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Neural dynamics of cue reliability in perceptual decisions
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To extract meaningful information from scenes, the
visual system must combine local cues that can vary
greatly in their degree of reliability. Here, we asked
whether cue reliability mostly affects visual or
decision-related processes, using visual evoked
potentials (VEPs) and a model-based approach to
identify when and where stimulus-evoked brain activity
reflects cue reliability. Participants performed a shape
discrimination task on Gaborized ellipses, while we
parametrically and independently, varied the reliability
of contour or surface cues. We modeled the expected
behavioral performance as a linear function of cue
reliability and established at what latencies and
electrodes VEP activity reflected behavioral sensitivity to
cue reliability. We found that VEPs were linearly related
to the individual behavioral predictors at around 400 ms
post-stimulus, at electrodes over parietal and lateral
temporal cortex. The observed cue reliability effects
were similar for variations in contour and surface cues.
Notably, effects of cue reliability were absent at earlier
latencies where visual shape information is typically
reported, and also in data time-locked to the behavioral
response, suggesting the effects are not decision-related.
These results indicate that reliability of visual cues is
reflected in late distributed perceptual processes.

Introduction

The human visual system operates to support
complex perceptual decisions and actions. In this
process, local cues can help identify contours and
surfaces that are combined into shapes and objects,
but the reliability of these local cues varies greatly in
natural circumstances. The visual system, therefore,
faces the challenge of combining cues of variable
reliability but it remains an important open question
how cue reliability affects stimulus processing.
Perceptual performance is known to benefit from a
strategic allocation of perceptual resources, such as
proportionally weighing the contribution of sensory
elements to the final percept based on their relative

precision. Studies of multisensory (Angelaki, Gu, &
DeAngelis, 2009; Ernst & Banks, 2002; Fetsch, Pouget,
DeAngelis, & Angelaki, 2012) as well as unisensory
integration (Machilsen & Wagemans, 2011) show that
reliable inputs exert stronger influence on perceptual
choices than unreliable ones, and that multiple cues are
integrated for perceptual decisions. It remains unclear,
however, whether variations in the reliability of cues
affect early sensory processes or if they are part of
later decisional stages. Although previous functional
magnetic resonance imaging (fMRI) work showed that
stimulus uncertainty is reflected in primary visual areas
(van Bergen, Ji Ma, Pratte, & Jehee, 2015; Vilares,
Howard, Fernandes, Gottfried, & Kording, 2012),
fMRI does not have the necessary temporal resolution
to establish temporal precedence.

The dynamics of visual processes can be investigated
with electroencephalography (EEG), which allows
separating visual and later decisional processes in time.
The stimulus evoked electrical brain activity, or visual
evoked potential (VEP), typically shows a cascade
of highly dynamic processes that first reflect simple
stimulus properties at around 100 ms after stimulus
onset, then shape and object-specific computations at
mid-latencies, and finally decision-related activity at
latencies beyond 250 ms (Ales, Appelbaum, Cottereau,
& Norcia, 2013; Cichy, Pantazis, & Oliva, 2014;
Heekeren, Marrett, & Ungerleider, 2008; Picton, 1992;
Plomp, Michel, & Herzog, 2010). Here, we combined
EEG with a model-based analyses to determine at what
latencies and electrode locations VEPs parametrically
reflect visual cue reliability.

Two important cues for shape processing are
contours and surfaces (Julesz, 1981; Lamme, 1995;
Nothdurft, 1991; Roelfsema, 2006), and their processing
dynamics are relatively well understood. Collinear
contours and coherent surface textures increase VEP
amplitudes from about 100 ms after stimulus onset
(Scholte, Jolij, Fahrenfort, & Lamme, 2008; Shpaner,
Molholm, Forde, & Foxe, 2013). In a shape detection
task with arrays formed of Gabor elements, the presence
of aligned contours evokes larger amplitudes of the
N1, a component with negative voltage amplitude
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Figure 1. (A) Examples of Gaborized stimulus displays. In the first row, an ellipsoid shape is defined by the collinearity of contour
elements – the orientation of each Gabor element is parallel to the tangent of the ellipse outline. In the second row, the shape is
defined by isolinearity of the Gabor patches inside the shape. In the last row, both contour and surface elements help define the
shape. In the first column, contour and surface cue reliability is maximal: Gabor elements are oriented tangentially to the outline of
the ellipse on the Contour and/or have the same orientation in the Surface. The next two columns present reduced reliability by
increasing levels of jitter. For illustration purposes, the contrast of contour and surface elements has been increased; in actual
stimulus displays all Gabor patches were of equal contrast. (B) Shows the trial sequence for the behavioral session, in the EEG session
a variable delay was added to the fixation point.

