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BACKGROUND: No-shows, a major issue for healthcare centers, can 
be quite costly and disruptive. Capacity is wasted and expensive re-
sources are  underutilized. Numerous studies have shown that reduc-
ing uncancelled missed appointments can have a tremendous impact, 
improving efficiency, reducing costs and improving patient outcomes. 
Strategies involving machine learning and  artificial intelligence could 
provide a solution.
OBJECTIVE: Use artificial intelligence to build a model that predicts 
no-shows for individual appointments.
DESIGN: Predictive modeling.
SETTING: Major tertiary care center.
PATIENTS AND METHODS: All historic outpatient clinic scheduling 
data in the electronic medical record for a one-year period between 
01 January 2014 and 31 December 2014 were used to independently 
build predictive models with  JRip and Hoeffding tree algorithms.  
MAIN OUTCOME MEASURES: No show appointments.
SAMPLE SIZE: 1 087 979 outpatient clinic appointments.
RESULTS: The no show rate was 11.3% (123 299). The most important 
information-gain ranking for predicting no-shows in descending order 
were history of no shows (0.3596), appointment location (0.0323), and 
specialty (0.025). The following had very low information-gain ranking: 
age, day of the week, slot description, time of appointment, gender 
and nationality. Both JRip and Hoeffding algorithms yielded a reason-
able degrees of accuracy 76.44% and 77.13%, respectively, with area 
under the curve indices at acceptable discrimination power for JRip at 
0.776 and at 0.861 with excellent discrimination for Hoeffding trees.
CONCLUSION: Appointments having high risk of no-shows can be 
predicted in real-time to set appropriate proactive interventions that 
reduce the negative impact of no-shows.
LIMITATIONS: Single center. Only one year of data.
CONFLICT OF INTEREST: None.
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The term “no-show” refers to a patient’s failure 
to keep a scheduled appointment and make a 
cancellation. No-shows are one of the challenges 

faced by healthcare practices around the world.1,2 No-
shows are a constant battle at King Faisal Specialist 
Hospital and Research Centre Organization (KFSHRC), 
despite several hospital-wide initiatives to improve at-
tendance. Eighteen percent of appointments are no-
shows.3 In comparison, the national average for no-
show appointments in most specialties in the US4 is 
a median of 5%. Our no-show rate of 18% is a cause 
of great concern because of wasted capacity, under-
utilization of expensive resources, and it is a barrier to 
patient access. 

Interventions range from simple telephone remind-
ers and short message services (SMS)5,6 to deploy-
ment of a sophisticated scheduling methods that use 
machine-learning and artificial intelligence to decrease 
the rate of no show appointments.7-11 By improving 
communications and increasing appointment flexibility, 
Mohamed et al decreased the no-show rate from 49% 
to 18% and sustained the no-show below a target of 
25% for two years.12 However, costs are associated with 
any intervention that reduces the no-show rate and the 
costs of interventions must be weighed against the re-
duction in the no-show rate, as uncertainty in patient at-
tendance will always persist. Elvira et al suggested that 
a prediction system using machine-learning to reduce 
no-shows could be effective even if the results are not 
spectacular.10 

Nelson and colleagues argued that further im-
provements in reducing no shows would require use 
of complex predictive models that better capture data 
on individual variability.13 As early as 1983, Bigby et al 
found that two-thirds of the cost-savings was generated 
from the patients that had a prior predicted probabil-
ity greater than 20% of being no-shows.14 Therefore, a 
fundamental step in developing a predictive model is 
accurately predicting when patients inclined to miss ap-
pointments are most likely to not show up. The problem 
is too complex to rely on “simple linear, low-dimension-
al statistical models “ that discard all but the most obvi-
ous predictive features. Simple approaches are usually 
applied to all patients rather than focusing on the no-
show patients, who are relatively infrequent. No-shows 
exhibit a behavioral pattern that tends to repeat but 
may change over time with more recent behavior be-
ing more relevant.15 Complex approaches that capture 
this individual behavior will likely be more predictive of 
future behavior. 

