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During adaptive immune responses, activated B  cells expand and undergo somatic 
hypermutation of their B  cell receptor (BCR), forming a clone of diversified cells that 
can be related back to a common ancestor. Identification of B cell clones from high- 
throughput Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) data relies 
on computational analysis. Recently, we proposed an automated method to partition 
sequences into clonal groups based on single-linkage hierarchical clustering of the BCR 
junction region with length-normalized Hamming distance metric. This method could 
identify clonal sequences with high confidence on several benchmark experimental and 
simulated data sets. However, determining the threshold to cut the hierarchy, a key step 
in the method, is computationally expensive for large-scale repertoire sequencing data 
sets. Moreover, the methodology was unable to provide estimates of accuracy for new 
data. Here, a new method is presented that addresses this computational bottleneck 
and also provides a study-specific estimation of performance, including sensitivity and 
specificity. The method uses a finite mixture model fitting procedure for learning the 
parameters of two univariate curves which fit the bimodal distribution of the distance 
vector between pairs of sequences. These distributions are used to estimate the per-
formance of different threshold choices for partitioning sequences into clones. These 
performance estimates are validated using simulated and experimental data sets. With 
this method, clones can be identified from AIRR-seq data with sensitivity and specificity 
profiles that are user-defined based on the overall goals of the study.

Keywords: AIRR-seq data, B-cell clonal partitioning, hierarchical clustering, optimized distance threshold, 
immcantation portal

1. INtRodUCtIoN

Next-generation sequencing technologies are increasingly being applied to carry out detailed 
profiling of B  cell receptors (BCRs, also referred to as the immunoglobulin (Ig) receptors). 
Identification of B  cell clones (sequences that are related through descent from a single naive 
B  cell) from these high-throughput AIRR-seq data relies on computational analysis. Accurate 
identification of clonal members is important, as these clonal groups form the basis for a wide 
range of repertoire analysis, including diversity analysis, lineage reconstruction, and detection of 
antigen-specific sequences (1).
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Hierarchical clustering is a widely used approach for parti-
tioning sequences into clones (1) and several associated software 
tools have been developed (2–4). Identifying clonally related 
BCRs is typically accomplished in two steps. First, sequences are 
split into groups that share the same V-gene annotation, J-gene 
annotation, and number of nucleotides in their junction region 
(5–9). Here, the junction region is defined as the CDR3 plus the 
conserved flanking amino acid residues. Next, these groups are 
hierarchically clustered based on the nucleotide similarity of their 
junction region, and partitioned by cutting the dendrogram at a 
fixed distance threshold. We previously developed an automated 
approach for determining this threshold, and demonstrated that 
using this threshold with single-linkage clustering based on the 
length-normalized Hamming distance (i.e., the absolute count of 
differences between two sequences divided by the length of the 
sequence) detects clones with high confidence on several bench-
mark data sets (4). However, the actual sensitivity and specificity 
may differ on any particular data set, and existing methods do 
not provide a mechanism to estimate or tune study-specific 
performance. Here, we propose and validate a computationally 
efficient threshold inference algorithm for partitioning BCR 
sequences into clones that also allows for study-specific perfor-
mance estimation.

2. Method

The proposed method extends the approach developed by Gupta 
et al. (4), where identifying clonally related BCRs is accomplished 
in two steps. First, sequences are split into groups that share 
the same V-gene annotation, J-gene annotation, and number 
of nucleotides in their junction region. Next, these groups are 
hierarchically clustered based on the nucleotide similarity of 
their junction quantified by Hamming distance, and partitioned 
by cutting the dendrogram at a fixed distance threshold. In 
this paper, we specifically develop a new model-based method 
for determining the fixed distance threshold for partitioning 
sequences, which allows for estimation of sensitivity and speci-
ficity. First, the “distance-to-nearest” distribution is determined 
using length-normalized nucleotide Hamming distance (i.e., 
the distribution of minimum distances from each sequence to 
every other non-identical sequence). This is typically a bimodal 
distribution (8, 9), with the first mode representing sequences 
with clonal relatives and the second mode representing those 
without clonal relatives (i.e., singletons) in the data set. Next, the 
bimodal distance-to-nearest distribution is explicitly modeled as 
a mixture of two univariate distribution functions (e.g., a mixture 
of Gaussian or Gamma distribution) of the form:

 f x f x f x( ) ( | ) ( | ,= λ λ1 1 1 2 2 2φ φ+ )  (1)

where λ1 and λ2 represent the mixing weights (summing to one), 
x represents the nearest neighbor distances, and ϕ represents the 
vector of each component parameters. Here, we investigate all 
combinations of f1 and f2 as Gaussian and Gamma distributions so 
ϕ is either the mean and SD (μ, σ) of a Gaussian distribution, or 
the shape and scale (k, θ) of a Gamma distribution. A maximum-
likelihood fitting procedure (function fitdistr from MASS R 

package) is used to estimate the parameters of the model as fol-
lows: (1) parameters of the model are initialized using a standard 
Gaussian mixture model (GMM). The GMM estimates mixing 
weight λ1, mean μi, and SD σi where i ∈  {1,2} refers to the first 
and second distributions. (2) These parameters are then used as 
initial values to begin the maximum-likelihood fitting procedure 
(if Gamma distribution is chosen, the initial values are translated 
accordingly).

