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Abstract: Cell therapy usually accompanies cell detachment as an essential process in cell culture
and cell collection for transplantation. However, conventional methods based on enzymatic cell
detachment can cause cellular damage including cell death and senescence during the routine cell
detaching step due to an inappropriate handing. The aim of the current study is to apply the pH-
responsive degradation property of poly (amino ester) to the surface of a cell culture dish to provide a
simple and easy alternative method for cell detachment that can substitute the conventional enzyme
treatment. In this study, poly (amino ester) was modified (cell detachable polymer, CDP) to show
appropriate pH-responsive degradation under mild acidic conditions (0.05% (w/v) CDP, pH 6.0)
to detach stem cells (human adipose tissue-derived stem cells (hADSCs)) perfectly within a short
period (less than 10 min). Compared to conventional enzymatic cell detachment, hADSCs cultured
on and detached from a CDP-coated cell culture dish showed similar cellular properties. We further
performed in vivo experiments on a mouse hindlimb ischemia model (1.0 × 106 cells per limb). The
in vivo results indicated that hADSCs retrieved from normal cell culture dishes and CDP-coated cell
culture dishes showed analogous therapeutic angiogenesis. In conclusion, CDP could be applied to
a pH-responsive cell detachment system as a simple and easy nonenzymatic method for stem cell
culture and various cell therapies.

Keywords: angiogenesis; enzyme free cell detachment; hindlimb ischemia; human adipose tissue-
derived stem cells; pH-sensitive polymer

1. Introduction

Stem cell detachment from cell culture dishes is an essential step in the cell culture
process and cell collection for stem cell therapies [1,2]. Despite the prominent therapeutic
results of stem cell therapies, conventional cell detaching methods based on enzymatic cell
dissociation still contains intrinsic disadvantages such as stem cell death and senescence
caused by an inappropriate handing [3,4]. Therefore, detaching stem cells from the cell
culture dish without cellular damage remains a basic and prime issue to be solved. Various
trials including light- [5], temperature- [6,7], and pH-responsive [8–10] strategies for de-
taching stem cells from the cell culture dish without using enzymes have been reported.
However, previous reports usually require complicated steps, tailored equipment, and
long operation time for stem cell detachment. Therefore, a simple and easy method that
can be suggested as an alternative method for enzymatic cell dissociation is required.
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A pH-sensitive polymer such as poly (amino ester) (PAE) is not only simple and
easy to utilize without special processes, but also has eminent biocompatibility [11]. Thus,
PAE has been reported as a transplantable synthetic material that can be utilized as an
enteric gene delivery system with a high gene delivery efficiency [12,13]. Additionally,
PAE has been reported to show rapid degradation under an acidic environment [14].
Based on the excellent pH-sensitive degradation and biocompatibility, we modified the
PAE and applied it as a nonenzymatic cell detaching polymer (CDP). In this study, we
modified the PAE with Michael addition polymerization as a cell detaching material that
can be coated on a normal cell culture dish (NCD) and degrade away by treating pH 6.0
phosphate-buffered saline (PBS). The segments utilized in the polymerization induced
polymer degradation based on the static electric repulsion under pH 6.0 conditions and
stability during the cell culture. We coated our CDP on NCDs and cultured human adipose
tissue-derived stem cells (hADSCs), to investigate whether our material can show similar
cellular properties compared to conventional enzymatic cell detachment systems using
trypsin-ethylene diamine tetra acetic acid (EDTA). Cellular properties such as cell adhesion,
viability, apoptotic activity, and angiogenic paracrine factor secretion before and after the
cell detachment based on CDP showed similar results compared to the trypsin-EDTA
method. Further in vivo experiments using a mouse hindlimb ischemia model also showed
similar therapeutic efficacy including angiogenesis, blood perfusion, limb salvage, and
hampered muscle degeneration in hADSCs retrieved from CDP-coated cell culture dishes
compared to those of trypsin-EDTA treatment (Figure 1).
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Figure 1. Schematic diagram depicting cell detachable polymer (CDP)-based stem cell detachment. Schematic describing
the preparation of human adipose tissue-derived stem cells (hADSCs) detached from normal cell culture dishes (NCD) with
trypsin treatment by digesting ECM and hADSCs cultured on and dissociated from CDP-coated culture dishes with pH 6.0
PBS treatment by dissolving CDP for ischemic disease treatment.



