mismatches for each 100 kbp, and the number of (local)
misassemblies as the most important parameters com-
puted by QUAST. All the information given by QUAST is
included in the Additional file 1. Details on how each pro-
gram was run and its output was evaluated by QUAST,
including the precise commands used, are also given in the
Additional file 1.

Comparison
The best assemblies produced by all the assemblers con-
sidered are compared and presented in Tables 4, 5, 6, 7,
8, 9, 10, 11. Whenever meaningful, we present also the
average of the results. SAGE has the best NGA50, NGA75,
and length of the longest aligned contig for most datasets.
For NGA50, the average of SAGE is 50% better than the
second one, from SPAdes. For genome coverage, SAGE
and ABySS are tied for the first place. ABySS has the low-
est number of unaligned contigs for the bacterial datasets
but the highest for C.elegans for which SAGE performed
the best. SGA produces the fewest misassemblies, fol-
lowed closely by SOAPdenovo2. For local misassemblies,
SGA is the best. Overall, SGA produces the fewest errors
but also the lowest NGA50, NGA75, and longest contig
values. Concerning the average number of indels and

Table 12 Time and space comparison

Data ABySS SGA SOAP2 SPAdes SAGE

1 2.07 / 3.77 11.14 / 8.37 0.68 / 17.15 6.79 / 5.92 0.53 / 3.00

2 2.56 / 7.75 13.99 / 12.00 0.55 / 22.04 12.26 / 22.88 0.57 / 3.03

3 1.03 / 1.02 12.87 / 9.23 0.36 / 15.20 6.68 / 2.98 0.37 / 1.78

4 1.41 / 1.08 13.34 / 9.77 0.53 / 13.68 6.67 / 1.74 0.34 / 1.45

5 1.13 / 0.99 13.69 / 9.87 0.34 / 10.94 7.03 / 3.11 0.43 / 1.90

6 2.05 / 1.87 12.69 / 13.32 0.52 / 9.52 5.43 / 3.73 0.51 / 3.25

7 1.78 / 1.63 11.03 / 11.57 0.45 / 8.28 4.72 / 3.24 0.44 / 2.83

8 2.57 / 1.40 4.21 / 4.45 0.36 / 6.62 2.88 / 0.91 3.04 / 5.98

9 3.99 / 2.22 19.88 / 9.90 1.47 / 4.94 19.72 / 7.17 0.81 / 2.54

Avg. 2.07 / 2.41 12.54 / 9.83 0.58 / 12.04 8.02 / 5.74 0.78 / 2.86

The results are presented in the format “time/space” with the time in seconds and space in megabytes, both per input mega base pairs. The best results are shown in
bold. The last row gives the average values.

www.ncbi.nlm.nih.gov
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mismatches per 100 kbp, significant differences are seen
between datasets, with 2, 3, 4 having many more errors
than the other ones. All assemblers produce similar values
with ABySS, SGA and SAGE at the top, with almost the
same number of errors.

The time and space comparison is presented in Table 12.
In order to facilitate comparison we present the time (sec-
onds) and space (megabytes) per input mega base pairs.
This way we can also compute averages. ABySS uses the
least amount of space and SOAPdenovo2 is the fastest,
with SAGE coming closely in second place for both time
and space. Actual time and space values are presented in
the Additional file 1.

Conclusions
Myers [20] suggests that string-overlap graph based
assemblers should perform better than those based on
the de Bruijn graph and our work aims at supporting his
prediction.

SAGE builds upon great existing work and brings sev-
eral new ideas, such as the efficient computation of the
transitive reduction of the string overlap graph, the use of
(generalized) edge multiplicity statistics for improved esti-
mation of copy counts, and the improved use of mate pairs
and flow for supporting edge merging.

We believe that our work shows that the potential of
string-overlap graph-based assemblers is higher than pre-
viously thought. SAGE is currently able to successfully
handle short and medium-size genomes but future ver-
sions will handle mammalian genomes as well. Also, we
plan to work on reducing the number of misassemblies
produced by SAGE.

We hope that some of the ideas presented will be used
also by others in order to boost the development of this
type of assemblers and further improve the current state-
of-the-art. As read length is going to grow, we expect that
string-overlap graph-based assemblers will have a better
chance to improve.

Data access
All datasets are available from the NCBI, except C.elegans
which is from www.wormbase.org. The genome assem-
blers are available as follows: ABySS at www.bcgsc.ca/
platform/bioinfo/software/abyss, SGA at github.com/jts/
sga, SOAPdenovo2 at soapdenovo2.sourceforge.net/, and
SPAdes at bioinf.spbau.ru/spades. The CS2 program is
available at www.igsystems.com/cs2.

Availability and requirements
Project name: SAGE
Project home page: www.csd.uwo.ca/~ilie/SAGE/
Operating system(s): Platform independent
Programming language: C++

Other requirements: none
License: GNU
Any restrictions to use by non-academics: none

Additional file

Additional file 1: The supplementary material includes all the details
on how each program was run and its output was evaluated by
QUAST, including the precise commands used. All details for evaluating
the assemblies, as given by QUAST, are also included, as well as the actual
time and space values.
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