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Abstract

Background: microRNAs (miRNAs) are non-coding RNAs that alter the stability and translation efficiency of
messenger RNAs. lonizing radiation (IR) induces rapid and selective changes in miRNA expression. Depletion of the
miRNA processing enzymes Dicer or Ago2 reduces the capacity of cells to survive radiation exposure. Elucidation of
critical radiation-regulated miRNAs and their target proteins offers a promising approach to identify new targets to
increase the therapeutic effectiveness of the radiation treatment of cancer.

Principal Findings: Expression of miR-525-3p is rapidly up-regulated in response to radiation. Manipulation of
miR-525-3p expression in irradiated cells confirmed that this miRNA mediates the radiosensitivity of a variety of non-
transformed (RPE, HUVEC) and tumor-derived cell lines (HeLa, U2-Os, EA.hy926) cell lines. Thus, anti-miR-525-3p
mediated inhibition of the increase in miR-525-3p elevated radiosensitivity, while overexpression of precursor
miR-525-3p conferred radioresistance. Using a proteomic approach we identified 21 radiation-regulated proteins, of
which 14 were found to be candidate targets for miR-525-3p-mediated repression. Luciferase reporter assays
confirmed that nine of these were indeed direct targets of miR-525-3p repression. Individual analysis of these direct
targets by RNAi-mediated knockdown established that ARRB1, TXN1 and HSPA9 are essential miR-525-3p-
dependent regulators of radiation sensitivity.

Conclusion: The transient up-regulation of miR-525-3p, and the resultant repression of its direct targets ARRB1,
TXN1 and HSPAS9, is required for cell survival following irradiation. The conserved function of miR-525-3p across
several cell types makes this microRNA pathway a promising target for modifying the efficacy of radiotherapy.
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Introduction

MicroRNAs (miRNAs) are short, highly conserved, non-
coding RNA molecules that selectively regulate protein
production through translational repression and cleavage of
target mRNAs [1-3]. Data from the ENCODE genome project
suggest that more than 1000 miRNA transcription units are
present in the human genome; yielding an even greater
number of miRNAs through RNA editing [4]. Each miRNA
species has the potential to regulate more than 100 different
mRNA targets, and it has been suggested that the expression
of approximately 60% [5] of all protein-coding genes is
controlled by miRNAs [6,7]. Multiple stress response pathways,
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such as cell death [8-10], DNA damage processing [11] and
drug sensitivity [12], may be regulated by miRNAs.

Changes occur in miRNA expression after irradiation of
normal human cells [13-15], cancer cell lines [16,17], tumor
samples [18] as well as in mice [19]. Comparisons between
these studies reveal a large compendium of radiation-regulated
miRNAs, with surprisingly little overlap between different
tissues. This suggests that the set of radiation responsive
miRNAs is highly specific for cell type, radiation dose and time
point [20]. Modulation of specific miRNAs reveals they can
have both pro- and anti-survival functions following exposure to
radiation. Wu et al. found that miR-148b expression was
increased after radiation and enhanced the radiosensitivity of
Non-Hodgkin Lymphoma cells by promoting apoptosis [21].
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Similarly, the overexpression of let-7a decreased K-Ras
expression and radiosensitized lung cancer cells [22], whilst
increased miR-521 expression sensitized prostate cancer cells
to radiation treatment through the regulation of the DNA repair
protein CSA [16]. On the other hand, silencing of miR-21
increased radiosensitivity through inhibition of the PI3K/AKT
pathway and autophagy in malignant glioma cells [23]. A radio-
protective role was also shown for miR-125a and miR-189 in
primary endothelial cells; their inhibition lead to a reduction in
clonogenic survival [15].

Endothelial cells are highly sensitive to ionizing radiation
[24,25], and damage to the normal tissue vasculature due to
endothelial cell killing is a factor in limiting the doses that may
be applied in radiation therapy. We have previously
investigated miRNA expression changes during the radiation
response of endothelial cells [13]. We have shown that
inhibition of the transient increase in miR-525-3p expression
that follows exposure to radiation reduced cellular survival by
increasing apoptosis in both the endothelial cell line EA.hy926
and primary endothelial HUVEC cells. Several predicted
miR-525-3p target MRNAs have functions that may be critical
to the radiation response [13]. However, it is necessary to
validate such candidate miRNA targets experimentally in order
to understand the function of the miRNA regulated networks in
the radiation response [26,27].

We now show that miR-525-3p is involved in the radiation
response of several different cell types. Using a global
proteome profiling approach we have identified 21 candidate
proteins that are regulated by miR-525-3p after radiation. Of
these, we determined that 9 were direct targets of miR-525-3p
translational repression. Subsequent analysis identified the
miR-525-3p targets arrestin beta 1 (ARRB1), thioredoxin
(TXN1) and 70 kDa heat shock protein 9 (HSPA9) to be
essential regulators of cellular radiation sensitivity.

