
Heliyon 6 (2020) e03336

Contents lists available at ScienceDirect

Heliyon

www.elsevier.com/locate/heliyon

Research article

A radiating Kerr black hole and Hawking radiation

Yu-Ching Chou ∗

Health 101 clinic, 1F., No. 97, Guling Street, Taipei City, Taiwan

A R T I C L E I N F O A B S T R A C T

Keywords:

Astrophysics
Cosmology
Special relativity
Thermodynamics
Ellipsoid coordinate transformation
Hawking radiation
General relativity
Kerr metric
Radiating rotating black hole
Vaidya–Kerr metric

This study proposes an axisymmetric generalization of the Vaidya metric, namely the Vaidya–Kerr metric, 
to describe a radiating rotating black hole, and presents its Hawking radiation temperature. This study is 
an improved version of our previous research via ellipsoid coordinate transformation, and the Einstein field 
equations are solved concisely and intuitively by an orthogonal ansatz. The results demonstrate that the energy–
momentum tensor of the derived radiating Kerr metric satisfies the energy-conservation law and is classified as 
a Petrov type II fluid, whereas the stationary Kerr metric is a Petrov type IV vacuum. The inner and outer event-
horizon radii, the ergosphere radii, as well as the angular velocity at the event horizon are solved, and then, 
surface gravity, entropy, and Hawking radiation are derived. We estimate the Hawking-radiation temperature of 
the black holes with the angular momentum and the same mass of Pluto and the sun, as well as the supermassive 
black hole in the core of the M87 galaxy to be 9.42K, 6.08 ×10−8K, and 8.78 ×10−18K, respectively. Only the value 
of the rotating Pluto-mass black hole is slightly greater than the 3K cosmic microwave background radiation and 
may be detected by high-resolution tools in the future.
1. Introduction

The black hole solution of the four-dimensional spacetime Einstein–
Maxwell equations of classical general relativity has the following phys-
ical characteristics: mass (𝑀), electric charge (𝑄), and angular momen-
tum (𝐽 ). The static spherically symmetric solution is a Schwarzschild 
metric with mass as its only physical characteristic [1]. The static spher-
ically symmetry solution with electric charge is the Reissner–Nördstrom 
metric [2, 3], and the axisymmetric generalization of the Schwarzschild 
metric with angular momentum is known as the Kerr metric [4]. The 
axisymmetric solution of the Reissner–Nördstrom metric has been gen-
eralized by incorporating angular momentum to the Kerr–Newman met-
ric [5]. These four metrics are often referred to as the “black hole” exact 
solutions of general relativity.

In 1943, Vaidya proposed a radiating spherically symmetric solution 
[6]. The Vaidya metric, which was originally applied to radiating stars, 
can be regarded as the simplest generalization of the Schwarzschild 
metric. In 1974, Hawking applied quantum theory to determine that 
black holes emitted heat radiation [7]. Quantum theory predicts that 
black-hole mass will gradually evaporate through radiation; therefore, 
the black hole may have a fourth physical characteristic, i.e., tempera-
ture (𝑇 ). Therefore, the Vaidya solution can be applied to black holes 
to study Hawking radiation. Moreover, celestial bodies present in the 
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nature, which require the Vaidya–Kerr solution, always have rotational 
angular momentum and radiation, including radiating rotating stars and 
black holes.

Einstein’s field equations are nonlinear differential equations; it is 
difficult to obtain accurate analytical solutions without using symmetry. 
The methods known for solving axisymmetric problems in the litera-
ture are as follows. First, the Newman–Janis algorithm (NJA) [8, 9], 
which usually requires Newman–Penrose formalism, is a commonly ap-
plied technique based on the use of complex null tetrads with ideas 
taken from 2-component spinors for general relativity [10, 11]. Sec-
ond, the Papapetrou gauge and Ernst equations can also be applied to 
solve the axisymmetric Einstein’s field equations [12, 13]. In addition, 
our previously conducted studies have demonstrated that the Kerr and 
Kerr–Newman metric can be derived from the orthogonal ansatz by ap-
plying an ellipsoidal-coordinate transformation [14, 15].

Recently, several radiating rotating solutions have been proposed. 
First, a study conducted by Ibohal discussed the axisymmetric Vaidya–
Kerr metric, which admits nonperfect fluids [16]. Ghosh and Maharaj 
applied the Hayward black-hole solution as a seed metric to obtain 
a rotating radiating black hole without a singularity [17]. The afore-
mentioned studies were based upon the Newman–Janis algorithm and 
Eddington–Finkelstein coordinates [18, 19]; they comprise a pair of 
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coordinate systems, which are adapted to radial null geodesics for a 
Schwarzschild geometry.

A study conducted by Bohmer and Hogan proposed a different 
method for obtaining the Vaidya–Kerr spacetime [20]. They utilized 
a retarded 𝑢 = 𝑡 − 𝑟 coordinate transformation to rewrite the non-static 
mass function and rotating parameter as 𝑚(𝑢) and 𝑎(𝑢), respectively in 
terms of the Kerr–Schild coordinates, which express the Kerr solution 
using Cartesian coordinates [21]. All results of these previously con-
ducted studies involve radiating rotating black hole solutions.

