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ABSTRACT
Lung cancer is the leading cause of cancer-related deaths in the USA and 

worldwide. Yet, about 95% of new drug candidates validated in preclinical phase 
eventually fail in clinical trials. Such a high attrition rate is attributed mostly to the 
inability of conventional two-dimensionally (2D) cultured cancer cells to mimic native 
three-dimensional (3D) growth of malignant cells in human tumors.

To ascertain phenotypical differences between these two distinct culture 
conditions, we carried out a comparative proteomic analysis of a membrane fraction 
obtained from 3D- and 2D-cultured NSCLC model cell line NCI-H23. This analysis 
revealed a map of 1,166 (24%) protein species regulated in culture dependent 
manner, including differential regulation of a subset of cell surface-based CD 
molecules. We confirmed exclusive expression of CD99, CD146 and CD239 in 3D 
culture. Furthermore, label-free quantitation, targeting KRas proteoform-specific 
peptides, revealed upregulation of both wild type and monoallelic KRas4BG12C mutant 
at the surface of 3D cultured cells.

In order to reduce the high attrition rate of new drug candidates, the results of 
this study strongly suggests exploiting base-line molecular profiling of a large number 
of patient-derived NSCLC cell lines grown in 2D and 3D culture, prior to actual drug 
candidate testing.

INTRODUCTION

Lung carcinoma is the deadliest cancer in the United 
States and worldwide [1]. In 2019, the American Cancer 
Society reported 142,670 deaths from lung cancer in 
the United States. Lung cancer affects men and women 
equally, with an overall five-year survival rate of 19%. 
Histologically, 80–85% of all cases belong to non-small-
cell lung cancer (NSCLC). The most common form of 

NSCLC is the adenocarcinoma of the lung [2]. Despite 
extensive research and economic investments, about 
95% of new drugs against lung carcinoma eventually fail 
in clinical trials [3, 4]. While there are many hypotheses 
and explanations for this poor clinical translation rate, 
it is well accepted that conventionally used preclinical 
in vitro testing models (e.g., lung cancer cell lines) are 
incapable of reproducing the growth of malignant cells in 
human tumors in vivo. Hence, after the initial discovery 
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phase, preclinical testing is heavily burdened by excessive 
proportion of false positive results that drive the high lung 
cancer drug attrition rate [5]. Adherent two-dimensional 
(2D) in vitro cultures of human cancer cell line are the 
mainstay preclinical testing model used in lung cancer drug 
development and discovery [6]. In solid tumors, however, 
cancer cells grow in a three-dimensional (3D) environment. 
This makes the 2D cultured cells unable to truly reproduce 
the natural proliferation, migration, and/or drug permeation 
taking place in their innate 3D environment [7]. To 
circumvent this shortcoming, the 3D cancer cell culture 
have been proposed as a more accurate/relevant preclinical 
testing models, not only biomechanically but also at the 
genome, proteome, and metabolome level [7–9]. Typically, 
preclinical assessment of drug effectiveness relies on 
functional cell assays, incidental imaging procedures, and 
histopathological examinations [10]. To better understand 
and standardize results obtained in the preclinical phase, 
it is of prime interest to better characterize and compare 
molecular phenotypes of lung cancer cells grown in 
2D- and 3D-culture. Thus, there is an outstanding and 
unmet need for better characterization of preclinical 
lung cancer models to facilitate development of more 
effective predictive therapeutic biomarkers involved in 
molecular pathways driving lung cancer tumorigenesis 
[11]. This approach also creates a pathway towards the 
development of a preclinical atlas depicting the molecular 
profiles of cell lines grown in 2D vs. 3D, information that 
is sorely needed to accurately monitor drug development. 
Contemporary MS-based proteomics [12–16] represents 
a potent technology capable of revealing alterations in 
protein level expression/regulation and changes in post-
translational modifications associated with preclinical drug 
evaluation [17, 18]. Furthermore, the differential molecular 
phenotype of a NSCLC cell line membrane proteome 
grown in 2D- vs. 3D-culture is still missing. 

Herein we report results of differential shotgun 
membrane proteomic analysis of the microsomal fraction 
obtained from a NSCLC model cancer cell line grown 
in both 2D and 3D culture. Comparative proteomics that 
relies on the off-line strong cation exchange (SCX)-based 
fractionation of tryptic digests [19] and HR/AM LC-MS 
[20] was employed for in-depth mapping of the membrane 
proteome of the NCI-H23 cancer cell line. Next, spectral 
counting-based and label-free quantitative proteomics 
was utilized to elucidate differences in protein expression 
between cells grown in 2D and 3D culture.

RESULTS

Mapping microsomal proteome of 2D- and 
3D-grown NCI-H23 cells using comparative 
proteomic analysis

The aim of this investigation was to map 
differences in protein expression between microsomal 

fractions obtained from 2D- and 3D-grown NCI-H23 lung 
cancer model cell line bearing heterozygous KRas-G12C 
mutant https://www.cancer.gov/research/key-initiatives/
ras/outreach/reference-reagents/cell-lines and elucidate 
biologically relevant alterations between these two cell 
culture conditions. Towards this goal, we used MS-based 
proteomics which has been established as an efficient 
approach for profiling of complex membrane protein 
mixtures [21–23]. The workflow is depicted in Figure 
1. Briefly, tip sonication was used to disrupt intact cells 
and generate a microsomal fraction, typically comprising 
of double membrane-bound vesicles (e.g., plasma 
membrane, mitochondria, nuclei) and single membrane-
bound vesicles (e.g., endoplasmic reticulum, lysosomes, 
Golgi apparatus). Finally, this crude microsomal fraction 
containing heterogenous membranous vesicles was 
isolated using ultracentrifugation [19]. Following tryptic 
digestion, the resulting peptide mixture was fractionated, 
and analyzed in duplicates using HR/AM LC-MS as 
previously described [19, 23]. The analysis resulted in 
the identification of a total of 4,180 and 4,444 protein 
groups depicted in Supplementary Tables 1–2, along 
with subcellular location annotations currently accessible 
in the Human Proteome atlas, from a total 30,986 and 
35,360 tryptic peptides (Supplementary Tables 3–4) 
identified in microsomal fraction of NCI-H23 cells grown 
in 3D and 2D culture, respectively. A total of 1,345 (i.e., 
32.2%) and 1,404 (i.e., 31.6%) were classified as integral 
membrane proteins in 3D- and 2D- cultured NCI-H23 
using PSORT and TMHMM prediction algorithms 
(Supplementary Tables 5–6). The efficiency of the 
isolation protocol is exemplified by the enrichment and 
unambiguous identification of microsomal fraction-
specific enzymes, NADPH-cytochrome P450 reductase 
(POR), lanosterol 14-alpha demethylase (CYP51A1) and 
cytochrome P450 2S1 (CYP2S1) found in microsomal 
fraction of both 3D and 2D cultured cells (Supplementary 
Tables 1–2). The search against the human CSPA found 
that 415 (i.e., 30.8%) and 434 (i.e., 30.9%) proteins 
identified in NCI-H23 cells grown in 3D and 2D culture, 
respectively, were cell surface proteins (Supplementary 
Tables 7–8), previously unambiguously identified by 
mass-spectrometry in more than 40 human cell types and 
catalogued in CSPA [24]. Of these, 53 (i.e., 12.7%) and 
51 (i.e., 11.7%) were classified as cluster of designation 
(CD) molecules identified in NCI-H23 cells grown in 3D 
and 2D culture, respectively (Supplementary Tables 7–8).