The aim of this research was to use machine-learn-
ing to build a model that predicts no-shows for individ-

ual appointments, based on the data in the electronic 
medical record. This model allows for the targeting of 
high-risk patients to reduce the cost of interventions 
aimed at reducing the no-show rate. 

METHODS
A no-show occurs when a patient fails to attend his/her 
appointments without prior notice or on short notice 
(e.g., <24 hours).16 A minimum time threshold, usually 
24 hours, is required for another patient to be sched-
uled into the cancelled time slot. A no-show at the am-
bulatory-care setting at KFSHRC is defined as a patient 
who cancels within 24 hours of the appointment, is 60 
minutes late for a scheduled appointment, arrives after 
the clinic is closed, or does not show up at all.

In this study, JRip17 and Hoeffding trees18 were se-
lected to model and classify patient appointments, as 
they are well-known algorithms in the machine-learning 
field. JRip is selected because it is characterized by 
compact size models,19 which facilitates understanding 
by humans.20,21 Hoeffding trees are selected because of 
their power in handling very large datasets with reason-
able time and computational costs as well as their abil-
ity to adjust to the changes in concepts leading to no-
shows. That is, Hoeffding trees does not assume that 
the data is drawn from a stationary distribution. Thus, 
even if the process leading to no show has changed 
over time, these algorithms have the ability to adapt to 
the new concept. 

Experimental setup
In this study we used the open-source machine-learn-
ing software Weka (http://www.cs.waikato.ac.nz/~ml/
weka/). We used different performance metrics to 
measure the effectiveness of a classifier with respect 
to a given dataset. The sensitivity, specificity, and pre-
dictive accuracy are among the most commonly used 
performance metrics.22 The predictive accuracy is mea-
sured as the proportion of correctly classified instances 
over all instances. Sensitivity measures the proportion 
of positive samples that are correctly classified as posi-
tive. Specificity measures the proportion of negative 
samples that are correctly recognized as negative. 
We also report the model size, which represents the 
number of JRip rules and the number of leaves in the 
Hoeffding trees. Another performance measure is the 
area under the curve index area under curve (AUC).23 
The AUC index values range from 0.5 (random be-
havior) to 1.0 (perfect classification performance). 
According to Hosmer et al24 an AUC in the ranges 
(0.7, 0.8) and (0.8, 0.9) have acceptable and excellent 
discrimination, respectively. Finally, we also report the 
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Table 1. A complete list of predictor features and their information gain ranking.

   Input Type No. Values/
range

Info gain
ranking    Description

   noShow−rate Numeric 0.0 – 100.0 0.3596    The proportion of no-show visits among all 
   visits per patient

   app−loc Nominal 32 0.0323    Appointment location

   specialty Nominal 24 0.025    Clinic specialty or medical service

   reg−type Nominal 18 0.0104    Type of patient as Ordinary, Employee, 
   Dependent, Donor, etc.

   age Numeric 0-115 0.003    Patient age in years

   day−of −wk Nominal 7 0.003    Visit day of week (Sun, Mon, Tues, Wed, Thurs, 
   Fri, Sat)

   slot−desc Nominal 4 0.002
   Registration slot description, which can be 
   new patient (NP), new follow-up (NF), follow-up  
   patient (FU), or (Diagnostic)

   region Nominal 5 < 0.001    Geographic region of patient as Central, 
   Eastern, Western, Northern, or Southern region

   time−slot Nominal 4 < 0.001    Time slot of visit as Early AM, AM, PM, or Night

   gender Nominal 2 < 0.001    Patient gender as Male or Female

   nationality Nominal 2 < 0.001    Patient nationality as Saudi or Non-Saudi

   class Nominal 2  —
   Target class as either (show) if the patient
   attended the appointment, or (no-show)   
   otherwise

model generation time in seconds. All measures are 
reported for the average performance of the algorithm 
on unseen data (test set). We conducted experiments 
on an Intel CoreTM i7 -7500U CPU (2.9 GHz) with 16 
GB RAM.