typically observed at mid latencies (around 170 ms) and
a later positive component around after 200 ms (P2)
(Machilsen, Novitskiy, Vancleef, & Wagemans, 2011).
Detectable contours elicited a larger VEP, especially
over occipital electrode sites (Mathes, Trenner, & Fahle,
2006). Because reliable contour and surface cues form
shapes and objects (Wagemans, Elder, Kubovy, Palmer,
Peterson, Singh, & von der Heydt, 2012), the effects
of cue reliability may be expected at latencies where
shape-specific responses occur in the EEG. However,
the research above typically compared a shape with a
non-shape condition, but never parametrically varied
cue reliability. In our study, we therefore parametrically
varied the reliability of contour and surface cues in a
shape discrimination paradigm.

Although parametric effects of cue reliability may
be expected from 100 ms onward, the integration of
visual information for decisions typically occurs at
later stages. Perceptual decisions can be modeled as
an evidence accumulation process, the outcome of
which determines the appropriate behavioral outputs
(Donner, Siegel, Fries, & Engel, 2009; Gold & Shadlen,
2007; Heekeren et al., 2008). In EEG studies, such
decision processes are reflected over parietal areas
and resemble a classic target-detection component,
at 300 ms after stimulus onset (Kelly & O’Connell,
2013; Polanía, Krajbich, Grueschow, & Ruff, 2014;

Twomey, Murphy, Kelly, & O’Connell, 2015; Wyart, de
Gardelle, Scholl, & Summerfield, 2012). These decision
processes have been shown to parametrically reflect
stimulus visibility in a categorical discrimination task
(Philiastides & Sajda, 2006). The authors rendered
low-level cues less reliable for perceptual decisions by
scrambling images of faces and cars. The effects of this
manipulation were most strongly reflected at latencies
after 300 ms, and can be interpreted as an integration
process for decisions (Philiastides, Heekeren, & Sajda,
2014).

Late effects of stimulus reliability have typically been
obtained using complex stimuli, like faces or objects.
Instead, here, we studied well-controlled simplified
shapes and prompted figure-ground segregation by
leveraging perceptual grouping of contour and surface
cues (Machilsen & Wagemans, 2011). Participants
were presented with displays of randomly oriented
Gabor elements in which contour and surface cues
were coherently manipulated to form ellipsoid shapes
(Figure 1). When contour and surface cues are
presented together, participants integrate the cues and
show improved performance (Hess, Hayes, & Field,
2003; Machilsen & Wagemans, 2011; Loffler, 2008;
Peirce, 2015; Wagemans et al., 2012). These Gaborized
stimulus displays allow full control over low-level
features like local contrast and spatial frequency,
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while at the same time controlling the amount of
task-relevant information contained in the display.
During EEG recording, we independently varied the
reliability of either the contour or surface cues while
the other cue was held at an individually calibrated level
of discriminability, established in a prior behavioral
session. This manipulation allowed us to identify which
EEG electrodes and time-windows parametrically
reflected cue reliability by matching linear models
of evoked activity to the psychophysically derived
sensitivities to cue reliability; thus effectively equating
behavioral performance curves with neural activity
(Britten, Shadlen, Newsome, & Movshon, 1992;
Philiastides & Sajda, 2006).

Our results show that effects of cue reliably occur at
relatively long latencies, beyond 360 ms after stimulus
onset, over central and lateral-frontal electrodes. Our
model-based fitting, together with control analyses,
support the notion that effects of cue reliability manifest
in late stages of sensory processing, after the early
and mid-level sensory processes typically reported for
shape processing, but before, and not tightly locked to,
the execution of the motor response. This implies that
visual cues for decisions and action are not necessarily
fully integrated at latencies of visual processes that
typically reflect shapes and objects, but can occur at
longer latencies.