After fitting, the two distributions are used to estimate sensi-
tivity (SEN) and specificity (SPC) by the fractions TP/(TP + FN) 
and TN/(TN + FP), respectively. The statistical rates [true positive 
(TP), false negative (FN), false positive (FP), and true negative 
(TN)] are then given by the area under the curves:
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where t1 and t2 are the minimum and maximum values of the 
distance-to-nearest distribution, respectively. Finally, the opti-
mized threshold t is chosen in the distance interval (t1, t2) to 
maximize the average of sensitivity and specificity:
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3. ResULts

3.1. Mixture of Gamma distributions  
Is Used to Fit the Bimodal distribution
To determine the optimal distributions to use for the mixture 
model, we tested the method using simulated and experimental 
data sets. Specifically, we used the simulated data sets from Gupta 
et al. (4). These simulations start with a set of observed lineage 
tree topologies from lymph node samples from each of four 
individuals (M2, M3, M4, and M5 from Ref. (6)), and generate 
a simulated data set for each individual (R1, R2, R3, and R4, 
respectively) by randomly selecting a new germline sequence 
for every lineage and then stochastically re-introducing muta-
tions along the lineage branches. This process was repeated 10 
times for each individual to create a collection of 40 simulated 
data sets. We also invoked experimental data from BCR 
sequencing of PBMCs from 58 individuals with acute dengue 
virus infection (note that two individuals with total reads <1k 
sequences were excluded) (10). These samples each contained 
~1–13k total reads.

We evaluated all four combinations of Gaussian and Gamma 
distributions for f1 and f2 on both simulated and experimental data 
sets. For each combination, the log likelihood was determined 
once for 40 simulated and 58 experimental data sets. We found 
that in 80% of trials the choice of Gamma distribution for both f1 
and f2 yielded the highest likelihood. Furthermore, in each trial, 
visual inspection suggested that this choice placed the thresh-
old approximately equidistant between the two distributions. 
Therefore, Gamma distributions were selected as the default 
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FIGURe 2 | Performance assessment of (A) sensitivity (Sen) and (B) specificity (Spc) for determining membership in a multi-sequence clone. Mixture modeling of 
the distance-to-nearest distribution was used to estimate sensitivity and specificity for each specified value of the threshold (points) according to equation set 2.  
The estimated performance (Sen-estimated and Spc-estimated) was compared with actual performance (Sen-actual and Spc-actual) for simulated R1.1–R1.10  
data from Gupta et al. (4) across a wide range of thresholds (shades of gray for each point).

A B C

FIGURe 1 | Analysis of the distance-to-nearest neighbor plot to define the distance threshold for partitioning clones. For each sequence, the length-normalized 
nucleotide Hamming distance to every other sequence was calculated, and the nearest (non-identical) neighbor was identified. The histogram of nearest neighbor 
distances is fitted using Gamma distribution for both modes (solid line) for (A,B) representative peripheral blood B cell samples from patients with acute dengue virus 
infection (10), and (C) representative simulated data from Gupta et al. (4). For each data set the optimum threshold, where the average of sensitivity and specificity 
reaches its maximum, was calculated by the findThreshold function (dashed vertical line). Note that the choice of bin size impacts the shape of plotted 
histograms, while the fitting procedure is independent of this bin size.
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choices and used in all of the analyses below (Figures  1A–C). 
We note that the Gamma distribution is known to be skewed 
positively (i.e., an asymmetric distribution with longer right-tail). 
However, the Gamma distribution becomes more symmetric as 
its shape parameter k → ∞. This intrinsic feature of the Gamma 
distribution makes it a strong tool which behaves flexibly accord-
ing to the notion of how symmetric/asymmetric the observed 
distributions are. By contrast, the Gaussian distribution is always 
symmetric, and thus unable to adapt itself to an asymmetric 
distribution of observed data points.

3.2. high Correlation Between Actual  
and estimated Performance Is Achieved  
in simulated data
The ability of the proposed method to estimate sensitivity and 
specificity for clonal relatedness was evaluated on simulated 
data. First, sensitivity and specificity were evaluated using 
ten simulated data sets (set R1 generated by Gupta et  al. (4)).  