In the generation of the model, the machine 
“learns” from an initial set of data, usually called the 
“training” data, and with the model developed from 
that data, attempts to make predictions on a set of 
‘test’ data. The test data is also known as the validation 
dataset for use in cross-validation, which measures how 
accurately the model will predict new data. We used a 
stratified 10-time, 10-fold cross-validation25 procedure 
as it is considered the best error-estimation strategy.26,27 
In this procedure, the whole dataset is partitioned into 
10 disjoint folds, each of size 0.1 of the original data-
set size. Cross-validation is done 10 times each using 
9 folds for training the model and the one fold left out 
of the training phase is used as a test set. Each time 
a different fold is used as a test set. Results are then 
averaged over the 10 iterations. For preprocessing, we 
used IBM SPSS Modeler Version 18 (https://www.ibm.
com/us-en/marketplace/spss-modeler) and MatlabR 
R2015 (http://www.mathworks.com/products/matlab/).

Dataset
The data used in this study consisted of all historic 
outpatient clinic scheduling data for a one-year period 
between 1 January 2014 and 31 December 2014. The 
dataset contained 1 087 979 records; 11.3% (123 299) 
are records of no-show cases. Each record contains 11 
predictor attributes (also called features or variables) in 
addition to the target class (the show-no-show variable, 
the same as the dependent variable in logistic regres-
sion). The predictor attributes include patient-specific 
data such as patient age, gender, nationality, geo-
graphic region, and the 12-month historic rate of no-
show for each patient (noShow-rate), computed as the 
number of appointments considered no-shows for the 
patient divided by the total number of appointments 
for this patient (including attendance and no-shows). 
In addition, each record contains data about the visit 
including the appointment location (app-loc), day of 
the week (day-of-week), appointment time (time-slot), 
specialty, slot description (slot-des), registration type 
(reg-type), and no-show status (class). The last attribute 
(class) represents the target class that we aim to predict, 
in which the value is either (show) if the patient attend-
ed the appointment, or (no-show) otherwise. Table 1 
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shows information about the attributes included in the 
study. We ordered the attributes in the table according 
to the ranking of the information-gain ratio with respect 
to the target class (class). 

The dataset was preprocessed as follows. We omit-
ted records having slot-desc=“Medication Refill” or 
“Chart Review” as these are not patient appointments. 
We also modified and minimized some data attri-
butes. First, we minimized the nationality attribute so 
that it had only two categories: Saudi and Non-Saudi. 
Second, we minimized the slot-desc attributes to only 
four: follow-up (FU), new follow-up (NF), new patient 
(NP) and diagnostic. Any slot description that contained 
either FU, NF, or NP as part of its name was categorized 
according to the existing subscript. Diagnostic replaced 
any diagnostic-related descriptions. For example, we 
categorized any description that contains computed 
tomography (CT), magnetic resonance image (MRI), 
scan, etc. as Diagnostic. Third, the specialty attributes 
which are defined as the medical specialty providing 
care to the patient, contain 162 unique specialty cat-
egories. We grouped these into 24 unique categories. 
For example, we grouped “ENT-Otolaryngology”, 
“ENT-Audiology”, and “ENT-Head & Neck” under one 
attribute: “ENT”. Last, we mapped appointment time 
(time-slot) to one of four intervals: Early AM (7-9 am), 
AM (9 am to 12 pm), PM (12-5 pm), or Night (5 pm to 
7 am). As mentioned earlier, only 11.3% of the records 
in the original dataset related to appointments in which 
patients had attended (class=show) and the remaining 
88.7% represented no-show cases (class=no show). The 
dataset is thus considered highly imbalanced, exposing 
the prediction performance to a considerable negative 
effect. Thus, we balanced the dataset with respect to 
the target-class attribute (class) so that approximately 
half of the records belong to the class = show category 
and the other half belonged to the class = no-show cat-
egory. The resulting dataset contained 222 607 instanc-
es, of which 109 113 belonged to the no-show cases 
(49%). Mosaic plots were used to show the distribution 
of no-shows with respect to each of the top three in-
dicator attributes: noShow-rate (historic no-show rate), 
app-loc (appointment location), and specialty. Mosaic 
plots are used because they are multidimensional plots 
that facilitate the illustration and recognition of different 
relationships between variables. The width of the bar is 
proportional to the number of observations within that 
category. 