Methods

Participants

A total of 16 participants (11 women), between
19 and 26 years of age (mean 22.2 ± 2.4 SD), took part
in a behavioral and an EEG session. Participants were
recruited at the University of Fribourg and received
course credit for participation. Informed consent was
obtained prior to participation. All participants had
normal or corrected-to-normal visual acuity (> 1)
as established with the Freiburg acuity test (Bach,
2006). All procedures complied with the Declaration of
Helsinki and were approved by the institutional ethics
board.

Stimuli and material

Stimulus displays were arrangements of non-
overlapping Gabor elements presented on a grey
background, covering an area of 1000 × 1000 pixels,
corresponding to 16 and 17 degrees of visual angle in
the behavioral and EEG sessions respectively. Each
Gabor element was defined as the product of an
oriented sine-wave luminance grating (spatial frequency
of 3 cycles per ∼0.7 degrees of visual angle at 50%

Michelson contrast) and a circular Gaussian envelope
of 3.8 arc minute standard deviation. Each display
contained a Gaborized ellipsoid embedded in a field of
background elements. We distinguished three regions
in each display: (1) the contour region, comprising all
elements on the outline of the ellipse, (2) the surface
region, comprising all elements inside the contour
region, and (3) the background region, comprising
all elements outside of the contour. For each display,
a total of 590 Gabor elements were distributed as
follows: 43 on the contour, 150 on the surface, and the
remaining 397 in the background region. The contour
cues provide the most reliable information when they
are oriented tangentially to the outline of the ellipse;
surface cues are maximally reliable when they all have
identical orientation (see Figure 1A).

We created three types of displays. In the Contour
Condition, the ellipse was solely defined by the
alignment of Gabor elements in the contour region,
while the elements in the surface and background
region were randomly oriented. Similarly, in the Surface
Condition, surface elements inside the ellipse were
iso-oriented −45° away from vertical, while contour and
background elements were oriented +45° away from
vertical. In the Combined Condition, both contour
and surface cues were aligned to form an ellipse. In
the behavioral session, all three display types were
presented, in the EEG session, only Combined displays
were used.

We manipulated cue reliability by adding random
deviations to the orientation of elements in the contour
and surface regions. We call these random deviations
jitter. In the behavioral session, the amount of jitter
across elements was drawn from a normal distribution
with mean zero and standard deviation of 1°, 13.8°,
26.6°, 39.4°, 52.2°, or 65°. In the EEG session, jitter
levels were adapted to individual performance as
measured during the behavioral session.

To remove local density cues that could contribute
to correct discrimination of the ellipsoid shape,
we statistically controlled the average Euclidean
distance between each display element and its four
nearest neighbors. An unpaired t-test (alpha 0.1)
with correction for unequal variances was used to
exclude displays with significant differences in the
local Euclidean distance among the contour, surface,
and background regions of each display (Demeyer &
Machilsen, 2012). Across displays, the center-to-center
distance of elements was on average 38 arc minute in
the behavioral and 40.9 arc minute in the EEG session,
with ellipses spanning 10.2 × 8.50 and 11.2 × 9.3
degrees of visual angle, respectively. The major/minor
axis ratio of the ellipse was fixed at 1.2 in both sessions.
To make strategies to detect shape boundaries at specific
display locations effectively suboptimal, we randomly
displaced stimulus center to four possible locations
(±0.69 degrees of visual angle along the vertical or
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horizontal meridian). The displaced locations were
fully randomized against jitter levels, contour or
surface condition, and ellipse orientation. We used
1000 × 1000 pixel noise masks with each pixel intensity
sampled from a uniform distribution.

Stimuli were presented on a Philips 202P7 CRT
(1600 × 1200, 85 Hz, behavioral session) and a
VIEWPixx/3D (1920 × 1080, 100 Hz, EEG session).
Custom made Matlab (The Mathworks, Natick, MA)
scripts, the Psychophysics Toolbox 3.8 (Branard &
Vision, 1997) and GERT (Demeyer & Machilsen, 2012)
supported the creation and presentation of the stimuli.