Materials 2021, 14, 491 3 of 13

2. Materials and Methods
2.1. Materials

Sodium chloride, sodium phosphate dibasic, sodium phosphate monobasic, potassium
chloride, 1,4-butanediol diacrylate (BD), and 3-amino-1-propanol (AP) were obtained
from Sigma (St. Louis, MO, USA) and used as received. Sodium hydroxide solutions
(NaOH), hydrochloric acid solutions (HCl), dichloromethane (DCM), and ethyl ether were
all purchased from Samchun (Seoul, Korea). All reagents were of analytical grade and used
without further purification.

2.2. CDP Synthesis and Characterization

The pH-sensitive cationic polymer CDP was synthesized using Michael polymeriza-
tion as the method referred before [15]. Briefly, the reaction mixing BD and AP in a molar
ratio of 1:1 was carried out at 100 ◦C for 5 h. The product, a viscous liquid, dissolved in
DCM and then precipitated in excess ethyl ether. The product was dried in vacuum for
2 days, and then the molecular structure and composition of the CDP were confirmed by
an 1H NMR spectrometer (Varian Unity Inova 500 NB instrument, Varian Co., Palo Alto,
CA, USA) operated at 500 MHz. DMSO (DMSO-d6) was used as solvent. The conversion
between monomer A, B, and CDP was confirmed by 1H NMR. In detail, the integrated area
of each peak in NMR is proportional to two parameters, which are the number of hydrogen
atoms on the functional group and repetends of the corresponding functional group. Thus,
NMR analysis in the mixture of products and reactants gave information about the mass
ratio of the particular components composed of the specific functional group [16]. The Mw
and its polydispersity index were measured by gel permeation chromatography (GPC)
using a PL aquagel-OH mixed-H column (Agilent, Santa Clara, CA, USA) and an Agilent
110 series system (Agilent, Santa Clara, CA, USA) with a refractive index detector (G1362A
RID) at a flow rate of 1.0 mL/min (eluent: THF: 35 ◦C). Poly (ethylene glycol) was used as
a standard. The pH-sensitivity (pKa) of the CDP was evaluated using acid–base titration.
Briefly, 50 mg CDP was dissolved in 50 mL distilled water and the pH of the solution was
adjusted to pH 3 by adding 1 N HCl to distilled water. The titration file was obtained by
recording pH changes facilitated by the stepwise addition of 10 µL 0.1 N NaOH. The pKa
value of CDP was calculated from the derivative of the titration curve [17].

2.3. Cell Culture

Human adipose tissue-derived stem cells (hADSCs) were purchased form Lonza
(Walkersville, MD, USA) and cultured in Dulbecco’s modified Eagle’s medium (DMEM:
Gibco BRL, Waltham, MA, USA) supplemented with 1% (v/v) penicillin (Gibco BRL,
Waltham, MA, USA), and 10% (v/v) fetal bovine serum (Gibco BRL, Waltham, MA, USA).
All experiments were performed on hADSCs with less than six passages.

2.4. CDP Coating on Cell Culture Dishes

CDP was dissolved in distilled water (pH 3.0) at 0.05% (w/v) at room temperature.
After dissolving the CDP, the pH was adjusted to 7.0 with NaOH and filtered for steriliza-
tion (0.22 µm filter, Corning Inc., New York, NY, USA). To coat the cell culture dishes, the
CDP solution was poured into the dishes (0.5 mL/well in 24-well, 1 mL/well in 6-well,
5 mL for 100 mm culture dishes, and 8 mL for 150 mm culture dishes) and dried on a
clean bench overnight without ultraviolet irradiation. The CDP-coated culture dishes were
then washed three times with PBS (Gibco BRL, Waltham, MA, USA) before their use in
cell culture.

2.5. Cells Culture on CDP-Coated Culture Dishes and Dissociation from CDP-Coated Culture
Dishes Using pH 6.0 PBS

hADSCs were seeded on CDP-coated or noncoated culture dishes. One day after
seeding, the cells were washed with PBS and then incubated with 10 mL of pH 6.0 PBS
(P0219, CUREBIO, Seoul, Korea) at 37 ◦C for 10 min. The number of detached hADSCs
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was counted using a hemocytometer. hADSCs detached from NCDs using trypsin-EDTA
(Gibco BRL, Waltham, MA, USA) were used as a control.