JRip
JRip is a competitive separate-and-conquer proposi-
tional rule learning algorithm that performs efficiently 

on noisy datasets containing hundreds of thousands 
of records.17 It is an optimized version of the IRIP al-
gorithm.28 The algorithm starts with an empty rule set. 
The training dataset is split into a grow set (two-thirds 
of the training set) and a prune set (one-third of the 
training set). Using the grow set, and an information 
gain heuristic, the algorithm builds a model that actu-
ally overfits the data. Then, using the prune set, and 
pruning operators, the algorithm repeatedly applies a 
pruning operator to remove the condition or rule that 
yields the greatest reduction of errors on the prune set. 
To prune a rule, the algorithm considers the final se-
quence of conditions that maximize the value of v as 
in Equation 1, where P refers to the total number of 
instances in PrunePos, PrunePos, N refers to the total 
number of instances in PruneNeg, p is to the total num-
ber of instances in PrunePos that are covered by Rule, 
and n is the total number of instances in PruneNeg that 
are covered by Rule.

This process ends when applying any pruning opera-
tor would result in an increased error on the pruning set. 

 Table 2 shows the parameters used for JRip. The 
minimum total weight of the instances in a rule is minNo, 
optimizations refers to the number of optimization runs, 
and checkErrorRate refers to whether a check for an er-
ror rate >1/2 is included in the stopping criterion.

Hoeffding Trees
Several thousand appointments are scheduled daily in 
KFSHRC, which imposes high demands in terms of mem-
ory and computational requirements. Hoeffding trees29 
are considered one of the new generations of stream 
mining. Using these methods, learning is performed 
online from a stream of data through just one pass on 
the data. A very small constant time is required by these 
methods per example, which yields acceptable compu-
tational costs. Hoeffding trees, also known as Very Fast 
Decision Trees (VFDTs), rely on the assumption that the 
distribution of data does not change much, and thus, to 
find the best attribute to test at a given node, it is suffi-
cient to consider a small subset of the training examples, 
rather than the entire training set as in conventional de-
cision tree learning algorithms. Using this assumption, 
and given a stream of training instances, the first batch 
of instances are used to select the root test. The suc-
ceeding batches are passed down the tree to select the 
test for the next node in the tree, and so on recursively. 
The Hoeffding bound30,31 is defined as follows: Consider 
a real-valued random variable, r ∈ R. Assume that n in-
dependent observations of this variable are made with 



original articleAI FOR NO-SHOWS

ANN SAUDI MED 2019 NOVEMBER-DECEMBER WWW.ANNSAUDIMED.NET 377

Table 2. Parameter values used for the JRip.

Parameter Value

numDecimalPlaces 2

minNo 2

optimizations 2

checkErrorRate True

useP runing True

batchSize 100

doNotCheckCapabilities False

Table 3. Parameter values used for the Hoeffding tree.

Parameter Value

   batchSize 100

   numDecimalP laces 2

   nmin 200

   splitCriterion Gini index

   splitCriterion 1.0E − 7

    τ 0.05

    leafPredictionStrategy Naive Bayes 
Adaptive

Table 4. Evaluation of the no-show model generated by the JRip and Hoeffding trees algorithms.