This study aims to obtain a radiating Kerr metric via ellipsoid coordi-
nate transformation, and to present the Hawking radiation temperature. 
Our derivation is a nonstationary generalization of our previous re-
search [14, 15]; however, this paper presents an improved version of 
the orthogonal ansatz as well as a more concise and intuitive derivation 
method. The rest of this manuscript is organized as follows. Section 2
introduces the Vaidya and Kerr metrics. Section 3 introduces an ellip-
soid coordinate transformation. Section 4 presents the derivation of the 
static Kerr metric. Section 5 presents the radiating Kerr black hole solu-
tion. Section 6 presents the physical properties of the Vaidya–Kerr met-
ric. Section 7 presents the energy-momentum tensor. Section 8 presents 
the results and discussion. Section 9 concludes this paper. This paper 
sets 𝑐 = 𝐺 = 1.

2. Vaidya and Kerr metrics

The Vaidya metric describes the external spacetime of spherically 
symmetric and non-rotating stars or black holes, which is either emit-
ting or absorbing null dusts. It is a generalization of the simplest non-
static Schwarzschild metric, and is expressed in Eddington coordinates 
(𝑢, 𝑟, 𝜃, 𝜙), as follows

𝑑𝑠2 = −
(
1 − 2𝑚(𝑢)

𝑟

)
𝑑𝑢2 + 2𝜖𝑑𝑢𝑑𝑟+ 𝑑Ω2, (𝜖 = ±1) (1)

where 𝑑Ω2 = 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2. 𝜖 = +1 represents the “advanced” or “in-
going” Vaidya metric, while 𝜖 = −1 represents the “retarded” or “out-
going” Vaidya metric. When mass function 𝑚(𝑢) = constant 𝑀 , the 
metric returns to the Schwarzschild metric. The Kerr metric, which is a 
generalization of the Schwarzschild metric, is another exact solution 
of general relativity. It can be used to describe the vacuum space-
time around a spherically symmetric celestial body. The Kerr metric 
in Boyer–Lindquist coordinates can be expressed as follows:

𝑑𝑠2 = −
Δ𝐾

Σ
(
𝑑𝑡− 𝑎𝑠𝑖𝑛2𝜃𝑑𝜙

)2 + Σ
Δ𝐾

+Σ𝑑𝜃2 + 𝑠𝑖𝑛2𝜃

Σ
[
(𝑟2 + 𝑎2)𝑑𝜙− 𝑎𝑑𝑡

]2
,

(2)

where Σ = 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃, Δ𝐾 = 𝑟2 − 2𝑀𝑟 + 𝑎2.
The parameters 𝑀 , 𝐽 , and 𝑎, denote the constant mass, angular 

momentum, and rotation parameters, which are defined as 𝑎 = 𝐽∕𝑐𝑚, 
respectively.

3. Ellipsoid orthogonal coordinate transformations

To derive static axisymmetric solutions, one may start from a 
Minkowski spacetime, expressed in Cartesian form as

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (3)

We apply the following ellipsoid coordinate transformations to 
Eq. (3):

𝑥 → (𝑟2 + 𝑎2)1∕2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙,

𝑦 → (𝑟2 + 𝑎2)1∕2𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,

𝑧 → 𝑟𝑐𝑜𝑠𝜃,

𝑡 → 𝑡.

(4)
2

Here, 𝑎 is the coordinate-transformation parameter. The metric (3)
under the new coordinate system becomes

𝑑𝑠2 = −𝑑𝑡2 + Σ
𝑟2 + 𝑎2

𝑑𝑟2 + Σ𝑑𝜃2 +
(
𝑟2 + 𝑎2

)
𝑠𝑖𝑛2𝜃𝑑𝜙2, (5)

where Σ = 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃.
According to our previous research [14, 15], metric (5) describes an 

empty ellipsoid spacetime and can be rewritten in the following orthog-
onal form

𝑑𝑠2 = − 𝑟2 + 𝑎2

Σ
(
𝑑𝑡− 𝑎𝑠𝑖𝑛2𝜃𝑑𝜙

)2 + Σ
𝑟2 + 𝑎2

𝑑𝑟2 + Σ𝑑𝜃2

+ 𝑠𝑖𝑛2𝜃

Σ
[
(𝑟2 + 𝑎2)𝑑𝜙− 𝑎𝑑𝑡

]2
. (6)

4. Derivation of an axisymmetric static solution: Kerr metric

To derive the Kerr metric, we may use the following ellipsoid or-
thogonal ansatz:

𝑑𝑠2 = −𝑓 (𝑟)
Σ

(
𝑑𝑡− 𝑎𝑠𝑖𝑛2𝜃𝑑𝜙

)2 + Σ
𝑔(𝑟)

𝑑𝑟2 + Σ𝑑𝜃2

+ 𝑠𝑖𝑛2𝜃

Σ
[
(𝑟2 + 𝑎2)𝑑𝜙− 𝑎𝑑𝑡

]2
. (7)