Material and Methods

Cell culture, transfection and irradiation

The human endothelial-like cell line EA.hy926 [28] was
maintained in Dulbecco’s Modified Eagle’s Medium (D-MEM
medium, PAA Laboratories, Austria) supplemented with 10%
fetal calf serum (FCS), 5 mM hypoxanthine, 20 yM 4-
aminopteroic acid, and 0.8 mM thymidine (HAT selection
supplements, PAA Laboratories, Austria). The human cervical
cancer cell line HeLa was maintained in RPMI medium 1640
(PAA Laboratories, Austria) supplemented with 10% FCS [29].
The hTERT1-immortalized human RPE cell line (Clontech
Laboratories, France) was grown in D-MEM / F12 medium
(Gibco BRL Life Technologies, Germany) containing 2.5 mM L-
glutamine, 10% FCS, 0.25% sodium bicarbonate [30]. The
human osteosarcoma cell line U2-OS (HTB-96, American Type
Culture Collection (ATCC)) was grown in D-MEM medium
(Invitrogen, Germany) supplemented with 2% L-glutamine
(Invitrogen, Germany) and 10% FCS. All cell lines were grown
at 37 °C in a humified atmosphere of 5% CO,. Mycoplasma
contamination was ruled out by routine control testing using a
luminescence-based detection kit (MycoAlert, Lonza, USA).
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For transfection with small RNA molecules 2 x 10° cells were
seeded onto 60 mm culture plates containing 3 ml D-MEM with
10% FCS and grown to 50-70% confluence. Twenty-four hours
later these cells were transfected with either miRNA inhibitor
(100 pmol anti-miR-525-3p, Exiqon, Denmark), a non-specific
scrambled miRNA (100 pmol anti-miR-control, Exiqgon; AllStar
negative control, Qiagen, Germany), precursor(pre)-
miR-525-3p (100 pmol pre-miR-525-3p, Exiqon, Denmark) or
specific siRNA oligonucleotides (Qiagen, Germany) using
Lipofecatmine™  RNAIMAX transfection reagent (Life
Technologies, Germany) according to the manufacturer's
instructions. lonizing radiation was delivered to exponentially
growing cells at the indicated doses using a Caesium-137
gamma source (HWM-D 2000, Waelischmdller, Germany)
operated at a dose rate of 0.49 Gy/min.

Analysis of miRNA expression

For the quantification of miR-525-3p expression total cellular
RNA was extracted 0 h, 2 h, 4 h, 6 h, 24 h and 48 h after
irradiation using the mirVana™ miRNA Isolation Kit (Ambion
Inc., USA). The quality and concentration of RNA was
determined with an Infinite200 NanoQuant (TECAN,
Switzerland). Hsa-miR-525-3p expression was quantified using
the TagMan Single MicroRNA Assay (Applied Biosystems,
USA) according to the manufacturer’s instructions. The level of
miRNA was calculated following the 2-22¢t method using the
small nucleolar housekeeping RNA (snoRNA) RNU44 as the
internal reference.

Proteomic analysis

To identify miRNA-regulated proteins EA.hy926 cells were
harvested by trypsinisation 12 h after irradiation in the
presence of either anti-miR-525-3p or a non-specific scrambled
miRNA. Two-dimensional gel-electrophoresis (2D-DIGE)
analysis was performed with three biological replicates for each
treatment. Cells were lysed in 4% SDS, 100 mM Tris HCI pH
7.6, 100 mM (0.1 M) DTT supplemented with EDTA-free
protease and phosphatase inhibitor cocktails (Roche
Diagnostics, Germany). The soluble proteins were precipitated
with the 2D Clean-Up Kit (GE Healthcare, Germany) and the
protein concentration was measured by the Bradford assay
using bovine serum albumin (Sigma-Aldrich, Germany) as
standard. Protein lysates were labeled with the cyanine dyes
(Cy3, Cy5 and Cy2; CyDye™ DIGE Fluor minimal dyes, GE
Healthcare, Germany) according to the manufacturer's
instructions. Rehydration of immobilized pH gradient strips (24
cm; pH 3-11 nonlinear range; GE Healthcare, Germany) was
performed with a mixture of the Cy-labeled samples in the dark
at room temperature for 16 h. Isoelectric focusing was
performed using immobilized pH gradients on an IPGphor3
apparatus (GE Healthcare; Germany) with the following
conditions: 12 h passive rehydration, rapid 300 V for 3 h,
gradients from 300 to 1000 V for 4 h, 1000 to 3500 V for 2 h 30
min, 3500 to 10000 V for 3 h 30 min and finally rapid 10000 V
for 5 h corresponding a total voltage of 82 kVh. Equilibration
and running of the 12% polyacrylamide gel was performed as
described previously [31].
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Identification of deregulated proteins was done by the
computer program Decyder as previously described [32,33].
Protein spots were considered to be differentially regulated if a
statistically significant difference in intensity was achieved at
the 95% confidence level, and if the standardized average spot
volume ratio exceeded 1.3-fold and p < 0.05.