2.6. Phalloidin Staining

Cell adhesion was examined by phalloidin staining. hADSCs were seeded on a CDP-
coated or noncoated 24-well (1.5 × 104 cells/well). After one day, cells were fixed with
4% paraformaldehyde (Biosesang, Sungnam, Korea) in PBS for 10 min at room tempera-
ture. Cell re-adhesion was also examined by phalloidin staining. For the re-adhesion test,
1.5 × 104 cells that dissociated from CDP-coated culture dishes using pH 6.0 PBS or from
NCDs using trypsin-EDTA were re-seeded in 24-well culture dishes. Cells were fixed with
4% paraformaldehyde (Biosesang, Sungnam, Korea) in PBS for 10 min at room temper-
ature. For phalloidin staining, the fixed hADSCs were stained with TRITC-phalloidin
containing mounting medium (VECTASHIELD H-1600, Vector, Burlingame, CA, USA),
counter-stained with 4′,6-diamidino-2-phenylindole (DAPI, Vector, Burlingame, CA, USA),
and then examined using a confocal laser scanning microscope (ZEISS, Munich, Germany).

2.7. Cell Growth Rate

Cell growth rate was analyzed using cell counting kit-8 (CCK-8; Dojindo Molecular
Technologies, Inc., Kumamoto, Japan). For the cell growth rate assays, the hADSCs were
seeded on CDP-coated or noncoated culture dishes (24-well, 5 × 103 cells/well), and cell
growth rate was measured using the CCK-8 kit on days 1, 3, 5, and 7. At each time point,
culture medium with 10% (v/v) CCK-8 solution was added to each well, and the plates
were incubated for 3 h at 37 ◦C. Then, the absorbance of each well was measured at 450 nm
(Infinite F50, TECAN, Männedorf, Switzerland).

2.8. Live/Dead Assay

The cell viability of the hADSCs cultured on the CDP-coated culture dishes was
analyzed using FDA/EB staining. For this assay, the hADSCs were seeded on the CDP-
coated or noncoated culture dishes (24-well, 1.5× 104 cells/well), and the cells were treated
with fluorescein diacetate (FDA; Sigma, St. Louis, MO, USA) and ethidium bromide (EB;
Sigma, St. Louis, MO, USA) 24 h after seeding. The hADSCs were incubated in the FDA/EB
solution for 5 min at 37 ◦C and then washed twice with PBS according to the manufacturer’s
instructions. Dead cells were stained red owing to the nuclear permeability of EB, whereas
viable cells, capable of converting the nonfluorescent FDA into fluorescein, were stained
green. After staining, the samples were examined using a fluorescence microscope (Nikon
TE2000, Nikon, Tokyo, Japan).

2.9. In Vitro Quantitative Real-Time Polymerase Chain Reaction (qRT PCR) Analysis

The apoptotic activity of the hADSCs cultured on the CDP-coated culture dishes and
the apoptotic activity and angiogenic growth factor secretion of the hADSCs detached from
CDP with pH 6.0 PBS were evaluated by qRT-PCR. For qRT-PCR analysis, the hADSCs
were seeded on the CDP-coated or noncoated culture dishes (1 × 105 cells/100 mm culture
dishes). The expression of human BCL2 and BAX mRNA was evaluated to check the
anti- and pro-apoptotic activity of the hADSCs, respectively, whereas the expression of
human vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF2)
was used to detect angiogenic factor secretion in the hADSCs. qRT-PCR was performed
on a CFX connectTM real-time system (Bio-Rad Laboratories, Hercules, CA, USA) with
a SsoAdvancedTM Universal SYBR® Green Supermix (Bio-Rad Laboratories, Hercules,
CA, USA). The primer sequences are shown in Table 1. hADSCs cultured on NCDs or
trypsin-EDTA-treated hADSCs cultured on NCDs were used as the control.
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Table 1. Primers used for quantitative real-time (qRT)-PCR analyses.