Here, 𝑓 and 𝑔 are functions of 𝑟, and 𝑎 is constant. Then the Kerr metric 
can be obtained directly from the ellipsoid symmetry. The metric tensor 
from the proposed ansatz (7) is given by

𝑔𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎝

− 𝑓 (𝑟)−𝑎2𝑠𝑖𝑛2𝜃

Σ 0 0
(
𝑓 (𝑟)−𝑟2−𝑎2

)
𝑎𝑠𝑖𝑛2𝜃

Σ
0 Σ

𝑔(𝑟) 0 0
0 0 Σ 0(

𝑓 (𝑟)−𝑟2−𝑎2
)
𝑎𝑠𝑖𝑛2𝜃

Σ 0 0
[
(𝑟2+𝑎2)2−𝑓 (𝑟)𝑎2𝑠𝑖𝑛2𝜃

]
𝑠𝑖𝑛2𝜃

Σ

⎞⎟⎟⎟⎟⎟⎠
. (8)

Since the field equations are ten second-order partial differential 
equations with high nonlinearity, it is still too complicated to directly 
calculate the curvature tensor through two variables. Therefore, we may 
use energy conservation to cut a variable. Introducing energy parameter 
𝐸 and setting 𝜃 = 0, we have

𝐸 = 𝑓

Σ
�̇�. (9)

Lagrangian

𝐿 = 𝑓

Σ
�̇�2 − Σ

𝑔
�̇�2 (10)

By substituting square of Eq. (9) into Eq. (10), and removing �̇�2, we 
obtain

𝐿 =𝑓

Σ

(
𝐸2Σ2

𝑓 2

)
− Σ

𝑔
�̇�2

=𝐸2Σ
𝑓

− Σ
𝑔

�̇�2.

(11)

Shift item

�̇�2 = 𝑔

Σ

(
Σ
𝑓

𝐸2 −𝐿

)
(12)

When the photon moves along the r direction, since it has no mass, 
�̈� = 0, 𝐿 = 0. We take the partial differential of (12) and obtain

2�̇��̈� =
̇(
𝑔

𝑓

)
𝐸2 = 0. (13)

Therefore 𝑔∕𝑓 = constant. Let 𝑓 = 𝑔; here, there is only one un-
known variable 𝑓 (𝑟) left. We may now try to solve the Einstein field 
equations which are given by

𝐺𝑎𝑏 = 𝑅𝑎𝑏 −
1

𝑔𝑎𝑏𝑅 = 8𝜋𝑇𝑎𝑏. (14)

2
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For this purpose, we need to calculate the Christoffel symbols and 
the Ricci curvature tensor. The calculation methods are as follows

Γ𝛼
𝜇𝜈

= 1
2

𝑔𝛼𝛽
(
𝜕𝜇𝑔𝜈𝛽 + 𝜕𝜈𝑔𝛽𝜇 − 𝜕𝛽𝑔𝜇𝜈

)
, (15)

𝑅𝛼𝛽 = 𝑅
𝜇

𝛼𝜇𝛽
= 𝜕𝜌Γ

𝜌

𝛽𝛼
− 𝜕𝛽Γ𝜌

𝜌𝛼
+ Γ𝜌

𝜌𝜆
Γ𝜆

𝛽𝛼
− Γ𝜌

𝛽𝜆
Γ𝜆

𝜌𝛼
. (16)

The non-zero terms of the Ricci tensors are given by

𝑅𝑡𝑡 =
1

2Σ3𝑓 2

{
Σ𝑓 3𝑓 ′′ + 2𝑓 2[−𝑟𝑓 ′(𝑎2𝑠𝑖𝑛2𝜃 + 𝑓 )

+ 𝑓 2 − 2𝑓𝑎2𝑐𝑜𝑠2𝜃 + 𝑎2𝑠𝑖𝑛2𝜃(𝑟2 − 𝑎2)
]}

, (17)

𝑅𝑟𝑟 =
1

2Σ𝑓 4

[
−𝑓 3Σ𝑓 ′′ + 2𝑓 3(𝑎2𝑐𝑜𝑠2𝜃 + 𝑎2 + 𝑓 ′𝑟− 𝑓 )

]
, (18)

𝑅𝜃𝜃 =
−𝑓 ′𝑟+ 𝑟2 − 𝑎2 + 𝑓

Σ
, (19)

𝑅𝜙𝜙 = −1
2Σ3𝑓 2 {−𝑎2𝑓 3(−𝑠𝑖𝑛2𝜃Σ𝑓 ′′ − 2𝑓 2((𝑎2𝑠𝑖𝑛2𝜃𝑓 + (𝑟2 + 𝑎2)2)𝑟𝑓 ′

− 𝑎2𝑠𝑖𝑛2𝜃𝑓 2 + (−𝑎4𝑐𝑜𝑠4𝜃 − 2𝑎2𝑟2 − 𝑟4)𝑓 + (𝑎2 − 𝑟2)(𝑟2 + 𝑎2)2},
(20)