Model Accuracy (Sensitivity) (Specificity) AUC Size  Time

JRip 76.44% 0.795 0.735 0.776 13 86.02

Hoeffding trees 77.13% 0.815 0.729 0.861 391 1.3

Table 5. The no-show model generated by the JRip algorithm.

(noShow−rate ≥ 29.7872) → class=no-show (57,470.0/7,828.0)
(noShow−rate ≥ 17.2414) → class=no-show (41,815.0/14,369.0)
(noShow−rate ≥ 14.7727) → class=no-show (12,214.0/5,432.0)
(noShow−rate ≥ 13.9241) and (specialty = SUR) and (age ≥ 48) → class=no-show (261.0/93.0)
(noShow−rate ≥ 12.3288) and (specialty = DTC) → class=no-show (311.0/79.0)
(noShow−rate ≥ 12.1951) and (day−of −wk = Sunday) → class=no-show (3,185.0/1,487.0)
(noShow−rate ≥ 12.1212) and (app−loc = Dental-R) and (age ≥ 52) → class=no-show (294.0/108.0)
(noShow−rate ≥ 10.9244) and (app−loc = Phy-Thpy-R) → class=no-show (1,339.0/581.0)
(noShow−rate ≥ 13.0435) and (age ≥ 67) and (gender = Female) → class=no-show (253.0/107.0)
(day−of −wk = Thursday) and (noShow−rate ≥ 13.7931) and (noShow−rate ≤ 14.5161) and (time−slot = EarlyAM) → 
class=no-show (303.0/132.0)
(noShow−rate ≥ 12.7907) and (day−of −wk = Monday) and (noShow−rate ≤ 13.7255) and (gender = Female)
→ class=no-show (395.0/176.0)
(noShow−rate ≥ 10.4478) and (specialty = SUR) and (age ≥ 19) and (app−loc = OB/GYN-R)
→ class=no-show (44.0/1.0)
default: class=show (104,723.0/21,622.0)

mean r ∈ R. According to the Hoeffding bound, and with 
a probability of 1– δ, the true mean of variable r is at least 
r – ∈, where ∈ is defined in Equation 2.

The Concept Drifting Very Fast Decision Tree 
(CVFDT)15 is an improvement over the VFDT, which al-
lows adapting the tree to the changes in the underlying 
process that generates the examples. In a nutshell, the 
CVFDT works on keeping the generated model consis-
tent with a sliding window of examples by updating the 
required statistics at each node. However, if the current 
splitting test at a node no longer passes the Hoeffding 
test because an alternative attribute has a higher heuris-
tic value, then a new subtree is grown with the alternate 

splitting test at its root. If this new test becomes more ac-
curate with the arriving data, it then replaces the old one.

Table 3 shows the parameters used for Hoeffding. 
The preferred number of instances for processing if batch 
prediction is being performed is batchSize. splitCriterion 
represents the split evaluation heuristic, such as informa-
tion-gain or Gini index. The parameter SplitConfidence 
refers to the allowable error in a split decision. The pa-
rameter n_min is the number of instances a leaf should 
observe before re-computing the split evaluation heuris-
tic. τ refers to the threshold below which a split is forced 
to break ties. 

RESULTS
The most significant predictor, with an information-gain 
ranking of 0.3596, was the historic noShow-rate per per-
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Figure 1. Distribution of no-show by the historic no-show 
rate (Example: patients who have a historic no-show rate 
greater than 50% [category 5] had the highest probability 
of not showing at the next appointment [79.1%]). Historic 
no-show rate was the most  important predictor of future 
no-shows.