Gene Primer

Human GAPDH
sense 5′-GTC GGA GTC AAC GGA TTT GG-3′

antisense 5′-GGG TGG AAT CAA TTG GAA CAT-3′

Human BCL2
sense 5′-CTT GAC AGA GGA TCA TGC TGT AC-3′

antisense 5′-GGA TGC TTT ATT TCA TGA GGC-3′

Human BAX
sense 5′-CAT GTT TTC TGA CGG CAA CTT C-3′

antisense 5′-AGG GCC TTG AGC ACC AGT TT-3′

Human VEGF
sense 5′-GAG GGC AGA ATC ATC ACG AAG T-3′

antisense 5′-CAC CAG GGT CTC GAT TGG AT-3′

Human FGF2
sense 5′-AGC GGC TGT ACT GCA AAA AC-3′

antisense 5′-GTA GCT TGA TGT GAG GGT CG-3′

Mouse β-actin sense 5′-GGC TGT ATT CCC CTC CAT CG-3′

antisense 5′-CCA GTT GGT AAC AAT GCC ATG T-3′

Mouse Pecam-1
sense 5′-CAA ACA GAA ACC CGT GGA GAT G-3′

antisense 5′-ACC GTA ATG GCT GTT GGC TTC-3′

Mouse Vcam-1
sense 5′-CTG GGA AGC TGG AAC GAA GT-3′

antisense 5′-GCC AAA CAC TTG ACC GTG AC-3′

2.10. Treatment of Hindlimb Ischemia

Hindlimb ischemia was induced in mix as previously described [18]. Four-week-old,
female athymic mice (20–25 g body weight, Orient Bio Inc., Sungnam, Korea) were anes-
thetized with an intraperitoneal injection of xylazine (10 mg/kg) and ketamine (100 mg/kg).
The femoral artery and its branches were ligated via skin incision using a 6–0 silk suture
(Ethicon, Somerville, NJ, USA), along with the external iliac artery and all upstream arteries.
The femoral artery was then excised from its proximal origin as a branch of the external iliac
artery to the distal point whereupon it bifurcates into the saphenous and popliteal arteries.
After arterial dissection, mice were randomly divided into three experimental groups
(n = 5 mice per group). Normal cell culture dish—cultured hADSCs (NCD, 1.0 × 106 cells
per limb) and CDP—coated culture dish-cultured hADSCs (CDP, 1.0 × 106 cells per limb)
were intramuscularly injected into the gracilis muscle of the medial thigh. The physiologi-
cal status of ischemic limbs was followed for 4 weeks after treatment. The no-treatment
group was used as a negative control. All animal experiments were carried out in accor-
dance with the guidelines of the Animal Welfare Act and the Guide for the Care and Use of
Laboratory Animals, following protocols approved by the Institutional Animal Care and
Use Committee (Sungkyunkwan University School of Medicine SKKUIACUC2020-06-11-1).
All mice used in the experiments were cared for under specific-pathogen-free conditions.

2.11. Laser Doppler Imaging Analysis and In Vivo qRT PCR Analysis

A laser Doppler perfusion imager (Moor Instruments, Devon, UK) was used for
serial noninvasive physiological evaluation of neovascularization. Mice were monitored
by serial scanning of surface blood flow in hindlimbs on days 0, 7, 14, 21, and 28 after
treatment. Digital color-coded images were scanned and analyzed to quantify blood
flow in ischemic regions from the knee joint to the toe. Mean values of perfusion were
subsequently calculated.

For qRT-PCR, total RNA was extracted from the retrieved ischemic limb tissue
(n = 4 per group). RNA was reverse-transcribed into cDNA. The expression of mouse
platelet endothelial cell adhesion molecule (Pecam-1) and vascular cell adhesion molecule
(Vcam) mRNA was evaluated by qRT-PCR. qRT-PCR was performed using a CFX connectTM

real-time system (Bio-Rad Laboratories, Hercules, CA, USA) with SsoAdvancedTM Uni-
versal SYBR® Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA). Each cycle
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consisted of the following times and temperatures: 95 ◦C for 10 s and 60 ◦C for 30 s. The
primer sequences are shown in Table 1.

2.12. Histology and Immunohistochemistry

Ischemic limb muscles were retrieved 28 days post-treatment. The tissues were fixed
with 4% paraformaldehyde (Biosesang) in PBS and embedded in an optimal cutting tem-
perature compound (O.C.T. compound, Tissue-Tek 4583; Sakura Finetek USA, Torrance,
CA, USA), frozen, and cut into 10 µm sections at −23 ◦C. After all the samples were
completely sectioned, ten slides were selected out of the beginning, middle, and end part
of each sample. Sections were stained with hematoxylin and eosin (H and E) and Masson’s
trichrome (MT) to examine muscle degeneration and tissue inflammation.