Destaining of the silver stained 2D spots and in-gel trypsin
digestion was performed prior to mass spectroscopy, as
described previously [31]. Mass spectra of abundant protein
spots were acquired using MALDI-TOF/TOF mass
spectrometry (Proteomics Analyzer 4700, Applied Biosystems,
USA). For less abundant spots the identification was made by
LC-MS/MS linear quadrupole ion trap-Orbitrap mass
spectrometry (LTQ Orbitrap XL, Thermo Fisher, Germany). The
configurations and the experimental set up of both machines
were as described previously [31]. The GPS Explorer ™
Software (version 3.6, Applied Biosystems, USA) was used for
MALDI-TOF/TOF spectra analyses. Scaffold (version 3_00_07,
Proteome Software Inc., USA) was used to validate MS/MS-
based peptide and protein identifications obtained by LC-
MS/MS. Carbamidomethylation was set as the fixed
modification and oxidized methionine as the variable
modification. The acquired MS/MS spectra were searched with
Protein pilot software 3.0 against the Swiss-Prot database
(updated August 2010; 519348 sequences, 183273162
residues) using Mascot 2.3.02 with the following parameters:
As taxon we chose human and as enzyme trypsin allowing up
to one missed cleavage. Peptide identifications were accepted
if they were established with a greater than 80 % probability as
specified by the Peptide Prophet algorithm. Proteins were
identified if they showed a greater than 95.0% probability and
contained at least 2 unique identified peptides.

Immunoblot analysis

Immunoblotting was performed for the validation of
deregulation of selected proteins. EA.hy926 cells were lysed in
RIPA buffer (150 mM NaCl, 10 mM Tris-HCI, pH 7.2, 0.1%
SDS, 1% Triton X-100, 1% Na-desoxycholate, 5 mM EDTA)
supplemented with 1 mM protease inhibitors (sodium
orthovanadate and phenylmethanesulfonyl fluoride) (Roche,
Germany) for 20 min on ice. Western blot analysis was
accomplished according to standard procedures using
enhanced  chemiluminescence  detection (Amersham,
Germany). For detection of the proteins primary antibodies
directed against beta-arrestin-1 (#15361-1-AP, Proteintech,
USA), thioredoxin 1 (#2285, Cell Signaling, USA),
heterogeneous nuclear ribonucleoprotein K (#4675, Cell
Signaling, USA) and the 70kDa heat shock protein 9 (#2816,
Cell Signaling, USA) were used. Protein loading was monitored
by the detection of actin (#sc1616, Santa Cruz, USA) or PCNA
(#sc25280, Santa Cruz, USA). HRP (horse radish peroxidase)-
conjugated anti-mouse, anti-goat or anti-rabbit antibodies
(Santa Cruz, USA) were used to reveal binding of primary
antibodies. Quantification of digitized images was performed
using TotalLabTL 100 software (TotalLab, UK).
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In silico identification of potential miR-525-3p target
sequences

The FUZZNUC program (European Molecular Biology Open
Software Suite, EMBOSS, www.emboss.org) [34] was used to
search for complete complementarities to the 8mer, 7mer-A1
and 7mer-m8 seed sequences of miR-525-3p. Putative target
genes were predicted using five different software tools,

namely TargetScan (www.targetscan.org), RNA22 (http://
cbesrv.watson.ibm.com/rna22.html), MicroCosm (http://

www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/),
miRWalk (http://www.umm.uni-heidelberg.de/apps/zmf/
mirwalk/) and DIANA-microT (http://diana.cslab.ece.ntua.gr/
microT/).

Luciferase reporter assay to identify mRNAs directly
targeted by miR-525-3p

Candidate gene cDNA sequences were obtained by PCR
amplification of reverse transcribed EA.hy926 cell MRNA using
the primer sets indicated in Table 1. These PCR fragments
were directly cloned into the pmirGLO Dual-Luciferase miRNA
Target Expression Vector (Promega, USA) using the Pmel and
Sbfl restriction sites. The vector uses dual-luciferase
technology, with Firefly luciferase (luc2) being the reporter
used to quantify miRNA regulation of translation and Renilla
luciferase (hRluc-neo) being the non-regulated internal control.
The identity and integrity of all constructs were confirmed by
DNA sequencing.