Classification of protein species identified in 
NCI-H23 cells grown in 3D and 2D culture

We used PANTHER classification system 
to examine protein functions, protein classes and 
corresponding pathways in NCI-H23 cells grown in 3D 
and 2D culture. The PANTHER analysis of differentially 
expressed proteins exhibited similar distribution of 
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molecular functions involving mainly catalytic activity, 
binding, molecular regulation, and transporter activity 
(Supplementary Figure 1A–1B). Significantly, the protein 
class analysis revealed enrichment of cell adhesion 
molecules, intercellular signaling molecules, cell junction 
proteins, and extracellular matrix proteins in 3D-grown 
cells. 2D-cultured cells showed a slight increase in the 
identification rate of transporters, cytoskeletal and scaffold 
proteins (Figure 2A). Comparative pathway analysis 
revealed significant activation of the integrin signaling 
pathway and of general transcription regulation pathway 
in 3D cultured cells, while TGF-beta signaling and EGF 
receptor signaling pathways were found increasingly 
activated in 2D-cultured cells (Figure 2B). Furthermore, 
p53 glucose deprivation pathway, glycolysis and hypoxia 
response via HIF activation were found activated 
exclusively in 3D cultured cells (Figure 2B). While the 
findings of the PANTHER molecular enrichment analysis 
are not highly specific, the enrichment of extracellular 
matrix proteins, cell junction proteins, intercellular 
signaling molecules and cell adhesion molecules are in 

agreement with the expected tissue-like phenotypical 
transition taking place in 3D culture [25]. Correspondingly, 
the unique enrichment of p53 glucose deprivation, hypoxia 
response via HIF activation and glycolysis pathways in 
the context of the 3D cell culture are in agreement with 
widespread hypoxia that is typical for 3D culture and solid 
tumors [26].

Differential proteomic analysis exposes change in 
protein expression between 3D- and 2D-cultured 
cells 

Comparative proteomic analysis revealed a subset 
of 3,846 protein species common to both cell culture 
conditions (Supplementary Figure 1C). Of these, a 
subset of 234 (i.e., 6.08%) protein species were found 
significantly dysregulated, marked red in Supplementary 
Table 9. Significantly, Ras proteoforms (i.e., KRas and 
NRas) were also found significantly dysregulated in 
culture-dependent manner (Supplementary Table 9). 
Subtractive proteomics (Supplementary Figure 1C) 

Figure 1: Experimental design and workflow for comparative profiling of 3D- and 2D-cultured NCI-H23 cells using 
comparative shotgun proteomics.



Oncotarget2025www.oncotarget.com

disclosed a subset of 334 (i.e., 7.9%) microsomal proteins 
identified exclusively in cells grown in 3D culture 
(Supplementary Table 10) and 598 (i.e., 13.4%) identified 
solely in 2-D cultured cells (Supplementary Table 11). 
Overall, this analysis revealed a subset of 1,166 (i.e., 
24.4%) proteins regulated in a culture dependent manner 
(Supplementary Table 12) among non-redundantly 
identified protein species (i.e., 4,778) in both culture 
conditions (Supplementary Figure 1C). Furthermore, 
a total of 31 (i.e., 9.3%) and 50 (i.e., 8.7%) proteins 
identified solely in 3D (Supplementary Tables 13–14) and 
2D grown cells respectively, were classified as genuine 
cell surface proteins by the CSPA. 

Remarkably, in a subset of the top 10 most abundant 
cell surface proteins detected exclusively and/or found 
significantly upregulated in 3D cultured NCI-H23 cells 
depicted in Table 1, each protein detected exclusively in 
3D cultured cells and the vast majority of proteins found 
significantly upregulated in 3D culture are known to reside 
in malignant tumor stroma (i.e., tumor microenvironment). 
On the other hand, most of the most abundant proteins 
found significantly upregulated and/or detected solely in 
2D cultured cells (Table 2), were found to be expressed 
by malignant cells residing in tumor parenchyma (i.e., 
tumor proper). Intriguingly, a substantial number of these 
protein species are annotated as CD molecules and were 
found to be expressed in culture dependent manner. Of 
these, basal CD99 antigen, CD109 antigen, CD146 (i.e., 
cell surface glycoprotein, MCAM) and CD239 (i.e., basal 

cell adhesion molecule, BCAM) were detected exclusively 
in 3D cultured cells while CD71 (i.e., transferrin receptor 
protein, TFRC), CD91 (i.e., prolow-density lipoprotein 
receptor-related protein 1, LRP1) and CD280 (i.e., 
c-type mannose receptor 2, MRC2) were found to be 
significantly upregulated in 3D cultured NCI-H23 cells 
(Table 1). Correspondingly, CD73 (i.e., 5′-nucleotidase, 
NT5E), CD118 (i.e., leukemia inhibitory factor receptor, 
LIFR) and CD228 (i.e., melanotransferrin, MELTF) 
were exclusively identified in 2D cultured cells whereas, 
CD49b (i.e., integrin alpha-2, ITGA2), CD49f (i.e., 
integrin alpha-6, ITGA6) and CD54 (i.e., intercellular 
adhesion molecule 1, ICAM1), CD147 (i.e., basigin, BSG) 
and CD221 (i.e., insulin-like growth factor 1 receptor, 
IGF1R), were found upregulated in 2D cultured NCI-H23 
cells (Table 2).

Pathway analysis revealed differential activation/
enrichment of metabolic pathways and protein 
networks in culture dependent manner

To explore the biological significance of differential 
proteomic analysis and to prioritize and select cross-
validation targets, a subset of membrane proteins detected 
exclusively and/or found dysregulated in NCI-H23 
cells grown in 3D- and 2D-culture were subjected to the 
Ingenuity® Pathway Analysis (IPA®) [QIAGEN Redwood 
City, https://www.qiagen.com/ingenuity]. Canonical 

Figure 2: PANTHER bioinformatic analysis of differentially expressed proteins in 3D- and 2D-cultured NCI-H23 cells. 
Protein class analysis (A) and signaling pathway analysis (B).

https://www.qiagen.com/ingenuity
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pathway analysis revealed differential activation of 
metabolic pathways in a culture-dependent manner 
(Figure 3). While the adipogenesis/lipogenesis pathway 
(p-value 1.63E-04) is the most enriched pathway in 3D 
cultured cells (Figure 3A), the oxidative phosphorylation 
(p-value 2,93E-11) is the top activated pathway in 2D grown 

in NCI-H23 cells (Figure 3B). IPA’s biological function 
analysis revealed the enrichment of top biological functions 
in a culture dependent manner (Supplementary Table 15) 
depicting Connective Tissue Development (p-value range 
2.79E-03 – 1.19E-07) as the most enriched biological 
function in 3D-culture (Supplementary Table 15A), 

Table 1: Top 10 most abundant cell-surface proteins found upregulated or solely expressed/detected 
in 3D-cultured NCI-H23 cells

UniProt 
Acc # Gene Protein description 3D culture 

regulation
Expression 
in tumor Expression reference

P50895 BCAM Basal cell adhesion molecule 
(CD239)

Detected in 3D only Stroma J Natl Cancer Inst. 2015; 
107:djv211.