𝑅𝑡𝜙 = 𝑅𝜙𝑡 =
𝑎𝑠𝑖𝑛2𝜃

2Σ3𝑓 2 {Σ𝑓 3𝑓 ′′ − 2𝑓 2[𝑟(𝑟2 + 𝑎2 + 𝑓 )𝑓 ′ − 𝑓 2

+ (𝑎2𝑐𝑜𝑠2𝜃 − 𝑟2)𝑓 + 𝑎4 − 𝑟4
]
}. (21)

There are second-order differential terms of 𝑓 and trigonometric 
functions. Since there is only one variable left, we may use 𝑅𝜃𝜃 = 0 to 
obtain the simplest first-order partial differential equation (22),

−𝑓 ′𝑟+ 𝑟2 − 𝑎2 + 𝑓 = 0. (22)

Equation (22) is solved by

𝑓 (𝑟) = 𝑟2 +𝐶1𝑟+ 𝑎2. (23)

Note that the Kerr metric is asymptotically flat, which means that 
𝑓 (𝑟)∕Σ will approach the Schwarzschild metric 1 − 2𝑀∕𝑟 at larger 𝑟. 
Therefore, in equation (23), 𝐶1 is a mass function, that can be chosen 
as −2𝑀 . Finally, we obtain the Kerr metric via an ellipsoid coordinate 
transformation and an orthogonal metric ansatz:

𝑑𝑠2 = − 𝑟2 − 2𝑀𝑟+ 𝑎2

𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃

(
𝑑𝑡− 𝑎𝑠𝑖𝑛2𝜃𝑑𝜙

)2 + 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃

𝑟2 − 2𝑀𝑟+ 𝑎2

+(𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃)𝑑𝜃2 + 𝑠𝑖𝑛2𝜃

𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃

[
(𝑟2 + 𝑎2)𝑑𝜙− 𝑎𝑑𝑡

]2
.

(24)

5. Generalization to Vaidya–Kerr black hole

To obtain a radiating Kerr black hole, the following coordinate trans-
formations can be performed on the Kerr metric (24):

𝑑𝑡 =𝑑𝑢′ + 𝑟2 + 𝑎2

Δ𝐾

𝑑𝑟′,

𝑑𝜙 =𝑑𝜙′ + 𝑎

Δ𝐾

𝑑𝑟′,
(25)

where Δ𝐾 = 𝑟2 − 2𝑀𝑟 + 𝑎2. Then we give the Kerr metric in Eddington–
Finkelstein retarded coordinates (𝑢, 𝑟, 𝜃, 𝜙) as follows:

𝑑𝑠2 = −𝐺𝑑𝑢2 − 2𝑑𝑢𝑑𝑟− 2𝑎𝑠𝑖𝑛2𝜃(1 −𝐺)𝑑𝑢𝑑𝜙

+ 2𝑎𝑠𝑖𝑛2𝜃𝑑𝑟𝑑𝜙+Σ𝑑𝜃2

+ 𝑠𝑖𝑛2𝜃
[
Σ− 𝑎2𝑠𝑖𝑛2𝜃(𝐺 − 2)

]
𝑑𝜙2.

(26)

Here 𝐺 = 1 − 2𝑀𝑟

Σ . We introduce a nonstatic mass 𝑚(𝑢) to the Kerr 
spacetime and then obtain the Vaidya–Kerr metric as follows:

𝑑𝑠2 = − �̄�𝑑𝑢2 − 2𝑑𝑢𝑑𝑟− 2𝑎𝑠𝑖𝑛2𝜃(1 − �̄�)𝑑𝑢𝑑𝜙

+ 2𝑎𝑠𝑖𝑛2𝜃𝑑𝑟𝑑𝜙+Σ𝑑𝜃2

+ 𝑠𝑖𝑛2𝜃
[
Σ− 𝑎2𝑠𝑖𝑛2𝜃(�̄� − 2)

]
𝑑𝜙2.

(27)
3

Here, �̄� = 1 − 2𝑚(𝑢)𝑟
Σ , and the delta function becomes Δ𝑉 𝐾 = 𝑟2 −

2𝑚(𝑢)𝑟 + 𝑎2. Now, after generalization, the covariant components of the 
metric tensor are expressed as matrix 𝑔𝑎𝑏

𝑔𝑎𝑏 =

⎛⎜⎜⎜⎜⎝

−�̄� −1 0 −𝑎𝑠𝑖𝑛2𝜃(1 − �̄�)
−1 0 0 𝑎𝑠𝑖𝑛2𝜃

0 0 Σ 0
−𝑎𝑠𝑖𝑛2𝜃(1 − �̄�) 𝑎𝑠𝑖𝑛2𝜃 0 𝑠𝑖𝑛2𝜃

[
Σ− 𝑎2𝑠𝑖𝑛2𝜃(�̄� − 2)

]
⎞⎟⎟⎟⎟⎠
. (28)

This completes the radiating Kerr metric via ellipsoid coordinate 
transformation. Next we will discuss the physical properties of this met-
ric (27).