Sections were subjected to immunofluorescent staining by anti-CD31 (BioLegend,
San Diego, CA, USA) and anti-smooth muscle (SM) α-actin. Fluorescein isothiocyanate-
conjugated secondary antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA,
USA) were used to visualize the signals. The sections were counterstained with DAPI and
examined under a fluorescence microscope (Nikon TE2000, Tokyo, Japan). Five pictures were
randomly selected from each slide and fluorescent vessels were counted to quantify CD31
and SM α-actin positive vessels in ischemic regions. Fluorescent vessels were calculated as
vessel number per mm2.

2.13. Statistical Analysis

GraphPad Prism 7 software was used for all statistical analysis in this study. Triplicate
data were analyzed using one-way analysis of variance (ANOVA) with a Bonferroni test
in all the experiments. Comparisons between two independent samples were performed
using a two-tailed Student’s test. A p value of <0.05 was considered statistically significant.
Results are expressed as the mean ± standard deviation for all quantitative analyses.

3. Results
3.1. Polymer Synthesis and Characterization

The procedure for CDP synthesizing is illustrated in Figure 2a.
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CDP was synthesized by Michael-addition polymerization of monomer A and B.
The activated double bond in monomer A was the combined amine in compound B by
Michael-type step polymerization. The structure of the polymer was checked by 1H NMR,
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as shown in Figure 2b. Proton signals of the double bond (peaks a, b, and c in Figure 2b
monomer A) disappeared in CDP spectra (Figure 2b CDP), which demonstrated that the
monomer A substrate was totally consumed by this synthesis. In Figure 2b CDP, proton
signals at 2.65 (peak a), 2.35 (peak b), 4.0 (peak c), and 1.65 ppm (peak d) were assigned to
monomer A, and signals at 2.35 (peak e), 1.5 (peak f), and 3.4 ppm (peak g) were assigned to
monomer B. The signals for monomer A and B shown in the spectrum for CDP indicate that
polymerization occurred using monomer A and B without the use of other chemicals. From
the NMR analysis of the monomer-mixed CDP produced after the synthesis of monomer A
and B, we concluded that the conversion ratio reached 97.8%. The pKa, the point at which
CDP switched from hydrophobic to hydrophilic, was confirmed to be 6.3 (Figure 2c), and
the molecular weight of CDP was 7679 as measured by GPC (Figure 2d).

3.2. Analogous Cell Adhesion, Growth Rate, and Viability between hADSCs Cultured on NCDs
and CDP-Coated Culture Dishes

To evaluate whether the CDP coating affects the cell adhesion, hADSCs were seeded
and cultured on a dish coated with CDP, and the results were then compared with the
normal cell culture dishes (NCDs). Both the optical and fluorescent images showed that
the cells cultured on the CDP-coated culture dishes showed no abnormality in terms of cell
adhesion compared with the cell cultured on the NCDs (Figure 3a).
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The nuclei were stained with DAPI (blue). Scale bar = 100 µm. (b) Cell growth rate of the hADSCs
cultured on the NCDs and CDP evaluated by the CCK-8 assay. (c) Fluorescence images of NCD and
CDP-cultured hADSCs stained with FDA and EB on day 1. Green and orange-red colors indicate
viable and dead cells, respectively, scale bar = 100 µm. (d) Anti-apoptotic (BCL2) and pro-apoptotic
(BAX) gene expression of NCD and CDP-cultured hADSCs on day 1.

Phalloidin staining showing F-actin in the cells showed that the cytoskeleton in the
hADSCs cultured on the CDP-coated culture dishes was similar to that in the cells cultured
on the NCDs. Effects of CDP coating on the cell growth rate in hADSCs were also examined
using the CCK-8 assay, and the data are expressed as a percentage relative ratio to the cells
in NCDs at day 1 (Figure 3b). At 1, 3, 5, and 7 days after culturing the hADSCs on the
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CDP-coated culture dishes, the cell growth rate showed similar results when compared
with the NCDs group. In addition, cell viability was confirmed using FDA/EB staining
and qRT-PCR assay. The FDA/EB staining assay showed that there was no difference in
cell viability in both groups on day 1 (Figure 3c). The expression of BCL-2 (anti-apoptotic)
and BAX (pro-apoptotic) quantified by qRT-PCR also showed no significant difference
between the two groups (Figure 3d).