Q6YHK3 CD109 CD109 antigen Detected in 3D only Stroma J Proteomics. 2012; 77:87–100.
P14209 CD99 CD99 antigen Detected in 3D only Stroma Int J Cancer. 2012; 131:2264–73.
P43121 MCAM Cell surface glycoprotein 

MUC18 (CD146)
Detected in 3D only Stroma J Hematol Oncol. 2017; 10:76.

P18433 PTPRA Receptor-type tyrosine-protein 
phosphatase alpha

Detected in 3D only Stroma Histochem Cell Biol. 1999; 
111:399–403.

Q9UBG0 MRC2 C-type mannose receptor 2 
(CD280)

Upregulated in 3D Stroma Clin Exp Metastasis. 2016; 
33:151–65.

Q07954 LRP1 Prolow-density lipoprotein 
receptor-related protein 1 (CD91)

Upregulated in 3D Stroma Clin Cancer Res. 2011; 17:2426–33.

P02786 TFRC Transferrin receptor protein 1 
(CD71)

Upregulated in 3D Parenchyma Exp Mol Pathol. 2020; 112:104360.

Q03405 PLAUR Urokinase plasminogen 
activator surface receptor 
(CD87)

Upregulated in 3D Stroma BMC Cancer. 2014; 14:269.

P10586 PTPRF Receptor-type tyrosine-protein 
phosphatase F

Upregulated in 3D Stroma Am J Pathol. 2015; 185:1600–9.

Table 2: Top 10 most abundant cell-surface proteins found upregulated or solely expressed/detected 
in 2D-cultured NCI-H23 cells

UniProt 
Acc # Gene Protein description 2D culture

regulation
Expression
in tumor Expression reference

P21589 NT5E 5′-nucleotidase (CD73) Detected in 2D only Parenchyma BMC Cancer. 2020; 20:411.
P29323 EPHB2 Ephrin type-B receptor 2 Detected in 2D only Parenchyma Tumour Biol. 2017; 

39:1010428317691000.
P42702 LIFR Leukemia inhibitory factor 

receptor (CD118)
Detected in 2D only Parenchyma Cancer Res. 2007; 67:2131–40.

P08582 MELTF Melanotransferrin (CD228) Detected in 2D only Stroma Exp Cell Res. 2007; 313:2910–19.
P41440 SLC19A1 Folate transporter 1 Detected in 2D only Parenchyma Oncotarget. 2018; 9:16807–21.
P35613 BSG Basigin (CD147) Upregulated in 2D Parenchyma Oncotarget. 2018; 9:26431–52.
P08069 IGF1R Insulin-like growth factor 1 

receptor (CD221)
Upregulated in 2D Parenchyma Sci Transl Med. 2019; 11:eaaw7999.

P17301 ITGA2 Integrin alpha-2 (CD49b) Upregulated in 2D Parenchyma Gene. 2018; 643:74–82. 
P23229 ITGA6 Integrin alpha-6 (CD49f) Upregulated in 2D Parenchyma Mol Ther Nucleic Acids. 2019; 

18:774–86.

P05362 ICAM1 Intercellular adhesion 
molecule 1 (CD54)

Upregulated in 2D Parenchyma  
and Stroma

Virchows Arch. 1996; 428:21–27. 

Annotations accessible
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whereas Organismal Survival (p-value range 6.93E-09–
3.99E-09) was the most enriched in 2D cultured NCI-H23 
cells (Supplementary Table 15B). 

Cluster of differentiation (CD) molecules at the 
cell surface play critical role in cancer immunology 
(e.g., tumor antigen recognition) [27], tumor biology 
(e.g., signal transduction and cell migration) [28], 
tumor microenvironment (e.g., angiogenesis) [29] and 
cancer immunotherapy therapy (e.g., non-Hodgkin 
lymphoma) [30]. Therefore, we focused specifically on 
CD molecules found differentially regulated in a culture-
dependent manner as depicted in the IPA’s biological 
function analysis (Supplementary Table 15). Of these, 
CD87 (PLAUR), CD91 (LRP1), CD109 antigen, and 
CD280 (MRC2) were found to be involved in connective 
tissue growth and fibroblast migration in 3D cell culture 
(Supplementary Table 15A), whereas CD73 (NT5E), 
CD118 (LIFR) and CD221 (IGIFR) were found to 
involved in morbidity and organismal death in NCI-H23 
cells grown in 2D culture (Supplementary Table 15B). The 
enrichment/activation of connective tissue development 
function and exclusive expression of CD87, CD91, 
CD109, and CD280 by NCI-H23 cells in 3D culture are 
in direct agreement with the ability of 3D cultured cells to 
phenotypically mimic and begin to recapitulate the tumor 
microenvironment [8]. 

Next, we explored results of the network analysis by 
aiming at the networks containing CD molecules. Unlike 
canonical pathway and/or disease/function analyses that 
group molecules based on known commonalities or what 
is accepted in the field, the network analysis groups 
clusters molecules into networks based on any direct or 

indirect biological relationship described in the literature 
[11, 23, 31]. Top identified networks are ranked by 
statistical significance and number of interacting proteins 
using Fisher’s exact test [32]. 

The IPA’s network analysis showed enrichment of 
25 functional protein networks in NCI-H23 cells grown in 
3D and 2D cell culture (Supplementary Table 16). Based 
on the involvement of CD molecules in a given network, 
top disease/functions in 3D cultured cells (Supplementary 
Table 16A) include: CD146 (MCAM)-cancer and 
angiogenesis, network #2, CD99-cellular growth and 
proliferation, network #6, CD280 (MRC2)-organization 
and proliferation, network #7, CD87 (PLAUR) and 
CD109-cancer, network #8, CD91 (LRP1)-organization 
and angiogenesis, network #10 and CD239 (BCAM)-
connective tissue disorder and angiogenesis, network 
#17 (Supplementary Figures 2–7). In 2D-cultured cells 
(Supplementary Table 16B), networks containing CD 
molecules include: CD73 (NT5E)-cancer and metastasis, 
network #4, CD221 (IGF1R)-developmental disorder, 
network #8, CD118 (LIFR)-metastasis and chemotaxis, 
network #13 and CD228 (MELTF)-cellular growth, 
network #14, are depicted in Supplementary Figures 8–11. 