6. Physical properties of the Vaidya–Kerr metric

6.1. Singularity

By considering the 𝑔𝑢𝑢 component of the metric (27), it is clear that 
there is a coordinate singularity at Σ = 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃 = 0, that is: 𝑟 = 0
and 𝜃 = 𝜋∕2. To detect whether this is actually a curvature singularity 
exists in spacetime, we calculate the Ricci tensors 𝑅𝑎𝑏 and list only the 
non-zero terms as follows:

𝑅𝑢𝑢 =
−𝑎2𝑟𝑠𝑖𝑛2𝜃Σ�̈�− 2�̇�(𝑎4𝑐𝑜𝑠4𝜃 − 𝑎4𝑐𝑜𝑠2𝜃 + 𝑎2𝑟2 + 𝑟4)

Σ3 , (29)

𝑅𝑢𝜙 = 𝑅𝜙𝑢 =
[
𝑎2𝑟𝑠𝑖𝑛2𝜃Σ�̈�+ �̇�(𝑎4𝑐𝑜𝑠4𝜃 − 2𝑎4𝑐𝑜𝑠2𝜃 + 2𝑎2𝑟2 + 3𝑟4)

]
𝑎𝑠𝑖𝑛2𝜃

Σ3 ,

(30)

𝑅𝑢𝜃 = 𝑅𝜃𝑢 =
−2�̇�𝑟𝑎2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

Σ2 , (31)

𝑅𝜃𝜙 = 𝑅𝜙𝜃 =
2�̇�𝑟𝑎3𝑐𝑜𝑠𝜃 sin3 𝜃

Σ2 , (32)

𝑅𝜙𝜙 =
[
−𝑎2𝑟𝑠𝑖𝑛2𝜃Σ�̈�+ 2�̇�(𝑎4𝑐𝑜𝑠4𝜃 − 𝑎2𝑟2 − 2𝑟4)

]
𝑎2𝑠𝑖𝑛4𝜃

Σ3 . (33)

The Ricci scalar is 𝑅 = 𝑔𝑎𝑏 𝑅𝑎𝑏, the Ricci invariant is 𝑅 = 𝑅𝑎𝑏 𝑅𝑎𝑏, and 
the Kretschmann invariant is 𝐾 = 𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑 (where 𝑅𝑎𝑏𝑐𝑑 is the Rie-
mann tensor). For metric (27), they read
Ricci scalar 𝑅 = 0,
Ricci invariant 𝑅 = 0,
Kretschmann invariant

𝐾 = 48𝑚(𝑢)2(−𝑎6𝑐𝑜𝑠6𝜃 + 15𝑎4𝑟2𝑐𝑜𝑠4𝜃 − 15𝑎2𝑟4𝑐𝑜𝑠2𝜃 + 𝑟6)
Σ6 . (34)

Now we see that for the radiating rotating black hole, Σ = 0 is a scalar 
polynomial singularity, which is given by 𝑟 = 0 and 𝜃 = 𝜋∕2. This set of 
points denotes a ring in the equatorial plane with a radius of 𝑎, similar 
to a stationary Kerr black hole. When 𝑚(𝑢) = 0, the metric (27) reduces 
to flat Minkowski spacetime. The Riemann tensor is identically zero: 
𝑅𝑎𝑏𝑐𝑑 = 0.

6.2. Event horizon

To solve the event horizon from delta function, we have

Δ𝑉 𝐾 = 𝑟2 + 𝑎2 − 2𝑚(𝑢)𝑟. (35)

Let Δ𝑉 𝐾 = (𝑟 − 𝑟+)(𝑟 − 𝑟−) = 0, we obtain the two roots of equation (35)
as:

𝑟± = 𝑚(𝑢) ±
√

𝑚(𝑢)2 − 𝑎2. (36)

Thus, on the surface 𝑟 = 𝑟+ and 𝑟 = 𝑟−, where Δ𝑉 𝐾 = 0, and these sur-
faces are event horizons. In Kerr metric (24) using Boyer–Lindquist 
coordinates, 𝑟 = 𝑟+, and 𝑟 = 𝑟−, where Δ𝐾 = 0 are event horizons and 
the coordinate singularity. For rotating black holes, this equation phys-
ically means that the rotation parameter, 𝑎, has a limitation of 𝑚(𝑢). 
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Therefore, 0 ≤ 𝑎

𝑚(𝑢) ≤ 1. To describe the spin of a black hole, a dimen-

sionless spin parameter 𝑎∗ is introduced, and defined as 𝑎

𝑚(𝑢) [22]. If all 
constants are restored, then we have

𝑎∗ = 𝑎

𝑚(𝑢)
=
(

𝐽

𝑐𝑚(𝑢)

)(
𝐺𝑚(𝑢)

𝑐2

)−1
= 𝐽𝑐

𝐺𝑚(𝑢)2
. (37)

The range of 𝑎∗ is 0 ≤ 𝑎∗ ≤ 1. Then, we rewrite the radius of the outer 
event horizon as

𝑟+ = 𝐺𝑚(𝑢)
𝑐2

(
1 +

√
1 − 𝑎∗2

)
. (38)

6.3. Ergosphere

In Vaidya spacetime (1) the horizon is also the surface where 𝑔𝑢𝑢

change sign, in Vaidya–Kerr spacetime (27) these surfaces do not coin-
cide. We have that

𝑔𝑢𝑢 =− 1 + 2𝑚(𝑢)𝑟
Σ

= − 1
Σ
(
𝑟2 − 2𝑚(𝑢)𝑟+ 𝑎2𝑐𝑜𝑠2𝜃

)
=− 1

Σ
(𝑟− 𝑟𝑠+)(𝑟− 𝑟𝑠−) = 0.