Figure 2. Distribution of no-show rate by appointment location.

son (Figure 1). This predictor uses individual patients’ 
no-show histories to predict the possibility of no-shows 
for future appointments. In this figure, the no-show rate 
(noShow-rate) is divided into six categories as follows. 
Category 0 refers to patients with a historic noShow-
rate ≤10%, Category 1 is for a noShow-rate ≤20%, 
Category 2 is for a noShow-rate ≤30%, Category 3 is 
for a noShow-rate ≤40%, Category 4 is for a noShow-
rate ≤ 50%, and Category 5 is for a noShow-rate > 50%. 
The horizontal axis in the figure shows the six catego-
ries, whereas the vertical axis illustrates the actual class 
of the appointments (class) as show or no-show. As de-

picted in Figure 1, the majority of the patients (56.4%), 
the width of the category on the horizontal axis have 
a historic no-show rate in Category 0. Of the patients, 
23% belong to Category 1, 9.1% are in Category 2, and 
5.6% are in Category 3. On the other hand, the percent-
ages of patients having no-show rates in Categories 4 
and 5 are the least (<3% each). The figure also illustrates 
that the chances of a future appointment being a no-
show increase in significant proportions for patients with 
multiple previous incidents of no-shows. Appointments 
for patients with Category 0 no-show rates yield a dis-
tribution of no-shows at only 2.34% (i.e., among ap-
pointments for patients with historic noShow-rates in 
Category 0, only 2.34% have class=no-show), whereas 
patients with Category 5 noShow-rates have a distribu-
tion of class=no-show at as high as 79.10%.

The appointment location predictor (app-loc), which 
has a much lower information-gain ranking (0.0323) than 
that of noShow-rate per person class is shown in Figure 
2. Appointment locations serving patients with critical 
or unique conditions have a lower distribution of no-
show (Dialysis at 1% and IVF at 5.5%) compared to less 
critical/unique conditions, such as Allergy at 21.7% and 
Dermatology at 23.5%. 

Next, the specialty predictor which has an informa-
tion-gain ranking of 0.025, as shown in Figure 3 yielded 
a phenomenon similar to that of appointment location 
class. The no-show distribution is low for rare/critical 
specialties such as Urology (URO, 6.5%) and Oncology 
(ONC, 6.9%) compared to Surgery (SUR, 16.6%), 
Optometry (OPT, 23.8%), and Dietary (DTC, 27.23%). 

The predictor reg-type which categorizes patients 
as permanent hospital employee, temporary hospi-
tal employee, locum hospital employee, hospital em-
ployee dependent, organ donor, ordinary patient (re-
ferred to the hospital), temporary patients (limited vis-
its) and VIP has an information-gain ranking of 0.0104. 
Appointments related to locum tenens care providers 
prior to their employment at KFSHRC have very low no-
show distributions (Pre-employment at 2.6% and Locum 
at 8.0%), as their employment decisions are based on 
the fulfillment of their medical evaluation. Patients who 
have easy access to appointments and can easily re-
schedule appointments have high distributions of no-
shows: for example, dependents of physicians’ at 24% 
and retired employees at 18.6%. 

Both age and day-of-wk predictors have low informa-
tion-gain rankings of 0.003. Although the distributions 
of no-shows among all age ranges are very similar, the 
distribution of no-shows for the 15-25 age group is as 
high as 51.53%. The lowest distribution of no-shows ap-
pears among patients of the 55-64 age group at 46.56%. 
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Figure 3. Distribution of no-show by specialty. 

The predictor slot-desc, which has a low information-
gain ranking of 0.002, attempts to predict no-shows by 
slot type. No-shows rates are lowest in the FU (Follow-
up) slot type compared with NP (New Patient).

Predictor classes related to time-slot, gender and na-
tionality all have information-gain rankings below 0.001, 
diminishing the prominence of no-show predictions.

The JRip and Hoeffding tree algorithms were inde-
pendently applied to the preprocessed dataset as de-
scribed above. Table 4 shows the evaluation results for 
the generated models. It can be seen that the model 
generated using Hoeffding trees has a stronger predic-
tion accuracy, sensitivity, and specificity. The AUC for 
the JRip model can be characterized as “acceptable”, 
whereas that for the Hoeffding tree model is “excellent 
discrimination”. Notably, the time required by JRip was 
much larger than that for Hoeffding trees. However, the 
size of the model generated by JRip is much smaller. 