Moreover, the network analysis also revealed that 
cancer and angiogenesis, network #2, cellular growth 
and proliferation, network #6, and connective tissue 
disorder and angiogenesis, network #17 represent 
overlapping networks in 3D cultured cells, indicating 
their interaction at functional, signaling and biological 
level. The merged network analysis (Figure 4A) depicts 
PI3K complex, NFkB complex, P38 MAPK and IFN-
beta as the most prominent signaling nodes, displaying 

Figure 3: IPA canonical pathway analysis of differentially expressed proteins in 3D cultured NCI-H23 cells (A) and 2D-cultured NCI-H23 
cells (B).
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direct and/or indirect interactions with all of the three 
CD molecules (i.e., CD99, CD146, CD239) we selected 
for validation. Taken together, these findings further 
corroborate the importance and distinctive culture-
dependent regulation of CD molecules in 3D-cultured 
NCI-H23 cancer cells.

Western blot analysis confirmed exclusive 
detection of CD146, CD99, and CD239 in 3D 
cultured NCI-H23 cells

Based on results obtained using statistics, 
PANTHER bioinformatics, IPA analysis, their role in 
tumor biology (i.e., angiogenesis, proliferation, metastasis) 
and the availability of commercial WB antibodies, we 
selected CD146, CD99, and CD239, identified exclusively 
in 3D cultured cells, for orthogonal validation using WB.

The human CD146, also known as the melanoma 
cell adhesion molecule and/or the cell surface glycoprotein 
MUC18, is encoded by the MCAM gene [33]. CD146 
plays a role in cell adhesion, particularly in vascular tissue. 
The human protein atlas (HPA) [34] showed that at the 
RNA level CD146 exhibits low specificity for normal/
healthy tissue and was detected in many organs including 
lung. However, at the protein level CD146 is detected 
highly expressed only in normal cerebral cortex, soft 
and adipose tissue. Medium expression was observed in 
normal kidney, adrenal gland placenta breast and tonsils. 
Interestingly, CD146 was not found expressed in normal 
lungs at the protein level [34]. 

In human cancers, CD146’s RNA was detected 
in many malignancies with the highest levels found in 
melanoma and renal cancer, and lower level in lung cancer 
and colorectal cancer, according to the cancer genome 
atlas (TCGA). At the protein level, immunohistochemistry 
(IHC) revealed similar pattern depicted by distinct 
membranous CD146 staining in majority of patients with 
malignant melanomas and head and neck cancers, whereas 
lung cancer and endometrial cancer represent a smaller 
group with lower CD146 expression level [34].

In cell lines, in accordance to the human protein 
atlas (HPA) accessible consensus normalized expression 
(“NX”) values, the highest level of CD146’s RNA was 
observed in endothelial (i.e., HUVEC/TERT2, NX-
value: 125.3), skin (i.e., TIME, NX-value:122.3), and 
melanoma (i.e., WM-115, NX: 97.3) cells. Lower CD146 
expression was found in sarcoma (i.e., U-2OS, NX: 
17.9), breast cancer (i.e., EFO-21, NX: 10.7) and very 
low level in colon cancer (i.e., CACO-2, NX: 1.9) and 
lung cancer (i.e., SCLC-21H, NX 1.4; A569, NX:0.5). 
Interestingly, CD146 was found to play a critical role in 
the migration and proliferation in the human pulmonary 
large cell neuroendocrine carcinoma [35]. However, there 
is no record in HPA showing the CD146 expression in 
the NCI-H23 cells at the RNA and/or protein level [34]. 
The results of comparative WB analysis depicted in 

Figure 4B is concordant with the results of the LC-MS 
analysis showing exclusive identification of CD146 at 
the cell surface of 3D grown NCI-H23 cells. However, 
CD146 was previously detected by flow cytometry in 
A549 NSCLC cell line, harboring G12S homozygous 
KRas mutant, grown in 2D culture under oxidative stress 
[36]. For that reason, we wanted to ascertain the status of 
MCAM gene at the transcriptional level in 2D-cultured 
NCI-H23 cells. We carried out RNA ISH assay (i.e., 
RNAscope 2.5 HD) [37]. The analysis showed low to 
moderate level of MCAM expression at the RNA level 
in most of 2D cultured NCI-H23 cells (Supplementary 
Figure 13), suggesting that MCAM transcription is present 
in 2D culture. 

The human CD99 antigen, also known as the 
protein MIC2, is a cell surface glycoprotein encoded 
by the pseudo-autosomal gene MIC2 [38]. At the RNA 
level, CD99 is detected in all tissues with highest in 
level brain, female tissues and muscles. However, at the 
protein level CD99 was detected highly expressed in 
normal bone marrow, lymphoid tissues, upper digestive 
tract, female tissues, and male tissues. Medium expression 
was observed in normal kidney, adrenal gland and skin, 
whereas lungs, adipose tissue and colon showed low 
expression level [34].

CD99’s RNA has been detected in many 
malignancies in accordance to TCGA. CD99 showed 
the highest transcription level in malignant glioma and 
melanoma and lower level in lung cancer, pancreatic 
cancer, breast cancer and others. At the protein level, high 
CD99 expression has been observed in Ewing sarcoma, 
lymphoblastic lymphoma and malignant glioma whereas 
liver cancer and pancreatic cancer represent a smaller 
group with low CD99 expression [34].

In cell lines, the high level of CD99 at the 
transcriptional RNA level was observed in sarcoma (i.e., 
ASC diff, NX-value: 124.2), foreskin fibroblasts (i.e., 
BJ hTERT, NX-value:100.3), and malignant glioma 
(i.e., U138 MG, NX-value: 49.6) cells. Lower CD99 
expression was found in lung cancers (i.e., A549, NX-
value: 27.4; HBEC3-KT, NX-value: 18.1), among others. 
Interestingly, there is no record in HPA showing the 
CD99 expression in the NCI-H23 cells at the RNA level 
[34]. The results of our WB analysis depicted in Figure 
4B. are concordant with the results of the LC-MS analysis 
depicting exclusive identification of CD99 in 3D grown 
NCI-H23 cells.

The human CD239, also known as the basal cell 
adhesion molecule and/or the Lutheran antigen, is a cell 
surface glycoprotein which is encoded by the BCAM 
gene [39]. CD239 is a member of the immunoglobulin 
superfamily. It is a receptor for the extracellular matrix 
protein laminin, involved in tumor metastasis.

At the RNA level, CD239 has been detected in many 
tissues with highest expression in kidney, thyroid gland 
and female tissues. At the protein level CD239 has been 
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found highly expressed in normal kidney, nasopharynx, 
fallopian tube and placenta. Medium expression was 
observed in normal lungs, colon, gallbladder, breast 
and heart muscle, whereas normal cerebellum, thyroid 
gland, duodenum, liver and pancreas show low CD239 
expression levels [34]. 

CD239’s RNA has been detected in many 
malignancies in accordance to TCGA. It showed the 
highest transcriptional level in ovarian cancer, endometrial 
and prostate cancer and lower level in lung cancer, breast 
cancer urothelial cancer and others. At the protein level, 
high CD239 expression has been observed in breast 
cancer, ovarian cancer prostate cancer whereas colorectal 
cancer, pancreatic cancer and urothelial cancer showed 
medium expression level. Lung, stomach and liver cancer 
represent a group with low CD239 expression [34].