(39)

We obtain the two roots of equation (39) as:

𝑟𝑠± =𝑚(𝑢) ±
√

𝑚(𝑢)2 − 𝑎2𝑐𝑜𝑠2𝜃

=𝐺𝑚(𝑢)
𝑐2

(
1 ±

√
1 − 𝑎∗2𝑐𝑜𝑠2𝜃

)
.

(40)

Therefore, the region, i.e. 𝑟+ < 𝑟 < 𝑟𝑠+, is called “ergoregion”, and its 
outer boundary 𝑟 = 𝑟𝑠+ is called “ergosphere”. The ergosphere touches 
the event horizon at the axisymmetric pole, where 𝜃 = 0, and 𝜃 = 𝜋.

6.4. Frame dragging and ZAMO

Let us consider an observer falls into the rotating black hole with 
zero angular momentum. Such an observer is named ZAMO, which 
stands for “zero angular momentum observer”. For the radiating Kerr 
metric (27), the trajectory of the ZAMO has a non-zero angular velocity 
given by

Ω=−
𝑔𝑢𝜙

𝑔𝜙𝜙

= 2𝑚(𝑢)𝑎𝑟

(𝑟2 + 𝑎2)2 − 𝑎2Δ𝑉 𝐾𝑠𝑖𝑛2𝜃
. (41)

At 𝑟 = 𝑟+, Δ𝑉 𝐾 = 0, the angular velocity at the event horizon is given by

Ω𝐻 ≡ 2𝑚(𝑢)𝑎𝑟+

(𝑟2 + 𝑎2)2
= 𝑎

2𝑚(𝑢)𝑟+
= 𝑎

𝑟2+ + 𝑎2
. (42)

Notice that in equation (41)

(𝑟2 + 𝑎2)2 > 𝑎2𝑠𝑖𝑛2𝜃(𝑟2 + 𝑎2 − 2𝑚(𝑢)𝑟). (43)

Therefore, we always have Ω∕(𝑚(𝑢)𝑎) > 0: the angular velocity of the 
ZAMO has the same sign as the angular velocity 𝑚(𝑢)𝑎 of the black hole, 
namely, the motion of ZAMO is co-rotating with the black hole. In other 
words, the ZAMO is dragged by the gravitational field of the black hole, 
acquiring an angular velocity co-rotating with the black hole. This is 
called frame-dragging, which is predicted by Einstein’s general relativity 
and the predicted frame-dragging effect around a planet with the mass 
and size of our Earth, as measured by the Gravity Probe B gyroscopes, 
is very small [23].

7. Energy-momentum tensor

According to the definition of Einstein’s field equations (14), the 
Einstein tensor is proportional to the energy-momentum tensor (EMT). 
Applying 𝑔𝑎𝑏 to Einstein’s field equations, we obtain

𝑔𝑎𝑏
(
𝑅𝑎𝑏 −

1
2

𝑔𝑎𝑏𝑅

)
= 8𝜋𝑔𝑎𝑏𝑇𝑎𝑏,

𝑅− 1
2
(4𝑅) = 8𝜋𝑇 ,

𝑅 = −8𝜋𝑇 .

(44)
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Where 𝑅 denotes the Ricci scalar. In metric (27), we have 𝑅 = 0. There-
fore, 𝑇 = 0. Using the above results, we can easily check that this 
EMT satisfies energy conservation condition ▽𝑏𝑇

𝑎𝑏 = 0. Applying 𝑔𝑎𝑏

to ▽𝑏𝑇
𝑎𝑏, we have

𝑔𝑎𝑏(▽𝑏𝑇
𝑎𝑏) =▽𝑏(𝑔𝑎𝑏𝑇

𝑎𝑏) =▽𝑏𝑇 = 0. (45)

Therefore, metric (27) is an exact solution of Einstein’s field equations, 
and the Einstein tensor can be expressed as follows:

𝐺𝜇𝜈 = 8𝜋(𝑇 𝑁
𝜇𝜈

+ 𝑇 𝑀
𝜇𝜈

), (46)

where 𝑇 𝑁
𝜇𝜈

is the EMT of the null radiation, and 𝑇 𝑀
𝜇𝜈

represents the 
EMT of the matter field. When we discuss the static solutions in gen-
eral relativity, the source is the matter field. In this study we discuss 
the non-static solutions; therefore, the source is the null radiation and 
the matter field. The EMT of this metric (27) is given by