Procedure

Each participant first completed a behavioral and
then an EEG session, scheduled on separate days.
All sessions took place in a darkened room where
participants sat with the head comfortably positioned
on a chin rest at a viewing distance of 90 cm from
the monitor. The behavioral session started after
dark adaptation and a practice session with easily
discriminable stimuli was run until participants
accurately judged 20 trials.

The participants were instructed to discriminate
whether the stimulus presented contained a vertical or
horizontal ellipse, and to respond as accurately and
quickly as possible. Task difficulty was manipulated
within blocks with the method of constant stimuli and
six levels of jitter added to the contour or surface cues.
The behavioral session used a blocked within-subject
design with three conditions (Contour, Surface, and
Combined). In the Combined condition, contour
and surface cues were jittered by the same amount.
The analysis of Combined condition allowed us to
test the cue integration hypothesis that observers
benefit from the simultaneous presence of Contour
and Surface cues. We fully randomized block orders
across participants. In the EEG session, all stimuli
comprised contour and surface information together.
The jitter of one cue was varied using a blocked
within-subject design with the conditions Contour
fixed and Surface fixed, using individually calibrated
jitter levels (see Behavioral modeling section). To
reduce fatigue, blocks were about 10 minutes each (432
trials) and 2 blocks of each condition were presented
using simple alternate randomization of the starting
block to counterbalance order effects (A-B-A-B versus
B-A-B-A). For each session, blocks comprised 432
trials equally divided across the 6 levels of the covariate
jitter thus resulting in 72 repetitions. Each condition
was repeated twice resulting in a total of 1728 trials.
Experimental sessions lasted between 45 minutes and
1 hour.

Trials started with a fixation cross presented at the
center of the screen (see Figure 1B). After 500 ms, the

fixation was replaced by the visual stimulus presented
for 200 ms. The stimulus was then masked until the
button press. Participants indicated the orientation of
the ellipsoid (vertical or horizontal), by pressing the
key “n” or “m,” respectively. There was no maximum
response delay. In the EEG session, four possible inter
stimulus intervals were introduced between the response
and the next stimulus presentation (i.e. fixed cross
duration was 500, 550, 600, or 650 ms).

Behavioral modeling

Individual behavioral data were modeled with a
four-parameter normal cumulative function, fitted
using the Palamedes Toolbox (Kingdom & Prins,
2016). Although we used probit regression to derive
psychophysical curves, we note that our experimental
approach deviates from standard signal detection
theory. The experimental task was to discriminate
stimulus shape (vertical/horizontal ellipse), but instead
of varying the signal along the “judgment” axis
(vertical-horizontal), as is typical in signal detection
theory, we varied the reliability of the cues that defined
stimulus shape (c.f.; Jeon, Lu, & Dosher, 2009). From
the fitted functions, two parameters of interest were
derived. The first was the inflection point of the curve
(midpoint between the upper and lower asymptotes;
the higher the better performance), referred to as
threshold here, the second was the gradient of the curve
at the inflection point (a measure of sensitivity to cue
reliability, the steeper the faster performance increases
for more reliable cues), referred to as slope. The thus
defined thresholds, and slopes were estimated for each
participant and then submitted to further group-level
inferential statistics; the nuisance parameters (lapse and
guess rate) were estimated but not evaluated further
(Wichmann & Hill, 2001). We set guess rate as a free
parameter to accommodate possible random variations
in performance.