In cell lines, the high RNA level of CD239 
expression has been observed in skin (i.e., HaCaT, NX-
value: 62.8), breast cancer (i.e., SK-BR-3, NX-value: 
58.9). Lower CD239 expression was found in lung cancer 
(i.e., A549, NX-value: 27.4; HBEC3-KT, NX-value: 18.1), 
colon cancer (i.e., CACO-2, NX-value: 14.2) among 
other cell lines. Significantly, there is no record in HPA 
showing the CD239 expression in the NCI-H23 cells at 
the transcriptional RNA level [34]. The results of our WB 
analysis are in agreement with the LC-MS confirming 
exclusive detection of CD239 in 3D grown NCI-H23 cells 
(Figure 4B). 

Label-free quantitation confirmed upregulation 
of total Ras, K-Ras4BWT and K-Ras4BG12C 
mutant in 3D-cultured NCI-H23 cells

Recently, CD239 was found to play a functional 
role in the metastatic spreading of monoallelic KRAS-
mutant driven colorectal cancer by mediating interactions 
between the tumor and its microenvironment [40]. The 
expression and localization of CD239 was validated 
by immunohistochemistry in preclinical monoallelic 
KRAS mutant mouse model of hepatic metastasis [40]. 
In 3D-cultured NCI-H23 bearing the monoallelic KRAS 
mutant, we confirmed exclusive CD239 expression using 
WB. Notably, our spectral counting-based measurements 
utilizing total tryptic PSM counts showed significant 
upregulation of Ras proteoforms in a culture dependent 
manner (Supplementary Table 9). Therefore, we wanted 
to verify these measurements using label-free quantitation 
by the exclusive targeting of KRas proteoforms- 
and allele specific tryptic peptides (i.e., KRas4BWT, 
QGVDDAFYTLVR; KRas4BG12C, LVVVGACGVGK), 
NRas (i.e., NRasWT, SFADINLYR) and a total Ras (i.e., 
RasWT, LVVVGAVGVGK) shown in Supplementary 
Tables 3–4 [41]. Extracted ion chromatograms shown in 
Figure 5A–5C depict relative abundance of KRas4BWT, 
KRas4BG12C and total Ras. This analysis, unequivocally 
confirmed upregulation of KRas4BWT, KRas4BG12C and a 
total RasWT in 3D-culture (Figure 5D–5E). These results 

Figure 4: (A). IPA network analysis of differentially expressed proteins showing a merged network generated from overlapping networks 
2, 6 and 17, featuring CD99, CD239 and CD146, depicting direct (i.e., full red lines) and indirect (i.e., dotted red lines) interactions (i.e., 
highlighted in red), previously described in the literature. (B) Comparative WB analysis showing cropped images of CD99, CD239 and 
CD146 in 3D- and 2D-cultured NCI-H23 cells.
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allow us to hypothesize that CD239 may have a role in 
metastatic spreading of NSCLC similar to the one in 
the context of colon cancer harboring monoallelic KRas 
mutants [40]. 

DISCUSSION

Lung cancer is the leading cause of cancer-related 
deaths in the USA and worldwide [1]. Yet, approximately 
95% of new drug candidates validated in preclinical 
phase eventually fail in clinical trials [42]. This high 
failure rate is generally attributed to the inability of the 
commonly used two-dimensional (2D) cancer cell culture 
to recapitulate native three-dimensional (3D) growth 
of malignant cells in human tumors [5]. In particular, 
2D culture does not mimic the natural 3D tumor 
microenvironment critical for tumor growth and survival 
[43]. Consequently, false positive compounds regularly 
qualify for clinical trials, leading to high attrition rates and 
a waste of time and money. To address these shortcomings, 
multiple preclinical testing models have been developed to 
better simulate the natural in vivo conditions. One such 

model is 3D cell culture that has been proposed as a more 
accurate and relevant preclinical testing model, not only 
biomechanically but also at the genomic, proteomic, and 
metabolomic level [25].

MS-based proteomics has been increasingly used in 
cell-surface profiling due to the limitation of genomic data 
to provide explicit information about cell surface protein 
expression level, actual post-translational modification status 
and/or explicit subcellular location of a given target [44]. 
Our laboratory has pioneered and applied proteomics for 
profiling of the cell-surface proteome in cell lines and tissue 
specimens [11, 19, 21–23, 45, 46]. Despite the importance 
of preclinical testing models for lung cancer drug target 
and biomarker discovery, there are no reports to date on in-
depth comparative proteomic profiling of any lung cancer 
cell lines grown in 3D vs. 2D culture. Recent advances in 
cancer immunotherapy involving the targeting of proteins 
at the surface of cancerous cells, further emphasize the need 
for comprehensive mapping of the lung cancer cell surface 
proteome and development of approaches which are capable 
of in-depth profiling of the surface of in vitro cultured 
cancer cells [23, 47]. Our investigation begins to address 

Figure 5: Label-free, gel-free, and antibody-free quantitation of Ras from complex mixture targeting exclusively 
proteoform-specific tryptic peptides detected in 3D-cultured and 2D-cultured NCI-H23 cells. (A) Extracted ion 
chromatograms of the KRas4BWT proteoform-specific tryptic peptide QGVDDAFYTLVR identified in control (i.e., 2D cultured NCI-H23 
cells) and the sample (i.e., 3D-cultured NCI-H23 cells). (B) Extracted ion chromatograms of the KRas4BG12C allele-specific N-terminal 
mutant tryptic peptide LVVVGACGVGK identified in control (i.e., 2D cultured NCI-H23 cells) and the sample (i.e., 3D-cultured NCI-H23 
cells). (C) Extracted ion chromatogram of total RasWT specific N-terminal LVVVGAVGVGK peptide identified in control (i.e., 2D cultured 
NCI-H23 cells) and the sample (i.e., 3D-cultured NCI-H23). (D) 3D and 2D quantitative channels readings for the total RasWT specific 
N-terminal LVVVGAVGVGK peptide, the KRas4BWT proteoform-specific tryptic peptide QGVDDAFYTLVR and the KRas4BG12C allele-
specific N-terminal mutant tryptic peptide LVVVGACGVGK, respectively. (E) Calculated 3D/2D ratios for total RasWT, KRas4BWT, and 
KRas4BG12C proteoforms detected in membrane fraction of NCI-H23 cells grown in 3D and 2D culture, respectively.



Oncotarget2031www.oncotarget.com

the basic shortage of differential molecular profiles/maps 
of preclinical lung cancer testing models with the ultimate 
goal to facilitate evidence-based drug target and biomarker 
testing and/or discovery. 