3.3. Similar Cellular Function between NCPs and CDP-Coated Culture Dishes after Cell Detachment

In order to confirm whether pH 6.0 PBS could detach the hADSCs cultured on the CDP-
coated culture dishes, we compared the cells-treated CDP-coated dishes with conventional
trypsin-EDTA treatment. (Trypsin-EDTA treated hADSCs cultured on the normal cell
culture dishes (NCD + Trypsin) and pH 6.0 PBS treated the hADSCs cultured on the
CDP-coated culture dishes (PAE + pH 6.0 PBS).) Before detaching the hADSCs from the
CDP-coated culture dishes, we removed the culture medium and washed the cells with
pH 7.4 PBS. Then, to induce the detachment of the hADSCs from the CDP-coated culture
dishes, we treated the cells with pH 6.0 PBS for 10 min at 37 ◦C. In optical images, we
confirmed that the cells in both groups had a round shape morphology. The number of
detached hADSCs was quantified by cell counting and there was no difference in both
groups (Figure 4a).
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Figure 4. pH 6.0 PBS-treated hADSCs cultured on the CDP-coated culture dishes showed similar behavior compared to
trypsin-treated hADSCs cultured on the NCD. (a) Light microscope images of trypsin-treated hADSCs cultured on the NCD
(NCD + Trypsin) and pH 6.0 PBS-treated hADSCs cultured on the CDP-coated culture dishes (CDP + pH 6.0 PBS). Scale
bar = 100 µm. (b) Anti-apoptotic (BCL2) and pro-apoptotic (BAX) gene expression of NCD + Trypsin and CDP + pH 6.0
PBS hADSCs. (c) Angiogenic paracrine factors (VEGF and FGF2) expression of NCD + Trypsin and CDP + pH 6.0 PBS
hADSCs. (d) Light microscope re-adhesion images of NCD + Trypsin and CDP + pH 6.0 PBS hADSCs after re-attachment.
(e) Fluorescence images of phalloidin (red) in NCD + Trypsin and CDP + pH 6.0 PBS hADSCs after re-attachment. The
nuclei were stained with DAPI (blue). Scale bar = 100 µm.
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In addition, to verify the effect of pH 6.0 PBS treatment on cellular function, we
detached cells from CDP-coated culture dishes using pH 6.0 PBS and then allowed them to
re-attach. The cellular functions were compared with the cells re-attached after detachment
from cell culture dishes using trypsin-EDTA. Two hours after re-attachment, the cells from
both groups were analyzed to investigate any changes in cellular function. Gene expression
from the re-attached hADSCs related to apoptosis factors (BCL-2, BAX) (Figure 4b) and
angiogenic paracrine factors (VEGF, FGF2) (Figure 4c) were not significantly different
between the two groups. In addition, the form of re-attached cells in both groups were
analyzed through optical images (Figure 4d) and phalloidin staining (Figure 4e). As shown
in Figure 4d,e, no significant differences were observed between the two groups in terms of
cell morphology. Similar results were found from CDP-coated culture dishes with human
dermal fibroblast and HeLa cells (Figure S1).

3.4. Ischemic Hindlimb Recovery after Injecting hADSCs Harvested from NCDs and CDP-Coated
Culture Dishes

Ischemic hindlimb recovery facilitated by the hADSCs cultured on the CDP-coated
culture dishes and dissociated with pH 6.0 PBS was evaluated using a mouse ischemic
hindlimb model. We transplanted hADSCs dissociated from the cell culture dishes with
trypsin-EDTA or the CDP-coated culture dishes with pH 6.0 PBS into the gracilis muscle.
On day 28, the hADSCs detached from the cell culture dishes using trypsin-EDTA (NCD
group) and the CDP-coated culture dishes with pH 6.0 PBS (CDP group) showed signifi-
cantly improved ischemic limb salvage and limb perfusion than the no-treatment group
(Figure 5a,b).