To account for individual differences in performance
with contour and surface cues, we created combined
stimuli for the EEG session that matched individual
sensitivities. This calibration was aimed at controlling
the amount of information conveyed by contour and
surface cues for the EEG session. In addition, this helps
avoid the adoption of veto strategies whereby one cue is
systematically disregarded (Landy, Maloney, Johnston,
& Young, 1995). Using percentage correct data from
the behavioral session we first estimated individual
probit function parameters for the Surface and Contour
cue conditions. Then, using the inverse of the fitted
functions, we generated stimuli with contour and
surface cues at fixed levels of performance. Specifically,
we fixed the jitter of one cue at 68% of correct responses
so that it retained behavioral relevance (Landy et al.,
1995), and then varied the jitter of the second cue
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Figure 2. Behavioral and EEG methods. (A) The inverse psychometric function and the selection of individual jitter levels for the EEG
session. Each plot shows the performance of a typical subject to surface and contour conditions. The two curves show very different
slopes (gradients at inflection point) and thresholds (inflection points), reflecting different sensitivities to contour and surface
information. Using the inverse of the fitted probit function, we build combined stimuli that are equally difficult. In the plot on the top,
the level of surface jitter is held constant at 68%, while variable levels of jitter for the contour cues are selected (95, 86, 77, 68, 59,
and 50%). Likewise, individual values of surface cue jitter were selected when contour cues were fixed (bottom plot). (B) Illustrates
the EEG model fitting approach. For each EEG electrode (top-left panel), the rectified amplitude was regressed against the jitter levels
(top center and right panels; grand-average data for illustration). The collection of all estimated slopes resulted in a raster plot
representation (bottom-right panel), which was then subjected to cluster-based permutation to identify clusters where slope
deviated significantly from zero, while controlling for multiple comparison testing (bottom-center panel). Of all the significant
clusters, only those that fell within the 95% confidence interval (CI) of behavioral slopes (d′-jitter) were retained for further
interpretation (bottom-left panel).

between 95% and 50% in 6 equidistant steps (95, 86, 77,
68, 59, and 50%). We repeated this procedure for both
cues, aiming to create Surface fixed and Contour fixed
combined stimuli of equal difficulty (Figure 2A).

Our goal was to determine what electrodes and
latencies parametrically reflect cue reliability. One
obstacle to fitting the same behavioral psychometric
function to neural data concerns the configuration of
asymptotes boundaries. Asymptotes, in the behavioral
psychometric function, have both a statistical
interpretation (bounds of the binary variables, i.e.
100%–50%) and a psychological interpretation (lapse
and guess rate for the upper and lower asymptote
respectively). In contrast, fitting a four-parameter
probit regression model to neural data requires
setting the asymptotes boundaries at arbitrary
values (micro volts) with the realization that such
boundaries have no meaningful interpretation. For
these reasons, we re-expressed the behavioral data
using a d’ transformation. Specifically, hits and misses

within a single jitter level were expressed as d’ and
then the (logarithm of) d’ was regressed against the
(logarithm of) jitter (see Equation 1 below). Although
d’ is dimensionless and represents the internal strength
of a stimulus in standardized units, this linear model
incorporates the relationship between sensitivity and
jitter - a distinctive feature of a psychometric function.
The linear association between d’ and jitter constituted
the starting point of the neurometric fitting as explained
in the next section. The linear model can be expressed
as follows:

log
(
d ′) ∼ β0 + β1log ( jitter) + ε (1)

where β0 and β1 represent, respectively, the intercept
and the slope of the model and ε is normally
distributed noise with mean 0 and standard deviation
σ ( εi.i.d. N(0, σ )).
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EEG recording and analysis

EEG data were acquired with a BioSemi Active
Two system (Amsterdam, The Netherlands) and
128 active pin-type-electrodes positioned in a headcap
that was individually placed such that the cZ electrode
was halfway between nasion and inion, and equally far
from each ear. Data were recorded at a sampling rate of
1024 Hz. Throughout the recording, good signal quality
was guaranteed by keeping the offset between the active
electrodes and the CMS-DRL feedback loop, under
a standard value of ±20 mV. After each recording
session, 3D electrode positions were digitized using
an ultrasound motion capture system (Zebris Medical
GmbH). EEG pre-processing and analysis were done
using EEGLAB (Delorme &Makeig, 2004) and custom
made MatLab scripts.

The continuous signal was downsampled to 200 Hz
after applying an anti-aliasing filter (cut-off frequency:
160 Hz; transition bandwidth: 80 Hz). Then a high-pass
(> 0.1 Hz) non-causal FIR filter was applied. The
Cleanline EEGLAB plugin was used to remove
50 Hz line noise (and its harmonics) and the EEG
signal was parsed into 2-second epochs centered on
stimulus onset. Epochs with non-stereotypical artifacts
were identified by qualitative inspection and not further
analyzed (on average, 15 ± 5% of trials). Muscular
and ocular artifacts were removed using independent
component analysis (ICA, EEGLAB, and extended
Infomax algorithm; (Delorme & Makeig, 2004).
Epochs were re-referenced to the average signal across
electrodes. For the analysis of response-locked activity,
the same preprocessing was applied to 2-second epochs
centered on the response. On average, 22 ± 3% of
response-locked epochs were not further analyzed due
to artifacts.