To obtain a detailed map and differential molecular 
profile of the crude membrane proteome isolated from 
NSCLC preclinical model cell line, we applied shotgun 
proteomics to analyze microsomal fractions from the 
NCI-H23 cells grown in 3D- and 2D-culture. This 
analysis uncovered a total 334 protein species unique to 
3D-cultured cells, 598 unique to 2D cultured cells and 
a total 234 common protein species found significantly 
dysregulated under both culture conditions, revealing 
a non-redundant map/catalogue containing a total 
1,166 proteins regulated in a culture dependent manner 
(Supplementary Table 12), representing 24% of all non-
redundant protein species identified in this study. This 
may explain why false positive compounds often enter 
clinical trials. Importantly, this molecular map provides 
detailed qualitative and distinct quantitative information 
on proteins differentially regulated in a culture-dependent 
manner. This catalogue enables reasonable selection and 
ranking of putative targets based on their detectability and 
relative abundance estimated by LC-MS. 

Regardless of a cell culture type, cancer cells require 
a continuous supply of energy and structural components 
to support their growth and proliferation [48]. Due to 
persistent tumor hypoxia, cancer cells are forced to adapt 
their bioenergetic pathways to survive and proliferate 
in harsh hypoxic tumor microenvironment [49]. In 
comparisons to non-transformed healthy cells, transformed 
malignant cells possess remarkable metabolic flexibility 
characterized primarily by the ability upsurge glycolysis 
and repress oxidative phosphorylation (i.e., Warburg 
effect) [50], in order to secure cell survival and growth 
in hypoxia [49]. The principal regulator of intensified 
glycolysis is the hypoxia inducible factor 1 (HIF-1), a 
transcription factor responsible for increased transcription/
translation of glycolytic enzymes induced by hypoxia 
[51]. In comparison with 2D cultured cells, 3D-cultured 
cells are exposed to a much higher level of hypoxia 
and/or anoxia, featuring oxygen gradients which exist 
in the tumor microenvironment [52, 53]. Accordingly, 
the PANTHER pathway analysis revealed activation of 
hypoxia response via HIF and glycolysis pathway in 3D 
cultured NCI-H23 cells (Figure 2B). Correspondingly, 
the TGF-beta signaling was found highly activated in 2D 
culture, which is consistent with the role of this pathway 
in stimulating mitochondrial oxidative phosphorylation 
in the absence and/or low level of hypoxia present in 2D 
culture [52].

Also, it is widely recognized that tumors can 
switch to lipid-dependent metabolism for energy supply, 
employing adipogenesis/lipogenesis pathway for de 
novo synthesis of endogenous lipids and/or utilize the 
exogenous lipids from tumor microenvironment [54]. 

Significantly, lipogenesis-driven de novo synthesis 
of fatty acids (FA) is linked to oncogene signaling, 
responsible for endothelial cell recruitment and induction 
of tumor angiogenesis in response to hypoxia [55]. 
The IPA canonical pathway analysis, revealed the 
adipogenesis/lipogenesis pathway as the most enriched 
pathway in 3D cultured cells (Figure 3A), suggesting 
that hypoxia-driven activation of de novo FA synthesis 
in 3D cultured NCI-H23 cells is taking place in order 
to initiate endothelial cell recruitment and induction of 
neo-angiogenesis [56]. In addition, canonical pathway 
analysis exposed the activation of HIF1-alpha signaling 
in 3D culture (Figure 3A), indicative of hypoxia-driven 
glycolysis [51]. Significantly, it is now widely recognized 
that adipogenesis/lipogenesis pathway is closely linked 
to glycolytic pathway [57]. In 2D-cultured cells, the 
IPA canonical pathway analysis exposed the oxidative 
phosphorylation pathway as a top significantly enriched 
pathway (Figure 3B). This is in agreement with findings 
showing that oxidative phosphorylation is predominant 
type of energy metabolism in lung cancer cell lines 
grown in 2D-culture [49]. Taken together, the canonical 
pathway analysis is indicative of the ability of shotgun 
proteomics to capture broad phenotypical changes, 
depicting differential activation of principal metabolic 
pathways, in a culture-dependent manner, indicating that 
3D-cultured cells may be better than 2D-cultured cells in 
mirroring hypoxia, an important tumor feature that drives 
drug resistance in vivo [52]. 

The IPA disease and biological function analysis 
revealed connective tissue development as the top 
biological function (Supplementary Table 15), exemplified 
by the enrichment of multiple fibroblast functions and 
connective tissue growth, indicative of 3D cultured cells 
ability to sense 3D milieu and initiate phenotypical changes 
necessary for the creation of a tumor microenvironment 
that is critical for tumor survival [43]. Importantly, this 
analysis revealed a subset of CD molecules involved in this 
phenotypical transformation, showing exclusive expression 
of CD109 and CD146 in 3D culture, and upregulation of 
CD87, CD91 and CD280 in a culture dependent-manner 
(Table 1). This remarkable phenotypical transformation 
captured by shotgun membrane proteomics is equivalent to 
hypoxia-induced vascular mimicry in melanoma [58, 59] 
that we previously investigated using similar approach [45]. 

Next, we focused specifically on differentially 
regulated CD molecules/antigens, primarily due to their 
importance in cancer diagnostics (i.e., cancer biomarkers)
[60, 61], cancer treatment (i.e., cancer immunotherapy)
[62, 63] and our interest in the cell surface proteomics of 
cancer cell lines [23] and tumor xenografts [11] harboring 
KRas mutants in the context of biomarker and drug target 
discovery [47]. We were the first show colocalization 
of CD147 (BSG) and CD318 (CDCP1) at the surface 
of cancer cell line expressing KRas4B mutant [23]. 
Importantly, subsequent investigations established CD318 
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as a viable target for radiological staging and treatment of 
pancreatic cancer [47, 64].

In this study, we confirmed exclusive expression of 
CD146, CD99 and CD239 on the surface of 3D-grown 
NCI-H23 cells (Figure 4B) and showed their potential 
interaction through the activation of protein networks 
facilitated by PI3K, NFkB, and IFN-beta signaling (Figure 
4A). A recent study focused on the evaluation of the 
KRasG12C direct covalent inhibitor ARS1620 using patient-
derived xenograft (PDX) models and found that intrinsic 
resistance of NSCLC to ARS1620 monotherapy, driven 
by nongenetic adaptive mechanisms, can be alleviated 
by concomitant application of PI3K inhibitors [65]. This 
study also showed that the PI3K pathway is not under 
the exclusive control of the KRasG12C mutant in NSCLC 
PDX models. Based on the IPA network analysis (Figure 
4A), and WB validation, it is tempting to speculate that 
CD146, CD99 and CD239 are downstream PI3K effectors 
involved in pro-angiogenic [66] malignant stroma [67] 
regulated metastasis [40] and may be explored as potential 
immunotherapeutic cell surface targets in the context of 
KRasG12C driven NSCLC.