Transfection of reporter constructs into endothelial EA.hy926
cells was performed using Lipofectamine 2000 (Invitrogen,
Germany) in duplicate 96-well plates. Five nmol of either pre-
miR-525-3p, anti-miR-525-3p or the unspecific control
oligonucleotides were transfected along with the 0.2 pg
pmirGlo Dual-Luciferase construct harboring cDNA of putative
miR-525-3p regulated targets. Twenty-four hours post
transfection, cells were lysed with passive lysis buffer and the
activities of Firefly luciferase and Renilla luciferase were
measured using the dual Luciferase Assay System (Promega,
USA). The ratio of Firefly luciferase and Renilla luciferase was
expressed as normalized luciferase activity to compensate
differences in transfection efficiencies. The relative luciferase
activity was determined as the ratio between normalized
luciferase activities of cells transfected with pre-miR-525-3p
and control miRNA.

Cell viability and apoptosis assay
Cell proliferation and apoptosis were examined as described
previously [13].

Statistical analysis

Data are presented in figures as mean + s.e.m.. Significance
of n-fold changes were calculated by using the one sample t-
test. Unpaired, two-tailed t-test was used to compare two
independent groups. For all statistical analysis, Prism for
Windows, version 5.0 (GraphPad Software, USA) was used,
and p < 0.05 was considered statistically significant. For the
analysis of proteome data (Table 1 and 2) statistics were
performed in DeCyder software using t-test. Proteins were
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Table 1. List of regulated proteins in anti-miR-525-3p transfected cells 12 h after irradiation compared to non-irradiated cells.

n-fold change(control n-fold change(anti-miR

spot identified protein (gene) accession number transfected) transfected)
up-regulated
17 Heat shock protein 70 kDa protein 9 (mortalin) (HSPA9) P38646 unchanged 1.3*
18 Thioredoxin-dependent peroxide reductase, mitochondrial (PRDX3) P30048 unchanged 1.3*
21 Heterogeneous nuclear ribonucleoprotein K (hnRNP K) P61978 unchanged 1.3*
22 Heat shock 60kDa protein 1 (chaperonin) (HSPD1) P10809 unchanged 1.4*
24 Esterase D/formylglutathione hydrolase, isoform CRA (ESD) B3KT77 unchanged 1.4*
9 Chaperonin containing TCP1, subunit 2 (CCT2) B5BTY7 unchanged 1.4*
15 Histidine triad nucleotide binding protein 1 (HINT1) P49773 unchanged 1.4*
10 Arrestin, beta 1 (ARRB1) P49407 unchanged 1.5%
29 Glutamate-cystein ligase (GCLM) P48507 unchanged 1.5
20 Proteasome activator complex subunit 2 (PSME2) P61289 unchanged 1.5*
Proteasome (prosome, macropain) 26S subunit, non-ATPase, regulatory subunit 10
19 075832 unchanged 1.6*
(PSMD10)
14 Peptidyl-prolyl cis-trans isomerase (PPIG) A8K486 unchanged 1.7
16 Thioredoxin-1 (TXN1) P10599 unchanged 1.8*
28 Tumor protein, translationally-controlled 1 (TPT1) Q5WO0H4 unchanged 1.8*
down-regulated
26 Heterogeneous nuclear ribonucleoprotein A2/B1 (HNRPA2B1) P22626 unchanged -1.3*
11 Acidic (leucine-rich) nuclear phosphoprotein 32 family, member B (ANP32B) Q53F35 unchanged -1.4%
12 Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A (ANP32A) P39687 unchanged -1.4*
X-ray repair complementing defective repair in Chinese hamster cells 6 (XRCC6/
27 B1AHC9 unchanged -1.4*
KU70)
13 Histone H2A B2R5B3 unchanged -1.5*
23 Protein SCO1 homolog, mitochondrial precursor (SCOD1) 075880 unchanged -1.9*
25  Thymidylate synthase (TYMS) ABK9A5 unchanged -2.4*

In control transfected cells these proteins remain unchanged after irradiation. p-values indicate significant differences between irradiated and non-irradiated samples

(*p<0.05, **p<0.01).
doi: 10.1371/journal.pone.0077484.t001

considered significantly deregulated at 95% significance level
(t-test, p<0.05) using three biological replicates. False
Discovery Rate (FDR) correction was applied in the statistics.

Results

Up-regulation of miR-525-3p is essential for the survival
of multiple cell types after radiation

The expression of miR-525-3p in EA.hy926 cells showed a
rapid three-fold increase, peaking between 2 h and 4 h after
2.5 Gy irradiation. At 12 h post-irradiation the expression
remained 2-fold higher than that of sham-irradiated cells, finally
returning to basal levels at 24 h (Figure 1A, left). The impact of
this transient up-regulation of miR-525-3p on the survival of
EA.hy926 cells was studied by manipulating the cellular
miR-525-3p content. Transfection of anti-miR-525-3p prior to
irradiation reduced mature miR-525-3p levels in both non-
irradiated and irradiated cells to less than 20% of their
respective control values (Figure S1). Conversely, transfection
of precursor miR-525-3p dramatically increased miR-525-3p
abundance (Figure S1). The inhibition of miR-525-3p by
transfection of the anti-miRNA reduced the post-radiation cell
survival, while overexpression of miR-525-3p by transfection of
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precursor increased cell survival 5 d after irradiation (Figure
1A, right).