𝑇𝑢𝑢 =
−𝑎2𝑟𝑠𝑖𝑛2𝜃Σ�̈�− 2�̇�(𝑎4𝑐𝑜𝑠4𝜃 − 𝑎4𝑐𝑜𝑠2𝜃 + 𝑎2𝑟2 + 𝑟4)

8𝜋Σ3 , (47)

𝑇𝑢𝜙 = 𝑇𝜙𝑢 =
[
𝑎2𝑟𝑠𝑖𝑛2𝜃Σ�̈�+ �̇�(𝑎4𝑐𝑜𝑠4𝜃 − 2𝑎4𝑐𝑜𝑠2𝜃 + 2𝑎2𝑟2 + 3𝑟4)

]
𝑎𝑠𝑖𝑛2𝜃

8𝜋Σ3 ,

(48)

𝑇𝑢𝜃 = 𝑇𝜃𝑢 =
−2�̇�𝑟𝑎2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

8𝜋Σ2 , (49)

𝑇𝜃𝜙 = 𝑇𝜙𝜃 =
2�̇�𝑟𝑎3𝑐𝑜𝑠𝜃 sin3 𝜃

8𝜋Σ2 , (50)

𝑇𝜙𝜙 =
[
−𝑎2𝑟𝑠𝑖𝑛2𝜃Σ�̈�+ 2�̇�(𝑎4𝑐𝑜𝑠4𝜃 − 𝑎2𝑟2 − 2𝑟4)

]
𝑎2𝑠𝑖𝑛4𝜃

8𝜋Σ3 . (51)

When the rotation parameter 𝑎 vanishes, metric (27) recoveries to the 
Vaidya metric, and the EMT returns to 𝑇 𝑁

𝜇𝜈
= 𝑇𝑢𝑢 = − �̇�

4𝜋𝑟2
. According 

to Petrov classification [24], the Vaidya–Kerr black-hole metric (27) is 
classified as Petrov type II with a twisting, shear-free, null congruence, 
just as is a Kerr black hole. However, it is classified as Petrov type D for 
a Kerr black hole.

8. Results and discussion

When mass function 𝑚(𝑢) is replaced by a constant 𝑀 , the Vaidya–
Kerr metric (27) returns to the Kerr metric in Eddington–Finkelstein 
coordinates. According to Erbin [25], we may turn it to Boyer–Lindquist 
coordinates (𝑡, 𝑟, 𝜃, 𝜙) through appropriate transformations. Therefore, 
metric (27) is a nonstationary generalization of the Kerr metric. Fur-
thermore, when rotation parameter 𝑎 vanishes, metric (27) recovers to 
a Vaidya retarded metric (1), so metric (27) is also an axisymmetric 
generalization of the Vaidya metric. Next, we will discuss the surface 
area of event horizon, surface gravity and Hawking radiation of the 
Vaidya–Kerr black hole from a thermodynamic point of view. Note that 
we treat the rotation parameter 𝑎 as a constant, not a variable.

8.1. Surface area of event horizon and black-hole entropy

The event-horizon surface area of a Kerr black hole is given by the 
following equation:

𝐴 =

2𝜋

∫
0

𝑑𝜃

𝜋

∫
0

𝑑𝜙𝑠𝑖𝑛𝜙(𝑟2+ + 𝑎2) = 4𝜋(𝑟2+ + 𝑎2). (52)

By substituting equation (38) into (52), we obtain the formula for the 
horizon surface area of the Vaidya–Kerr black hole as follows:

𝐴 = 8𝜋

(
𝐺𝑚(𝑢)

𝑐2

)2 (
1 +

√
1 − 𝑎∗2

)
. (53)

The Bekenstein–Hawking formula [26, 27] shows that black-hole 
entropy is proportional to the event horizon’s surface area; thus, using 
this and equation (53), we obtain the following equation:
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Table 1

Physical parameters of Pluto, the sun and the M87 supermassive rotating black hole.

Physical parameters Pluto sun M87 black hole

𝑚: mass [kg] 1.30 × 1022 1.99 × 1030 1.29 × 1040

𝑅: radius [m] 1.74 × 106 6.95 × 108 3.70 × 1015

𝑟+: outer event horizon radius [m] 1.93 × 10−5 2.92 × 103 1.92 × 1013

𝐽 : angular momentum [kg⋅m2∕sec] 1.79 × 1029 1.92 × 1041 3.34 × 1061

𝑎: rotation parameter [m] 4.58 × 10−2 3.22 × 102 8.63 × 1012

𝑎∗: spin parameter 8.00 × 10−1 2.18 × 10−1 9.00 × 10−1

𝑇𝐻 : Hawking temperature [K] 9.42 6.08 × 10−8 8.78 × 10−18
𝑆𝐵𝐻 =
𝑘𝑏𝑐

3𝐴

4𝐺ℏ
=

2𝜋𝐺𝑘𝑏

ℏ𝑐
𝑚(𝑢)2

(
1 +

√
1 − 𝑎∗2

)
, (54)

where 𝑘𝑏 denotes the Stefan–Boltzmann constant.
The mass of a radiating rotating black hole decreases with time, 

leading to a decrease in the surface area and entropy. This violates 
the second law of thermodynamics. Bekenstein proposed a generalized 
second law of thermodynamics to solve this problem [28], by which the 
entropy of a system never decreases with time, i.e.,

𝛿𝑆 =
(
𝑆 +𝑆𝐵𝐻

) ≥ 0. (55)

According to the generalized second law of thermodynamics, the black-
hole entropy, 𝑆𝐵𝐻 , can be transformed into other forms, and the total 
entropy of the universe never decreases with time.