Limb perfusion was measured on days 0, 7, 14, 21, and 28 after treatment through laser
Doppler imaging analysis. Limb perfusion is represented as a percentage of the normal
control (Figure 5b). However, there was no significant difference in blood flow on day 28
between the NCD group and CDP group (Figure 5b). In addition, the NCD and CDP groups
showed improvements in ischemic tissue regeneration compared to the no-treatment as
evidenced by H and E and (Masson’s trichrome) MT staining results (Figure 5c). The ex-
pression of Pecam-1 and Vcam, both related to the presence of microvessels, on the ischemic
limb was quantified by qRT-PCR. mRNA expression of Pecam-1 in both the NCD and
CDP groups were significantly upregulated in comparison with the no-treatment. mRNA
expression of Vcam-1 in the CDP groups showed a significant increment compared with the
no-treatment. However, no significant differences were found between the NCD and CDP
groups in any of parameters tested. The number of microvessels in the ischemic tissues
was analyzed by immunohistochemistry (IHC) (Figure 5e) and quantified (Figure 5f). The
number of CD31+ and SM-α actin+ microvessels were abundant in both the NCD and CDP
groups compared to those in the no-treatment group, whereas no significant difference was
found between NCD and CDP groups (Figure 5e,f).
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Figure 5. In vivo hindlimb ischemic disease treatment with the hADSCs collected from the NCD + Trypsin and CDP + pH 6.0
PBS. (a) Representative photographs and laser Doppler imaging of limbs taken on day 28 after hADSCs injection. (b) Limb
perfusion on days 0, 7, 14, 21, and 28 day after hADSCs injection (# p < 0.05 compared to NCD group and * p < 0.05 compared
to no-treatment group). (c) Representative images of hematoxylin and eosin (H and E) and Masson’s trichrome (MT)
staining in the hindlimb regions on day 28. Scale bar = 200 µm. (d) Relative expression of Pecam-1 and Vcam in the hindlimb
regions on day 28 (* p < 0.05 compared to no-treatment group). (e) Representative images of CD31 or SM-α-actin expression
(green fluorescence) and DAPI (blue) staining in the hindlimb regions on day 28 (scale bar = 100 µm: White arrows indicate
microvessels). (f) Number of CD31+ and SM-α+ microvessels in the hindlimb regions on day 28 (* p < 0.05 compared to
no-treatment group).

4. Discussion

In this study, we showed an alternative method for harvesting stem cells through
enzyme-free desorption using a pH-sensitive CDP instead of the conventional trypsin-
EDTA method. Trypsin-EDTA is one of the representative enzymes that can decompose
cell adhesion molecules for cell detachment from the cell culture dish [19]. Treating
trypsin-EDTA for cell detachment requires fine control as its activity is highly affected
by temperature and concentration of trypsin-EDTA. Additionally, excessive amounts of
trypsin-EDTA treatment to cells may cause cellular damage, whereas insufficient trypsin
treatment may decrease the yield of cell collection [20,21]. Moreover, according to the
recent studies, enzymatic cell detachment can reduce the expression of cell surface antigen
temporarily or stimulate unwanted differentiation of stem cells after successive cell cul-
tures [22–24]. In particular, trypsin reduced the integrin-mediated cell adhesion of human
adult stem cells and damaged the cell transmembrane receptor proteins of human adult



Materials 2021, 14, 491 11 of 13

stem cells. In addition, repetitive subculturing using trypsin reduced the proliferation
rate, stemness-related gene expression, and differentiation ability of the stem cells [24].
Thus, we applied CDP as an alternative material for enzyme-free cell detachment that can
show similar cell detachment compared to trypsin-EDTA treatment but without potential
cellular damages.