Radiation-induced up-regulation of miR-525-3p was also
seen in the epithelial tumor cell line HelLa (Figure 1B, left), the
retinal pigment epithelium-derived cell line RPE (Figure 1C,
left) and the osteosarcoma cell line U2-OS (Figure 1D, left). In
each of these cell models the same effects of miR-525-3p
manipulation on survival as seen in EA.hy926 cells were
confirmed (Figure 1B-D, right). These results suggest that
repression of the translation of miR-525-3p targets following
radiation exposure contributes to the survival of multiple cell
types.

Identification of putative targets of the radiation
regulated miR-525-3p

The analysis of the miR-525-3p-dependent changes in the
proteome of irradiated EA.hy926 cells was determined 12h
after irradiation in the presence of anti-miR-525-3p (Figure 2).
Fourteen candidate miR-525-3p repressed proteins were
identified by 2D-DIGE (Tab 1). These proteins were all found to
be increased after irradiation in anti-miR-525-3p treated cells,
relative to the irradiated miR-525-3p competent (control
miRNA-treated) cells. Seven additional proteins showed a
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Table 2. List of regulated proteins in anti-miR-525-3p and in
control transfected cells 12 h after irradiation compared to
non-irradiated cells.

n-fold change n-fold change

accession  (control (anti-miR

spotidentified protein (gene) number transfected) transfected)
Obg-like ATPase 1

1 QONTKS 1.3* 1.4
(OLA1)

2 Peroxiredoxin-1 (PRDX1) Q06830 1.4** 1.6*
Prefoldin subunit 2

3 Q9UHV9 -3.1** -3.1%
(PFDN2)

4 Destrin (DSTN) B7Z9M9 -2.7** -2.9*

5  Annexin A5 (ANXA5) E7ENQS 1.3* 1.4*
Ribosomal protein S3A

6 A8K4WO0 1.3* 1.6*
(RPS3A)

7  Cofilin-1 (CFL1) B4E112 -2.2¢ -2.8*
C-type lectin domain

8  family 11 member A Q9Y240 -1.5* -1.5*

(CLEC11A)
p-values indicate significant differences between irradiated and non-irradiated
samples (*p<0.05, **p<0.01).
doi: 10.1371/journal.pone.0077484.t002

down-regulation in irradiated cells in the presence of anti-
miR-525-3p, suggesting an indirect regulation by the miRNA.
The blockade of radiation-induced miRNA-525-3p expression
had no effect on four proteins that were increased after
irradiation and on a further four proteins that were decreased
after radiation (Tab 2).

We performed luciferase reporter assays to establish the
nature of the regulation of miR-525-3p on the expression of
each of the 14 candidate repressed proteins. As miRNA-
binding sites can be distributed over the whole mRNA
transcript, rather than restricted to the 3’-UTR [35-37], we
analyzed the complete ORF and 3°-UTR regions of each
candidate transcript. The empty reporter plasmid (pmirGlo) and
a reporter construct containing the cDNA sequence for a non-
regulated protein (ANXA5) that lacks any putative sequence
homology with miR-525-3p were used as controls. We could
confirm the direct repression of reporter protein expression for
8 of the 14 candidate miR-525-3p targets in pre-miR-525-3p
transfected cells (Figure 3A), establishing these as direct
miR-525-3p targets. Presumably the remaining 6 proteins that
did not show miR-525-3p reporter repression are repressed by
miR-525-3p in a weak or indirect manner. Each of the eight
reporter constructs showing repression by pre-miR-525-3p also
showed down-regulation in response to an exposure to 2.5 Gy
irradiation (Figure 3B). Importantly the transfection of anti-
miR-525-3p was able to block the radiation-induced reduction
of luciferase reporter activity for each of the 8 miR-525-3p
regulated proteins (Figure 3B).

Target prediction algorithms were able to identify a stringent
seed match in three of the eight directly-regulated proteins
(PPIG1, ESD1 and ARRBH1), with the latter containing two
matches (Figure 3C). One further target (PRDX3) include a
less stringent miRNA :: mRNA binding motif, whilst stringent
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binding regions were not predicted in the remaining four direct
targets (HINT1, HSPA9, TXN1, hnRNP K) using the available
homology search algorithms. Further none of the indirect
targets contained stringent seed sequence matches.

Functional annotation of the miR-525-3p targets

To gain insights into the biological roles of the miR-525-3p
target proteins in the response to radiation we performed Gene
Ontology (GO) analysis. The differentially regulated proteins

were uploaded into the UniProt knowledge database
(www.uniprot.org) and the Database for Annotation,
Visualization and Integrated Discovery (DAVID, http://

david.abcc.ncifcrf.gov/). All 14 miR-525-3p target proteins are
represented by the four GO functional annotations cell death/
apoptosis, homeostasis/cell  growth, post-translational
modification and reduction/small metabolites (Tab 2).