8.2. Surface gravity and Hawking radiation

On the killing horizon, the surface gravity of the Kerr metric ex-
pressed as the inner and outer horizon radii [29] is

𝜅 =
𝑟+ − 𝑟−

2(𝑟2+ + 𝑎2)
. (56)

By substituting equation (36) into (56), the surface gravity of Vaidya–
Kerr metric (27) on the Killing horizon is given by

𝜅 =
√

𝑚(𝑢)2 − 𝑎2

2𝑚(𝑢)
(
𝑚(𝑢) +

√
𝑚(𝑢)2 − 𝑎2

) . (57)

Hawking proved that the thermal radiation emitted by black holes has 
an absolute temperature, i.e., the Hawking temperature, 𝑇𝐻 . Hawking 
temperature is well known to be proportional to the surface gravity on 
the horizon [30]; therefore, the Hawking temperature of the Vaidya–
Kerr black hole can be obtained as follows:

𝑇𝐻 = 𝜅

2𝜋
=

√
𝑚(𝑢)2 − 𝑎2

4𝜋𝑚(𝑢)
(
𝑚(𝑢) +

√
𝑚(𝑢)2 − 𝑎2

) . (58)

By restoring all constants, we have

𝑇𝐻 = ℏ𝑐3

4𝜋𝑘𝑏𝐺𝑚(𝑢)

√
1 − 𝑎∗2(

1 +
√
1 − 𝑎∗2

) . (59)

From equation (59), 𝑇𝐻 is zero when the black hole has maximum spin 
𝑎∗ = 1. The Hawking temperature cannot be absolute zero according to 
the third law of thermodynamics [28]. When 𝑎∗ = 0, we recover the 
Hawking temperature of the Vaidya metric as

𝑇𝐻 = ℏ𝑐3

8𝜋𝑘𝑏𝐺𝑚(𝑢)
. (60)

Note that the ratio of 𝑇𝐻 under maximum rotation (𝑎∗ = 1) to 𝑇𝐻 that 
under minimum rotation (𝑎∗ = 0) is only 1/2. Thus, 𝑎∗ does not have 
a major role in determining 𝑇𝐻 . The mass function 𝑚(𝑢), which is 
inversely proportional to Hawking radiation, plays the major role in 
determining 𝑇𝐻 . To estimate the value of 𝑇𝐻 , we choose black holes 
with the angular momentum and the mass of Pluto ([31]) and the Sun 
([32]), as well as the supermassive black hole in the core of the M87 
5

galaxy newly investigated by the Event Horizon Telescope. This is the 
first direct astronomical observation of black-hole horizon data [33]. 
We choose the Pluto-mass black hole as a testing object because accord-
ing to Hawking’s prediction, primordial black holes in the early universe 
did not form from stellar gravitational collapse, so their masses can be 
far below stellar mass [34].

Table 1 lists the calculated results using equations (38) and (60). 
We obtain the 𝑇𝐻 values of the Pluto-mass, sun-mass, and M87 black 
holes as 9.42 K, 6.08 × 10−8 K, and 8.78 × 10−18 K, respectively. The 
𝑇𝐻 values of the sun and the M87 black hole are much smaller than 
the 3-K cosmic microwave background (CMB) radiation; therefore, they 
cannot be measured astronomically. Only the 𝑇𝐻 of a rotating Pluto-
mass black hole is slightly greater than the CMB. We therefore need 
tools with sufficient resolution to detect subtle fluctuations in the CMB.

9. Conclusion

This research derives a radiating rotating black-hole solution via 
ellipsoid coordinate transformation. This radiating Kerr metric, the 
Vaidya–Kerr metric, is an axisymmetric generalization of the Vaidya 
metric. The study results demonstrate that the energy momentum ten-
sor has the form of a Petrov type II fluid. The inner and outer horizon 
radii, the ergosphere radii, as well as the angular velocity at the event 
horizon are obtained, and the event horizon’s surface area, black-hole 
entropy, surface gravity, and Hawking radiation are derived and ex-
pressed by the mass function and spin parameter. Results indicated that 
the Hawking temperature of a rotating solar-mass black hole is much 
greater than that of the M87 supermassive rotating black hole. How-
ever, both values are considerably too small to be measured at present. 
Only the rotating Pluto-mass black hole, which might theoretically have 
been formed in the early universe, has a Hawking temperature slightly 
greater than 3-K CMB radiation, which would allow its value to be po-
tentially detected by high-resolution tools. The derivation method in 
this study is concise and can be further generalized to other non-static 
solutions by replacing the mass function with non-static ones, which 
deserve further study in the future.
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