In this investigation, both the LC-MS and the 
WB analysis unambiguously established the presence/
expression of CD146 in 3D-culture, whereas both LC-
MS and WB were negative for the CD146 expression 
in 2D-cultured NCI-H23 cells (Figure 4B). However, 
the RNAscope ISH assay was clearly positive for the 
presence of MCAM transcripts in 2D-cultured NCI-H23 
cells (Supplementary Figure 12). It is well accepted that, 
with the exception for highly abundant housekeeping 
proteins, mRNA levels correlate poorly with protein level 
in cultured cell lines and tissues [68]. Furthermore, cell 
surface proteins show the worse correlation between 
protein and RNA abundance primarily because of 
complex posttranscriptional mechanisms controlling 
their expression (e.g., translation rate, degradation rate, 
transport) [69]. Importantly, our LC-MS and WB analyses 
were carried out using the membrane fraction, and it is 
possible that a very low level of ubiquitinated CD146 
might exist in the cytosol, undergoing rapid degradation 
[68]. These results underscore the importance of direct 
proteomic analyses to identify/quantify deferentially 
expressed cell surface proteins in cancer cell lines or 
tumor tissue [44]. Significantly, a tissue based IHC study 
targeting CD146 showed that CD146 expression was 
clearly predictive of lymph node metastasis in patients 
with NSCLC (n = 118) [70]. Another tumor tissue based 
study, relying on well-characterized clinical cohorts, 
reveled CD99 as a novel clinically applicable NSCLC 
prognostic stromal marker [67]. Similarly, gene expression 
profiles obtained from 1106 NSCLC tissue specimens, 
revealed BCAM (CD239) as a part of stromal biomarker 
panel for early-stage NSCLC survival stratification [71]. 

Taken together, the results of these investigations 
are indicative of the ability of 3D-cultured cells to 

faithfully recapitulate tumor-like phenotype, and 
the efficacy of comparative shotgun proteomics in 
capturing these changes. Phenotypically these changes 
at the proteome level are consistent with stroma-
like transformation of epithelial NCI-H23 cells in 
3D culture, where uniquely expressed CD molecules 
play important role. Specifically, CD146, CD99 
and CD239 which may be considered as therapeutic 
targets and would not have been discovered employing 
conventional 2D-culture.

The NCI-H23 cells harbors KRas4BG12C homozygous 
mutant and could be used as a preclinical NSCLC model 
for testing allele-specific covalent inhibitors that bind to 
the cysteine at position 12 of the G12C KRas4B mutant 
[72]. In this study, we unambiguously showed that 3D 
culture induces upregulation of both wild type and mutant 
KRas4B allele in NCI-H23 cells (Figure 5). Importantly, 
the present approach allows for direct proteoform- and 
allele-specific quantitation of changes in KRasWT and 
KRasG12C mutant regulation, and can be easily employed in 
quantifying responses to allele-specific covalent inhibitors 
or any other therapeutic compounds affecting Ras 
expression [73]. To our knowledge, this is the first report 
of gel-free and antibody-free bottom-up quantitative LC-
MS analysis of KRas targeting exclusively proteoform-
specific tryptic peptides. The shotgun proteomics is also 
amenable to absolute antibody-free quantitation of Ras 
isoforms using synthetic heavy isoform-specific tryptic 
peptide standards for LC-MS-based parallel reaction 
monitoring (PRM), we previously described targeting 
xenotropic and polytropic retrovirus receptor 1 (XPR1) in 
a complex membrane protein mixture [23]. Importantly, 
this approach allows for concomitant hypothesis-free 
proteomic profiling and the PRM-based quantitation 
applied on the same sample, as previously described [23]. 
This would greatly facilitates reduction in the variability 
associated with multiple sample preparations.

MATERIALS AND METHODS

Materials 

Ammonium bicarbonate (NH4HCO3), 
phenylmethylsulfonyl fluoride (PMSF), formic acid 
(HCOOH), and iodoacetamide (IAA) were obtained from 
Sigma (St. Louis, MO). Tris[2-carboxyethyl] phosphine 
(TCEP) Bond-Breaker™ was from Pierce (Rockford, IL). 
Acid-cleavable surfactant: 3-[3-(1,1-bisalkyloxyethyl)
pyridin-1-yl]propane-1-sulfonate (PPS) was from Protein 
Discovery Inc. (Knoxville, TN). All chemicals used were 
A.C.S. grade or higher, and all solvents used were HPLC-
grade or higher. Sequence-grade modified trypsin was 
obtained from Promega (Madison, WI). The anti-MCAM 
(CD146), anti-BCAM (CD239), anti-CD99, and anti-
CD97 antibodies used for western blot (WB) were from 
Abcam (Cambridge, United Kingdom).
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Cell culture 

NCI-H23 cells were obtained from the American 
Type Culture Collection (ATCC, Rockville, MD). 
2D culture was carried out in RPMI 1640 medium 
supplemented with 8 mM l-glutamine (GIBCO–BRL, 
Basel, Switzerland) and 5% fetal calf serum (FCS) 
(Fakola, Basel, Switzerland). 3D culture was carried 
out using global eukaryotic microcarriers platform from 
Global Cell Solutions (GCS, Charlottesville, Virginia) 
as previously described [74]. At the end of the culture 
process, both 2D and 3D grown cells were detached from 
the surface using trypsin. About 107 cells were collected 
and washed with PBS and stored at –80°C.

Microsomal fraction preparation, digestion, and 
fractionation 

Microsomal fraction was isolated as previously 
described [23]. Briefly, each cell pellet was thawed in 
50 mM NH4HCO3 containing 1 mM PMSF. Cells were 
homogenized using tip sonication. After debris removal, 
the lysate was reduced using 3 mM TCEP and alkylated 
using 5 mM IAA. Following the ultracentrifugation 
at 100,000 × g for 1.5 h, pellets containing enriched 
microsomal fraction were resuspended using tip sonication 
in 25 mM NH4HCO3. Next, protein concentration was 
determined using the BCA Protein Assay Kit (Pierce). 
Microsomal fraction aliquots, 500 μg each, were 
lyophilized and then solubilized in 500 μL of 60% 
CH3OH/40% 25 mM NH4HCO3 (v/v), containing 0.1% 
PPS, as previously described [21]. After tryptic digestion, 
samples were desalted, lyophilized and reconstituted in 200 
μL of 45% acetonitrile containing 0.1% formic acid. Each 
digest was then fractionated using SCX chromatography 
(Supplementary Figure 13) and a total of 12 peptide 
fractions were collated, as previously described [19]. 