On each data set, a wide range of potential thresholds for parti-
tioning sequences into clones was considered. At each threshold 
value, we calculated the actual performance based on the known 
clonal relationships from the simulation (actual), as well as the 
estimated performance based on the mixture modeling and 
equation set 2 using the area under the fitted distribution curves 
(estimated). We found a high correlation between the actual 
and estimated sensitivity (R2 = 92%) and specificity (R2 = 98%) 
on average over all ten simulated data sets (Figures 2A,B). We 
believe that the correlation is useful, as we see that method pro-
vides a lower bound on actual performance. On the other hand, 
sensitivity shows some lack of proportionality. Specifically, at high 
values for the threshold (between 0.12 and 0.15), the sensitivity 
estimated from the mixture model becomes saturated (i.e., the 
area under fitted left distribution reaches one). Although, using 
the positively skewed-shape Gamma distribution is better than 
using a Gaussian distribution, the right-tail of the first Gamma 
distribution still falls off too fast relative to the actual intra-clonal 
distance distribution in some cases.
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FIGURe 3 | Performance assessment of specificity (Spc) for determining membership in a multi-sequence clone. Mixture modeling of the distance-to-nearest 
distribution was used to estimate specificity for each specified value of the threshold (points) according to equation set 2. (A) The estimated performance was 
compared with actual performance for experimental data from patients with acute dengue infection (10) across a wide range of thresholds (shades of gray for each 
point). (B) The estimated performance (Spc-estimated) was compared with actual performance (Spc-actual) across two independent experimental studies (6, 10) 
across a wide range of thresholds (shades of gray for each point).
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3.3. high Correlation Between Actual  
and estimated specificity Is Achieved  
in experimental data
The underlying clonal relationships among sequences in 
experimental data sets are not known with certainty. However, we 
reasoned that two sequences are unrelated when they are derived 
from two separate individuals since, by definition, a B cell clone 
cannot span two individuals. Therefore, false positives are defined 
as sequences from different individuals being grouped together in 
a clone, whereas true negatives are defined as sequences from dif-
ferent individuals that are grouped into separate clones. Specificity 
is then calculated by dividing the number of true negative clas-
sifications by the sum over the number of true negative and false 
positive classifications. We used this approach to further evaluate 
the ability of the method to estimate specificity on experimental 
BCR sequencing data from 58 individuals with acute dengue 
infection (10). First, one of the individuals was chosen as the 
“base.” Next, a single sequence was chosen randomly from each 
of the remaining individuals and added to the sequencing data 
from the base individual. Specificity was then defined by how 
often the sequences from non-base individuals were correctly 
determined to be singletons. Any grouping of these sequences 
into larger clones must be a false positive. Like the simulated 
data, specificity was calculated both using the known source of 
the sequences (actual) and for the mixture model (estimated). 
This procedure was then repeated 50 times for each of 58 different 
base individuals. The results indicated a high correlation between 
the actual and estimated specificity (R2 = 95%) across all 58 base 
individuals (Figure 3A).

3.4. high Correlation Between Actual and 
estimated specificity Is Achieved Across 
experimental data sets
Within a single study, spurious sharing of BCRs may occur by 
cross clustering within the same flow cell, by contamination or by 

chance with low frequency. To address the possibility that these 
occurrences impacted our estimation of specificity, we repeated 
the same specificity analysis described in the previous section, 
but using individuals from two independent experimental data 
sets. First, subject M2 (with ~100k total reads from lymph node 
samples collected by Stern et  al. (6)) was chosen as the “base.” 
Next, a single sequence was chosen randomly from each of the 
58 individuals with acute dengue infection (10) and added to 
the sequencing data from the base. Like the previous analysis, 
specificity was then defined by how often the sequences from 
non-base individuals were correctly determined to be singletons, 
and was calculated both using the known source of the sequences 
(actual) and for the mixture model (estimated). This procedure 
was then repeated 50 times. High correlation between the actual 
and estimated specificity (R2 = 97%) was obtained (Figure 3B). 
These results show that the proposed approach provides a reliable 
estimate of specificity on experimental data.