To identify at what electrodes and latencies cue
reliability are encoded in VEPs, we linearly regressed
VEP amplitudes against jitter levels at each electrode
and at each time point around stimulus onset (−100
to +500 ms; for response-locked analysis: −1000 to
0 ms). For this analysis, individual EEG signals were
z-scored across trials and electrodes. We rectified
signals before the regression because positive and
negative amplitudes of the scalp EEG both signal
current flows (activity) in the underlying tissue (Nunez
& Srinivasan, 2006). Finally, a linear model was
estimated regressing the rectified signal against the six
levels of jitter, iterating through electrodes and time
points. This iterative procedure was fit separately to
data from the Contour and Surface fixed conditions
(see Figure 2B).

By modeling VEPs as a function of jitter level,
we estimated slope parameters for each participant,
electrode, and time point. Positive and negative slope
values were submitted to a group-level cluster-based
permutation test (Bullmore et al., 1999; Maris &

Oostenveld, 2007) to jointly account for spatial
and temporal correlations and control for multiple
comparisons (two-tailed test, with 5000 permutation
and a nominal significance value of p < 0.01). We
selected all significant clusters whose average slopes fell
within the 95% confidence intervals of the predicted
behavioral model (d’-jitter association). This means
that of all significant clusters identified with the
cluster-based permutation test, only those that fell
within the confidence intervals of the estimated slope
in the behavioral regression were retained for further
analysis (see Figure 2). The same analysis was applied
to stimulus- and response-locked data. We assumed
that EEG activity would increase with cue reliability
because contours and surfaces typically give rise to
more EEG activity than control stimuli (Machilsen et
al., 2011; Scholte et al., 2008; Shpaner et al., 2013), and
because previous work indicated that neural activity
can follow psychometric curves (Britten et al., 1992;
Philiastides & Sajda, 2006).

A control analysis was performed on temporally
aligned VEP component peak amplitudes. For each
component, we selected the electrode with the highest
activity in the individual average across conditions and
jitter levels. Subsequently, amplitudes at that electrode
were determined for each condition and jitter level
at the individual peak latency. Peak amplitude was
submitted to a multilevel linear regression with jitter
as a covariate and Condition (Contour and Surface
fixed) as a factor. This regression analysis followed
a simplification strategy that proceeded with the
evaluation of nested models in which a likelihood ratio
test determined if the inclusion of a particular term
significantly improved the fit (Kingdom & Prins, 2016;
Knoblauch & Maloney, 2012).

Multivariate pattern analysis

In order to test when task-relevant information about
shapes appears in VEP signals, we applied single-trial
Linear Discriminant Analysis (LDA) classification on
stimulus orientation (vertical/horizontal), for Contour
and Surface fixed conditions separately. The application
of LDA EEG data has proved to be particularly
powerful in predicting individual responses given the
patterns of activation across electrodes (Grootswagers,
Wardle, & Carlson, 2016).

LDA was at each time point between −100 and
+500 ms from stimulus onset. No further pre-
processing steps were taken other than those illustrated
in the previous section. For each participant, the
class distribution of vertical/horizontal labels was
balanced by randomly removing trials from the
majority class (He & Garcia, 2009). A common
shrinkage factor of 0.007 was obtained by averaging
individual estimates (oracle approximating shrinkage
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Figure 3. Results from the behavioral session. (A) shows the curves from probit regression for each experimental condition, data
aggregated across participants. Error bars represent binomial 95% confidence interval (CI) for each estimated proportion of correct
response. (B) Discrimination thresholds (inflection point of the curve) across participants, with significant differences between
conditions indicated. (C) Slopes (gradients at inflection point) of the behavioral function per condition.

estimator – (Chen, Wiesel, Eldar, & Hero, 2010)).
This regularization factor was then used in the
estimation of the covariance matrix of EEG electrodes
(Blankertz et al., 2011; Haufe et al., 2014). Finally,
a 10-fold-cross validation scheme was applied to
safeguard against overfitting (Grootswagers et al.,
2016). Within-participant classification performances
were submitted to a cluster-based permutation analysis
to account for the temporal correlation structures
(two-tailed test, 50,000 repetitions at a nominal p value
of 0.05). LDA classification weights were projected
onto the EEG electrodes to create scalp topographies of
discrimination performance (Grootswagers et al., 2016).