LC-MS and raw data analysis 

SCX fractions were analyzed in duplicates using 
an EASY-nLC 1200 System (ThermoFisher Scientific) 
coupled on-line to an Orbitrap Elite mass spectrometer 
(ThermoFisher Scientific). Each SCX fraction was 
reconstituted in 0.1% TFA and 1 µg of peptides loaded 
onto an EASY-Spray, 25 cm long reversed-phase C18 
column (ThermoFisher Scientific). After injection, 
peptides were eluted using a linear gradient starting with 
2% mobile phase B (0.1% formic acid in ACN) to 40% 
solvent B (0.1% formic acid in 80% ACN). The mass 
spectrometer was operated in a data-dependent mode, 
using the peptide m/z range of 400−1800, monitored at 
the resolution of 60,000. Each MS scan was followed 
by 15 MS/MS scans, wherein the 15 most abundant 
precursor ions were dynamically selected for collision-
induced dissociation using normalized collision energy 

of 35%. Protein identification was carried out using the 
SEQUEST-based search against the non-redundant human 
proteome database (SwissProt release v57.15) utilizing 
the Proteome Discoverer 2.2 (ThermoFisher Scientific). 
For the monoisotopic peptide precursor ions (i.e., MS 
spectra), mass tolerance was set at 5 ppm; and for the 
fragment ions (i.e., MS/MS spectra), mass tolerance was 
set at 0.6 Da for fully tryptic peptides, allowing for up to 
two missed cleavages. Dynamic amino acid modifications 
were added for the detection of the following: +57.021 
Da for carboxyamidomethylated cysteines, +15.994 
Da for oxidized methionines and +0.984 deamidated 
asparagine/glutamine. A strict peptide false discovery 
rate (FDR) of ≤ 0.01 was set using Percolator-based 
statistical evaluation [75]. To increase the quality and 
reliability of protein identifications and enforce economy 
in the number of identified proteins, protein grouping was 
employed. Proteome Discoverer 2.2 was used for spectral 
counting based relative quantitation of changes in protein 
regulation between 2D and 3D cultured cells utilizing 
peptide-spectral matching (PSM) readouts computed by 
the Percolator algorithm [76]. The same software was used 
for the label-free quantitation of Ras targeting exclusively 
proteoform-specific peptides.

Statistics and bioinformatics

 Significantly dysregulated proteins were revealed 
using binomial probability and FDR calculation [77]. 
PSORT (Horton P) and TMHMM (Krogh, A) algorithms 
were used to classify and characterize membrane 
proteins. To map cell surface proteins, we used the 
mass spectrometric-derived Cell Surface Protein Atlas 
(CSPA) [24] accessible at https://wlab.ethz.ch/cspa/. The 
PANTHER (protein annotation through evolutionary 
relationship) classification system (http://www.pantherdb.
org/) was employed to classify significantly enriched 
protein species and corresponding pathways [78]. Finally, 
data were analyzed using literature-based Ingenuity 
Pathway Analysis IPA® (QIAGEN Inc., https://www.
qiagenbioinformatics.com/products/ingenuity-pathway-
analysis) to generate significantly enriched protein 
networks and select/prioritize cross-validation targets. 

Western blot analysis 

Cells were lysed in 25 mM of NH4HCO3 buffer 
supplemented with 1 mM PMSF and homogenized by 
five cycles of 10-second sonication (20% intensity) using 
a Bronson microprobe tip-sonicator. The homogenate 
was centrifuged at 1000 × g for 10 min to remove 
unbroken cells and cellular debris. The supernatant was 
ultracentrifuged at (100,000 × g) for 1.5 hrs. using a 
Beckman MLS50 rotor (Brea, CA, USA). The membrane 
pellet was resolubilized in 25 mM of NH4HCO3 buffer, 
and the protein concentration of the solution was 
determined with the BCA Protein Assay Kit (Pierce). An 

https://wlab.ethz.ch/cspa/
http://www.pantherdb.org/
http://www.pantherdb.org/
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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equal amount of protein was run on SDS-PAGE (Life 
Technologies). Resolved proteins were transferred onto 
a 0.2 µm nitrocellulose membrane (Bio-Rad, Hercules, 
CA, USA), blocked with 5% non-fat dried milk in PBST 
(PBS with 0.05% Tween), incubated with primary Ab at 4 
°C overnight, washed with PBST, and probed with HRP-
conjugated secondary Ab (Jackson ImmunoResearch, 
West Grove, PA). Immunoreactive bands were visualized 
by colorimetric detection using the Opti-4CN Substrate 
Kit (Bio-Rad). We used CD97 as WB control as well 
as membrane protein isolation reproducibility control 
since the LC-MS analysis showed no changes in CD97 
expression between compared cell culture conditions. 

RNAscope 

To evaluate mRNA transcription status of MCAM 
in 2D grown cells, an in situ hybridization (ISH) RNA 
assay, (i.e., RNAscope 2.5 HD –RED), from Advanced 
Cell Diagnostics Inc., was applied on fixed 2D-cultured 
NCI-H23 in accordance with manufacturer’s protocol [79]. 

Availability of data and materials

The datasets analyzed in the current study are 
accessible at the https://vmsshare.nist.gov.

CONCLUSIONS

In this study we generated a cell surface resource/
atlas of a preclinical testing model NCI-H23 cell line, 
providing insight into phenotypical changes at the 
proteome level unique to each culture type. This study 
provides for the first time an antibody-free and gel-free, 
proteomic method to directly quantify proteoform- 
and allele-specific changes in KRasWT and KRasG12C 
mutant expression in complex protein mixture using 
comparative bottom-up proteomics. This resource 
describes protein species that are found significantly 
dysregulated in culture-dependent manner as well as 
proteins unique to 3D- and 2D-culture, which would 
not have been observed utilizing solely conventional 
2D-culture. Capturing culture-dependent changes in 
protein expression is essential for providing a baseline to 
which cells can be accurately compared, followed by the 
application/testing a given drug candidate. In keeping 
with these concepts, we captured remarkable metabolic 
changes taking place in culture-dependent manner. 
Our proteomic resource also contains information on 
the difference in enrichment of biological functions 
and protein networks that can be mined to understand 
the transformation of NCI-H23 cells in 3D-culture 
consistent with activation of malignant tumor stroma. 
In particular, interactions between CD molecules 
mediating networks are key to regulating phenotypical 
changes under 3D culture. Among the candidate 

proteins selected for cross validation, unique expression 
of CD99, CD146 and CD239 in 3D-cultured cells are 
indicative of the development of malignant stroma 
(i.e., tumor microenvironment) induced angiogenesis 
and metastasis, likely triggered by increased hypoxia 
present in 3D-culture. Hence, our proteomic resource 
will provide a valuable set of protein targets for 
future studies and substantiate the advantage of using 
3D-culture to bridge the gap between conventional 2D 
in vitro cultures and in vivo animal testing models.

The present proof of the principle proteomic 
strategy should be widely applicable to other patient-
derived cancer cell lines. Evidently, each patient-derived 
cancer cell line represents a phenotype of a single 
individual tumor/cancer. Therefore, it is critical to carry 
out comparative proteomic profiling of a large number of 
patient-derived cancer cell lines (e.g., NCI-60) grown in 
2D- and 3D-culture in order to alleviate the heterogeneity 
issue and obtain comprehensive molecular profile/atlas of 
preclinical testing models, followed up by investigations 
focused on the differences ate the proteome level observed 
after application of selected drugs. Finally, phenotypical 
differences at the molecular level between 3D- and 
2D-cultured NCI-H23 cells described in this investigation, 
underscores the importance of characterizing the 
properties of 3D cell models utilized in preclinical testing, 
in order to reduce high drug attrition rates. In fact, the use 
of 3D-cultured cells might be a necessary precursor, and 
perhaps an alternative, to animal models.
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