3.5. the Mixture Method  
Is Computationally efficient
The threshold inference algorithm developed in this work 
(gmm) is computationally more efficient than its density-based 
predecessor by Gupta et  al. (4) (Figure  4). The improvement 
does not arise from the nearest neighbor identification, which is 
identical for both methods. Rather, the improvement comes in 
how to identify the fixed threshold to cut the hierarchy in order 
to identify discrete clonal groups. The density-based approach is 
computationally demanding since it is associated with a fourth 
derivative kernel density estimation with a sequential time 
complexity of O(n3), where n denotes the number of sequences. 
The gmm exhibits faster performance by replacing this compu-
tationally expensive step with an optimization algorithm with a 
sequential time complexity of O(n), where n denotes the number 
of sequences. We compared the run times of both approaches 
using the implementations under the findThreshold func-
tion as part of the SHazaM R package (version 0.1.9) in the 

https://www.frontiersin.org/Immunology/
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FIGURe 4 | The gmm approach is computationally efficient while the density approach run time scales exponentially. Comparison of running times (y-axis) 
between density (dashed line and gray bars) and gmm (solid line and black bars) approaches performed over 58 individuals from a study of acute dengue infection 
(10) (x-axis). The x-axis is ordered ascending by the number of sequences in the individual sample.
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Immcantation framework (www.immcantation.org). The density-
based method by Gupta et al. (4) and the model-based method 
described here are implemented as methods density and 
gmm, respectively. On a Linux computer with a 2.20 GHz Intel 
processor and 32 GB RAM, we found, for example, that using the 
gmm approach it took <5 min to find the threshold in a data set 
of ~10k sequences, while the density approach completed in 
~15 min (Figure 4).

4. CoNCLUsIoN

We have proposed and validated a computationally efficient 
threshold inference algorithm that can be used to automatically 
partition BCR sequences into clonally related groups. The method 
gmm is based on a mixture model fit to the bimodal distance-
to-nearest distribution, and allows for direct estimation of the 
sensitivity and specificity for membership in a multi-sequence 
clone. This is an important advantage over previous methods, 
such as the density-based method by Gupta et  al. (4), which 
are unable to provide estimates of accuracy for new data. The 
ability to estimate sensitivity and specificity directly from a BCR 
sequencing data set allows researchers to identify B cell clones 
with performance characteristics that optimize study-specific 
goals. For instance, a threshold with high-sensitivity may be 
ideal for identifying sequences that are part of a clone expansion 
including a known antigen-specific sequence, while a threshold 
with high-specificity may be ideal for determining biological con-
nections between tissue compartments or B cell subsets. In the 
evaluations presented in this study, we have chosen to maximize 
the average of sensitivity and specificity.

BCR sequencing data contain errors, although methods such 
as the inclusion of UMIs (11) can dramatically reduce their 
frequency. Thus, the distance-to-nearest distributions being fit 
by the mixture model contain a combination of true somatic 
hypermutation and errors (e.g., PCR and sequencing errors). 
Rather than being a problem, this is an important feature of the 

method. It is critical to take both sources of diversity into account 
when determining the threshold for partitioning sequences into 
clones. If members of a clone were truly <10% different, but 
experimental errors increased their difference to <11%, then the 
proper choice is to use the 11% as the threshold.

The choice of distributions (e.g., Gaussian or Gamma) that 
accurately describe the observed distance-to-nearest distribution 
for clonally related sequences in one data set may not be ideal for 
other sequencing data sets. The shape of the distance-to-nearest 
distribution depends on various experimental and physiological 
factors such as initial B-cell population, sampling depth, sequenc-
ing error, polarized or flat repertoire, and unusual BCR junction 
length distribution. These factors may influence the quality of 
mixture model fits. Therefore, we recommend users visually 
inspect the resulting fit from each data set. If a mixture of Gamma 
distributions results in a poor fit, then other combinations of mix-
ture models should be tried. The density method provides a 
robust backup to these model-based methods, although it would 
be at the cost of losing the estimation of cloning performance. 
Our empirical observations of peripheral blood B cell repertoires 
suggest the bimodality of the distance-to-nearest distribution 
is detectable for a repertoire of minimum 1k total reads. From 
statistical point of view, increasing number of sequences will 
improve the fitting procedure, although it would be at the poten-
tial expense of higher demand in computational time complexity.

The method used in this study has been developed for parti-
tioning BCR heavy (H) chain sequences. More specifically, the 
method leverages the high diversity of the H chain junction region 
as the main “fingerprint” to infer clonal relatedness. Emerging 
techniques, including single-cell sequencing, can provide paired 
H and L chain data (12–14). The methods presented here can be 
applied to such data by extending the criteria for the initial group-
ing of sequences to include the same VH gene, JH gene, CDR3H 
length, VL gene, JL gene, and CDR3L length. Clustering of the H 
chain junction region can then be carried out as before on these 
more refined groups. The low diversity of the L chain junction 
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region (12) makes it unlikely that including this region in the 
clustering will provide a significant performance improvement.

Overall, the results on the simulated and experimental data 
sets indicate that the mixture modeling method provides an 
accurate estimate of sensitivity and specificity for hierarchical 
clustering-based clonal partitioning of BCRs, and is also time-
efficient. This new procedure has been implemented under the 
findThreshold function as part of the SHazaM R package 
(version 0.1.9) in the Immcantation framework (www.immcan-
tation.org).
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