The model generated by JRip consists of 13 rules, 
which are shown in Table 5. This model resembles a 
decision list, represented by an ordered sequence of 
IF-THEN-ELSE rules. Each rule is in the form (IF) con-
dition → class (coverage/error). The numbers in the 
bracket stand for coverage/errors in the training data, 
which follows the standard convention of tree/rule in-
duction. For example, (noShow-rate≥14:7541 → class= 
no-show (112 678.0/27 674.0) means that the rule (no-
Show-rate≥14:7541) → class= no-show covers instances 
with total weights of 112 678.0, out of which there are 
instances with weights of 27 674.0 misclassified. In this 
case, one instance corresponds to weight 1. The last rule 
is the default rule, providing the class applicable when all 
previous rules do not apply to the case under consider-
ation. The model generated by the Hoeffding tree is not 
shown due to its prohibitive size.

DISCUSSION
The prediction of patient no-shows has been studied 
since the early eighties. Dove and Schneider showed 
that it is possible to accurately predict no-shows using a 
decision tree.32 Their study revealed that the most impor-
tant predictor was the patient’s previous appointment-
keeping pattern. In another study, logistic regression 
was used to estimate the probability of patient no-shows 
at an outpatient clinic at a midwestern Veterans Affairs 
hospital in the US.33 The study showed the existence of 
many indicators of no-show including being of a younger 
age, not having a cardiac problem, having depression 
and drug dependencies, not being married, and travel-
ing long distances. However, the most important indica-
tors were prior no-show rates and the number of hospital 
admissions. 

Lotfi and Torres used classification and regression 
trees with four different tree-growing criteria to predict 
the no-show of a patient.34 The model was trained on 
367 patient data and collected over five months from a 
physical therapy clinic within an urban health and well-
ness center situated in a public university. The study 
showed that gender, distance from the clinic, educa-
tion, work status, days since last appointment, and at-
tendance at prior visits are significant indicators. The 
resulting models were compared to models developed 
using artificial neural networks and Bayesian Networks. 
Classification and Regression Trees (CART) produced 
the most favorable results, with a predictive accuracy 
of 78%.35

Having a vast amount of outpatient data in its elec-
tronic medical record and electronic scheduling sys-
tems, KFSHRC-Riyadh undertook this experiment utiliz-
ing two prominent machine-learning algorithms, JRip 
and Hoeffding trees, to predict no-shows. The resulting 
models can be used to help hospital administrators de-
sign strategy interventions to reduce the negative im-
pact of no-shows.

Both of the algorithms used, JRip and Hoeffding 
trees, yielded reasonable degrees of accuracy of 
76.44% and 77.13%, respectively, with an AUC index 
being at an acceptable discrimination power for JRip at 
0.776, and at 0.861 with an excellent discrimination for 
Hoeffding trees. As for the outcomes, the JRip model 
not only gives a prediction, but also provides insight 
and reveals interdependence among the predictor at-
tributes, demonstrating a more powerful tool. The in-
formation-gain ratio ranking shown in Table 1 revealed 
that the no-show rate is related to the previous no-show 
behavior of the patient. The result for KFSHRC-Riyadh 
is consistent with that of earlier studies.32-38 In reference 
to Table 5, using this indicator alone, the prediction of 
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no-shows is as high as 88% for the noShow-rate≥29; 
as high as 74.39% for the noShow-rate≥17.2414; and 
69.22% for the noShow-rate≥14.7727. The accuracy of 
this prediction is high, confirming that the higher the 
rate of a previous no-shows, the higher the chances 
that a patient will commit a no-show on subsequent 
visits. Patient education about the importance of show-
ing up for an appointment is key to addressing the be-
havioral aspect of no-shows. Overbooking based on a 
sophisticated scheduling system with prediction capa-
bilities can also mitigate no-shows related to patient 
behavior.