INGENUITY Pathway Analysis (IPA) (www.ingenuity.com)
was used to obtain information about potential pathways and
interactions amongst the set of differentially regulated proteins
[38]. The most significant IPA network was “Cell Death and
Survival, Free Radical Scavenging, Cancer’ with a highly
significant score of 26 representing 11 of the 14 target proteins
(Figure 4A). Some of the prominent nodal molecules located at
the heart of this putative network are RELA (a component of
the NF-kB complex), ERK1/2 (isoform 1 and 2 of extracellular
signal-related kinases) and tumor suppressor protein TP53.
The IPA performed on the eight direct targets identified the
most significant network (score 14) as “Cell Death and
Survival, Organismal Injury and Abnormalities, Respiratory
Disease” and included six of the eight direct target proteins
(Figure 4B). Prominent nodal molecules in this network are
RELA, the transcription factor Myc and Bcl2 (B-cell lymphoma
protein 2).

The miR-525-3p direct target genes ARRB1, TXN1,
HSPA?9 influence radiation sensitivity

Four of the directly regulated proteins (ARRB1, TXNf1,
HSPA9 and hnRNP K) have possible involvement in the
radiation response [39-44]. Immunoblotting confirmed the
results of the original proteomic screening by showing
radiation-induced up-regulation of ARRB1, TXN1, HSPA9 and
hnRNP K 12 h after 2.5 Gy exposures in the presence of anti-
miR-525-3p (Figure 5). In the absence of anti-miR-525-3p each
of these proteins remained unchanged after irradiation,
confirming that the radiation-induced increase in expression of
miR-525-3p is necessary to prevent increases in these proteins
during the radiation response.

To test whether ARRB1, HSPA9, TXN1 and hnRNP K
actually influence cellular radiation sensitivity each of these
proteins was down-regulated by RNA interference (Figure 6A).
Knockdown of ARRB1 and TXN1 increased survival of
EA.hy926 cells after 2.5 Gy compared to irradiated scrambled
siRNA-transfected control cells (Figure 6C). Unexpectedly, the
knockdown of HSPA9 decreased cellular survival, whilst
depletion of hnRNP K had no impact (Fig 6BD). Quantification
of sub G1 apoptotic cell numbers demonstrated a significant
reduction of apoptosis after irradiation in ARRB1- and TXN1-
knockdown cells. Depletion of HSPA9 increased the level of
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Figure 1. Expression of miR-525-3p is up-regulated after ionizing radiation and modulation of the miR-525-3p expression
effects cell survival. (A) left miR-525-3p expression was examined 0, 2, 4, 8, 12, 24 and 48 h after 2.5 Gy IR in the endothelial cell
line EA.hy926 by quantitative real time PCR. right modulation of miR-525-3p results in a change in endothelial cell proliferation after
IR. Endothelial cells were transfected with pre-miR-525-3p, miR-525-3p-inhibitor or scrambled control RNA, reseeded and the cell
proliferation assay was performed 5d after IR. (B) HelLa cells, (C) RPE cells, (D) U2-OS cells. The mean + s.e.m. of three
independent experiments is shown. * mark significant differences between samples harvested at the 0 h timepoint compared with
the indicated time point (* p<0.05, ** p< 0.01).

doi: 10.1371/journal.pone.0077484.g001
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Figure 2. 2D-DIGE gel showing the proteome of EA.hy926 cells at pH range of 3-11. Differentially regulated spots in control
transfected cells (0 Gy) versus anti-miR-525-3p treated cells (2.5 Gy) are indicated with corresponding spot numbers.

doi: 10.1371/journal.pone.0077484.9g002

radiation-induced apoptosis, while reduction of hnRNP K had
no impact (Figure 6E). Taken together, these results
demonstrate that cell survival after irradiation is dependent on
the coordinated miR-525-3p-mediated translational repression
of both anti-survival (ARRB1 and TXN1) and pro-survival
(HSPAY9) targets.

Discussion

lonizing radiation induces changes in miRNA expression in a
range of cell types. The subsequent cellular responses can
often be reiterated through the manipulation of a single miRNA
species. However, the mechanisms by which the miRNA
changes modulate radiation sensitivity remain largely unknown
with an almost complete lack of evidence identifying the protein
targets that are actually regulated by radiation-responsive
miRNAs [15,21-23].