We have cultured and detached the hADSCs from CDP-coated cell culture dishes
and compared the cellular effects with conventional trypsin-EDTA treatment. The CDP
synthesized to coat the surface of the cell culture dish was developed from PAE and showed
pH-sensitive degradation under pH 6.0 PBS. CDP was successfully synthesized with the
polymerization occurring between the amine group and double bond of monomers A
and B, as shown in Figure 2a. The pKa value of CDP was about 6.3 (Figure 2c), and
thus, we expected the CDP to be dissolved to pH 6.0 aqueous solution. The hADSCs
cultured on the surface of CDP-coated cell culture dishes showed similar cell adhesion
and cell viability compared to the hADSCs cultured on NCDs (Figure 3). The hADSCs
detached with pH 6.0 PBS from CDP-coated cell culture dishes successfully and in vitro
cellular behaviors of re-attached hADSCs were evaluated again to confirm the mainte-
nance effect of our CDP-based cell detachment system on the therapeutic efficacy. As
shown in Figure 4, there was no difference in cell viability, angiogenic paracrine factor
secretion, and adhesion morphology between hADSCs detached with trypsin-EDTA and
the CDP system. In accordance with the in vitro results, the in vivo experiments using the
hindlimb ischemia model evaluating angiogenic efficacy of the hADSCs detached from
CDP-coated cell culture dishes showed similar limb salvage (Figure 5a,b), histological im-
provement (Figure 5c), and angiogenesis (Figure 5d–f) compared to the hADSCs detached
with trypsin-EDTA. Collectively, applying a CDP coating to the cell culture dish for the
hADSC culture and pH 6.0 PBS treatment for hADSC collection via CDP degradation can
be considered a suitable alternative method for trypsin-EDTA treatment. Additionally,
it has been reported that three-dimensionally cultured cells show more similar cellular
behaviors found under the in vivo condition compared to those of two-dimensionally
cultured cells. Three-dimensional cell culture platforms such as a three-dimensional hydro-
gel matrix might provide more similar physiological in vivo conditions as confirmed by
cellular morphology and gene expressions [25–27]. The CDP of this study was applied to
the cell detachment system simply through surface-coating. Therefore, combining the CDP
system with three-dimensional cell culture systems might suggest an advanced cell culture
platform in future research.

Simple and easy cell detachment using the CDP in this study is less dependent
on specific conditions such as temperature. Moreover, cellular behaviors of hADSCs
cultured on CDP and detached with pH 6.0 PBS showed no differences against the cells
cultured on the normal cell culture dish and detached with trypsin-EDTA. Additionally, it
is relatively convenient to coat CDP on the surface of the cell culture dish compared to other
polymers developed for cell detachments [8–10]. Compared to the previously reported
nanoparticles or polymer used in cell detachment systems, CDP requires a relatively simple
manufacturing process and low cost. In addition, the cell detaching method developed in
this study is less likely to damage cells by pH change as the CDP can be removed through
washing with mild pH conditions compared to the preexisting methods. Furthermore,
our CDP method is free from potential problems such as genetic mutations and low cell
viability that can be caused by nondegradable nanoparticles or substrates. CDP can also be
applied to both single-cell detachment and special types of cell detachment such as cell
sheets easily. Taken together, our CDP may suggest a new platform for enzyme-free cell
detachment for future cell culture systems and tissue engineering.

5. Conclusions

In summary, we showed that we were able to retrieve the hADSCs from cell culture
dishes in an enzyme-free manner through a mild pH condition by applying CDP to the
cell culture system. The hADSCs cultured on CDP-coated culture dishes and detached
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through pH 6.0 PBS had similar cellular functions to the cells cultured on cell culture dishes
and detached with trypsin-EDTA. Additionally, we also confirmed the similar in vivo
therapeutic angiogenesis from both hADSCs retrieved from CDP-coated culture dishes,
and normal cell culture dishes with enzyme treatment. Our CDP system may provide a
new alternative stem cell harvesting platform to cell therapies.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/3/491/s1, Figure S1. hDF and HeLa treated with PBS at pH 6.0 cultured on the CDP-coated
culture dishes showed similar behavior compared to trypsin treated hDF and HeLa cultured on
NCDs. (a) Representative light microscope images of hDF and HeLa cultured on the NCD and
CDP. Scale bar = 500 µm. (b) Representative light microscope images of trypsin treated hDF and
HeLa cultured on the NCD (Trypsin treated) and pH 6.0 PBS treated hDF and HeLa cultured on
the CDP-coated culture dishes (pH 6.0 PBS treated). Scale bar = 500 µm. (c) Fluorescence images of
phalloidin (red) in trypsin treated and pH 6.0 PBS treated hDF and HeLa after re-attachment. The
nuclei were stained with DAPI (blue). Scale bar = 100 µm. (d) Cell viability rate of hDF and HeLa
cultured on the NCDs and CDP evaluated by the CCK-8 assay. (e) Relative amount of detached hDF
and HeLa was quantified by cell counting.
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