As an example of predictions from the model, the 
JRip algorithm predicted that 73% of appointments 
yielded no show when the patient was over 47 years 
old and with historic noShow-rate≥13.29241 and ap-
pointment specialty being surgery. Patient education 
may mitigate the risk of no-shows for these classes. On 
the other hand, with a noShow-rate≥12.32 in a non-
physician clinic, dietician appointments have a higher 
predictability of no-shows at 79.74%. Similarity, with a 
noShow-rate≥10.9244 in a therapist-led clinic (physi-
cal therapy), appointments have a higher predictability 
of no-shows at 79.74%, according to the JRip model. 
These non-physician clinics are conducted in separate 
sessions on different days from the physician-led clinics 
that referred them to these non-physician clinics in the 
first place. This may explain the high no-show rate. The 
concept of one-stop shop with multidisciplinary clinics 
(to include dietician clinics) could address the no-show 
issue for these clinics.

 Appointments on Sundays for patients with previ-
ous noShow-rate≥12.1951 yielded a 68% predictability 
of being a no-show. Since many patients come from 
outside Riyadh and may not get the right flights to 
reach clinics on Sundays due to the high demand on 
the airlines after the weekend, no-shows are predicted 
to be high. A sophisticated scheduling system with 
prediction capabilities to avoid the scheduling of out-
of-town patients on Sundays would mitigate this risk. In 
addition, appointments on Thursdays Early AM for pa-
tients with noShow-rate between 13.7931 and 14.5161 
yielded a 69% predictability of being no-shows. With 
Thursday being the day before the weekend, this may 
cause many patients to avoid coming for their appoint-
ments. Patient education may mitigate the risk of no-
shows for these classes.

Appointments for patients over 51 years old with 
a noShow-rate≥12.1212 at the dental clinics yielded a 
prediction of no-show at 73. Dental appointments are 
scheduled so far in advance that for many patients, the 
likelihood of forgetting about the appointments is very 
high, which can explain this high no-show prediction. 

Actively reaching out and a timely SMS reminder will 
mitigate this risk.

Appointments for female patients over 66 years with 
noShow-rate≥13.0435, yielded a prediction of no-show 
at 69%. Dependency on others to bring older women 
to their appointments may have a direct effect on no-
show. Educating patient’s relatives would lower the 
risk under these classes of patients. Appointments on 
Mondays for female patients with noShow-rates be-
tween 12.7907 and 13.7255, yielded a now show pre-
dictability of 69%. In general, women in Saudi Arabia 
depend on others for transportation, which have a 
direct effect on the no-show rate. No-shows for these 
classes of patients may change with the recent permis-
sion to drive granted to women. 

It is worth noting that the JRip algorithm, despite 
its competitive performance and informative model, is 
not designed to deal with large sets of data. In a hos-
pital with thousands of appointments every day like 
KFSHRC, data stream classification algorithms, like the 
Hoeffding tree algorithm, is more powerful in address-
ing the size issue. In addition, and as opposed to JRip, 
the Hoeffding tree algorithm builds the model incre-
mentally from the data stream, allowing the generation 
of models that can adapt to concept-drifts. This study 
demonstrated the competency of the model generated 
by Hoeffding tree algorithm for the prediction of no-
shows. The prediction of appointment no-shows can 
be done in real-time by integrating the Hoeffding tree 
algorithm into the scheduling system, so that it signals 
appointments that are at high risk of being a no-show. 
Accordingly, appropriate proactive interventions that 
reduce the negative impact of no-shows can be de-
signed and integrated into the system for a timely ac-
tion.

CONCLUSION
A history of multiple no-shows was the number-one 
predictor of future no-shows. Using data stream clas-
sification algorithms, like the Hoeffding tree algorithm, 
appointments having a high risk of no-show can be 
predicted in real-time. We recommended integrating 
such an algorithm in the health-information system to 
predict no-shows and mitigate the risk of no-show.
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