Recently, we demonstrated that a radiation-induced increase
in miR-525-3p is sufficient to limit the extent of cell death and
apoptosis in human endothelial cells [13]. In the current study
we now show that radiation-induced up-regulation of
miR-525-3p occurs in a variety of other human cell lines, where
it is essential for sustaining cell survival. The consistency of
this function across multiple cell types suggests a conserved
and important role of miR-525-3p in regulating the radiation
response. This is in sharp contrast to the more restricted, cell

PLOS ONE | www.plosone.org

type specific, roles suggested for other radiation-regulated
miRNAs [8,45,46].

Our proteomic analysis identified 14 proteins that were
repressed by the radiation-induced increase in miR-525-3p.
The overall changes in protein expression (from -2.4 to 1.8)
were subtle, in accordance with the suggested role of miRNAs
as fine tuners of protein abundance [47]. Gene ontology
annotation assigned the majority of the deregulated proteins to
the biological process of cell death and apoptosis. This is in
accordance with previous data describing radiation-induced
apoptosis as one of the most important radiation-response
pathways in endothelial cells [25,48,49]. It is also in agreement
to our earlier experimental data showing an impaired increase
in apoptosis induction in cells where the radiation-induced
increase in miR-525-3p was blocked [13]. A number of the
most important nodal molecules predicted by Ingenuity
Pathway Analysis of the deregulated proteins are implicated in
radiation-induced apoptosis. For example RELA, encodes the
p65 protein that is a component of the NFKB complex activated
by radiation to influence apoptosis and DNA repair [50]. The
nodal molecule p53 is stabilized after radiation exposure and
can induce the expression of multiple genes involved in
apoptosis [51,52]. ERK-mediated signals and Bcl-2 both inhibit
radiation-induced changes in the mitochondrial membrane and
the subsequent cell death in lymphocytic leukemia cells [53].
Bcl-2 is an important protein in apoptosis [54] whose
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Figure 3. Verification of direct miR-525-3p targets using luciferase assays. (A) Relative luciferase activities after a co-
transfection of luciferase constructs and control miRNA or pre-miR-525-3p in EA.hy926 cells. The mean + s.e.m. of three
independent experiments is shown. * indicate significant differences to pmiRGlo transfected cells (* p<0.05, ** p< 0.01). (B) Relative
luciferase activities after co-transfection of luciferase constructs and anti-miR-525-3p or control miRNA followed by an irradiation
with 2.5 Gy. The Firefly luciferase values were normalized for transfection with Renilla luciferase activity. Relative luciferase
activities represent the ratio between normalized luciferase activities of pre-miR-525-3p and control miRNA transfected cells. Grey
dashed bars represent sequences with perfect seed sequence matches to miR-525-3p. The mean + s.e.m. of three independent
experiments is shown. * indicate significant differences between control and anti-miR-525-3p transfected cells (* p<0.05, ** p< 0.01).
(C) Complementarity of miR-525-3p sequence to the three target genes bearing perfect seed matches. The seed sequence is
shown in red. Vertical lines indicate identity between miRNA sequence and corresponding gene sequence.

doi: 10.1371/journal.pone.0077484.g003
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Figure 4. Ingenuity pathway analysis of proteins deregulated 12 h after irradiation in the absence of miR-525-3p. (A) IPA of
direct and indirect miR-525-3p target proteins. The most significant network "Cell Death and Survival, Free Radical Scavenging,
Cancer” (score 26) is shown. (B) IPA of direct miR-525-3p target proteins. The most significant network “Cell Death and Survival,
Organismal Injury and Abnormalities, Respiratory Disease” (score 14) is shown. Molecules in grey represent miR-525-3p target
proteins. direct interaction, ------ indirect interaction.

doi: 10.1371/journal.pone.0077484.9g004
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suppression renders cells more susceptible to radiation-
induced apoptosis [55]. The nodal molecule MYC has a role in
sensitizing cells to apoptosis, with inhibition of MYC by
antisense  oligonucleotides  reducing  radiation-induced
apoptosis in a small-cell lung cancer cell line [56].

Eight of the 14 proteins predicted to be repressed by the
radiation up-regulation of miR-525-3p were confirmed by
luciferase reporter assays to be direct targets. In the absence

of miR-525-3p these 8 reporter constructs were all
overexpressed in irradiated cells confirming that the
miR-525-3p :: target interactions occur under physiological

conditions. miRNA target interaction is mainly based on a
stringent base pairing between the miRNA seed sequence and
the target mRNA [57]. Three of the direct targets in this study
contained such stringent seed sequence matches (ESD, PPIG,
ARRB1). The remaining five direct targets showed only weak
predicted seed sequence interactions (HINT1, HSPA9, TXN1,
hnRNP K, PRDX3). Such experimentally verified targets with
poor seed sequences matches are not unusual [37,58]. It is
suggested that additional 3'- pairing and pairing in centered
regions of mMiRNAs could compensate for weaker seed
sequence binding [59]. Also, a recently discovered alternative
binding mechanism involving a multistep binding process with

PLOS ONE | www.plosone.org

10

induced conformational changes in the miRNA :: mRNA duplex
may support binding between miRNA and targets with poor
seed sequence matches [60].

Four of the eight direct miR-525-3p targets, ARRBH1,
hnRNPK, HSPA9 and TXN1 have functions in the cellular
stress response. As none of these proteins were significantly
increased in miR-525-3p competent cells in response to
irradiation we can assume that increases in their expression
levels are suppressed during the radiation response by the
action of the increase in miR-525-3p. It is possible that low-
level changes in their regulation may occur below the detection
limit (1.3 fold change for proteins) of our proteomic analysis.
Individual analysis of the changes of these four targets after
irradiation confirmed that ARRB1 and TXN1 act as negative
regulators of survival. Cell survival increased after irradiation
when these proteins were knocked down by siRNA. In contrast,
HSPA9 has a direct pro-survival function, with HSPA9-depleted
cells being more radiosensitive than controls. Integrating these
results with the overall effect of miR-525-3p on radiation
sensitivity we suggest that the up-regulation of miR-525-3p
acts to fine tune the balance between both, the negative and
the positive regulators of survival.
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Figure 6. Radiation response after depletion of ARRB1, TXN1, hnRNP. K and HSPA9. (A) siRNA-mediated knockdown of
ARRB1 and TXN1. EA.hy926 cells were transfected with siARRB1 or with an unspecific control (siControl). ARRB1 and TXN1 were
quantified 24 h after transfection by western blot. (B) siRNA-mediated knockdown of hnRNP K and HSPA9. (C) Proliferation activity
after IR in ARRB1 and TXN1 knockdown cells. Depletion of ARRB1 and TXN1 results in increased radiation resistance after
irradiation up to 7.5 Gy. Endothelial EAhy926 cells were transfected with siARRB1, siTXN1 or scrambled control RNA (siControl),
reseeded and the cell proliferation assay was performed 5d after ionizing radiation. The mean + s.e.m. of two independent
experiments is shown. (D) Proliferation activity after IR in hnRNP K and HSPA9 knockdown cells. Depletion of hnRNP K did not
change the proliferative activity and depletion of HSPA9 led to decreased proliferative activity. The mean + s.e.m. of two
independent experiments is shown. (E) Apoptosis induction in knockdown cells after IR. Apoptosis induction was quantified by sub-
G1 analysis 48 h after IR. Depletion of ARRB1 and TXN1 led to decreased apoptosis, while depletion of HSPA9 increased
apoptosis. * indicate significant difference to the respective siControl transfected cells (** p < 0.05, * p < 0.01). The mean + s.e.m. of
three independent experiments is shown.

doi: 10.1371/journal.pone.0077484.9g006
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The repressed protein ARRB1 indirectly regulates
transcription factors involved in DNA damage processing and
apoptosis in chronic stress responses through binding to
regulators such as IkBa and MDM2 [61]. Suppression of
ARRB1 by RNA interference increases NF-kB activity in HeLa
cells and, conversely, its overexpression reduces NF-kB
activity [62]. Further, ARRB1 suppresses p53 levels leading to
an accumulation of unrepaired DNA damage [41]. The
radiation-induced increase of ARRB1 in cells with repressed
miR-525-3p may serve to reduce NF-kB activity leading to
increased radiosensitivity and apoptosis.

TXN1 is a cellular redox enzyme that controls the activation
of a number of transcription factors participating in the radiation
response [63,64]. Byun et al. have shown that increased TXN1
expression is associated with elevated radiation sensitivity
through increased apoptosis and senescence [39]. We propose
similar consequences for the radiation-induced up-regulation of
TXN1 in miR-525-3p blocked cells. Indeed, the siRNA-
mediated knockdown of TXN1 led to increased survival and
reduced apoptosis after irradiation (Figure 6C).

HSPA9 has been shown to inactivate the transcriptional and
apoptotic functions of p53 [65]. Furthermore it attenuates DNA
damage after radiation exposure by maintaining the expression
of TOPIl alpha [43]. Consistent with this function the
knockdown of HSPA9 decreased survival and increased
apoptosis after irradiation (Fig 6BC).

In summary we present evidence that miR-525-3p is an
important regulator of survival in normal and in tumor-derived
cell lines, and that the direct targets ARRB1, HSPA9 and TXN1
each have a direct effect on survival after irradiation. Based on
the fact that three different prediction algorithms predict more
than 150 miR-525-3p targets (www.miRwalk.de), we propose
that ARRB1, TXN1 and HSPA9 offer only the first glimpse of a
network of miR-525-3p targets that impact survival. Our results
are consistent with the assumption that the effect of
miR-525-3p on radiation sensitivity is the result of effects on
multiple targets with both pro- or anti-survival activities. More
general the conserved function of miR-525-3p across several
cell types makes this microRNA a promising target for
therapeutic intervention in tumor radiotherapy.
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