Results

Behavioral session

We estimated individual discrimination thresholds
(inflection points) for the Surface, Contour, and
Combined conditions and asked whether the
simultaneous presence of surface and contour cues
improved performance. A one-way repeated measures
analysis of variance (ANOVA) with factor Condition
(Contour, Surface, and Combined) yielded a significant
Condition effect (F(2,15) = 49.81, p < 0.01, and
η2 = 0.54), see Figure 3. Post hoc t-test analysis,
corrected for false discovery rate at p < 0.01 (Genovese
et al., 2002), showed that discrimination thresholds
were significantly higher for the Combined than the
Contour alone (41.6 ± 3.2° vs. 37.1 ± 2.9°) and the
Surface alone condition (28.6 ± 1.9°; p = 0.0036 and
p < 0.001, respectively). This improved performance
means that when both cues were present, participants

could tolerate more jitter and still make correct
judgments (about) 75% of the time. We also found that
discrimination thresholds in the Contour condition
were significantly higher than in the Surface condition
(p < 0.01). No significant differences were found for the
slopes (gradients at inflection point) across conditions.
This indicates that the rate of change of discriminability
across levels of jitter was statistically indistinguishable
in the single and combined cue conditions.

EEG session

Behavioral
During EEG recordings, participants discriminated

combined stimuli while either the contour or surface
cues were held at a fixed, individually calibrated jitter
level. A one-way repeated measures ANOVA on the
estimated discrimination thresholds (inflection points)
nonetheless revealed a significant effect of condition
(41.3 ± 4.7 vs. 33.47 ± 5.2; F(1,15) = 7.93, p < 0.05,
and η2 = 0.54) - see Figure 4. This means that despite
the effort placed in equating the difficulty of the two
conditions, the Surface fixed condition was easier.
Between slope values (gradient at inflection point), no
significant differences were found (−0.19 ± 0.09 vs.
−0.17 ± 0.05; F(1,15) = 0.18, p = n.s). The average
reaction times were 822 ± 119 ms and 829 ± 85 ms for
the Surface and Contour fixed conditions, respectively.

EEG
To identify at what latencies and electrodes

uncertainty was reflected in VEPs, we first linearly
regressed recorded amplitudes against individual jitter
values. For the Surface fixed condition, this analysis
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Figure 4. Behavioral results from the EEG session. (A) shows the fitted probit function in the two conditions for averaged data across
participants (left panel), and the corresponding function based on d′ (right panel). Error bars represent 95% confidence interval (CI).
(B and C) show the distribution of thresholds (inflection point of psychometric curve) and slopes (gradient at inflection point),
respectively, with significant difference indicated.

revealed significant clusters of non-zero slopes from
around 300 ms after stimulus onset (Figure 5A). Each
of these clusters were associated with negative slopes,
meaning that VEP amplitudes decreased with jitter,
and no positive slopes reached statistical significance.
Within the clusters of statistically significant slopes,
we then identified points with slopes that matched the
ones observed in behavioral performance (the d’-jitter
association). We found that these were located at
electrodes over occipital, parietal, temporal, and frontal
cortex.

Similar results were obtained in the Contour fixed
condition, where significant clusters of non-zero slopes
appeared from around 350 ms. Again, only negative
significant slopes were observed and they were located
at electrodes over occipital, parietal, and frontal cortex.
A subset of electrodes over parietal and left temporal
cortex showed slopes that fell within the 95% confidence
interval of behavioral performance (see Figure 5B).

Response-locked analysis
We found that cue reliability is reflected around

400 ms after stimulus onset, beyond typical shape
processing latencies. This is surprising given that for low

jitter levels a shape is clearly visible, but for high jitter
levels it is not, as evidenced by the behavioral results
(see Figures 3 and 4). A possible explanation for this
late effect is that the observed effects reflect decisional
or response initiation processes that are more precisely
time-locked to the behavioral response than to stimulus
onset (Ales et al., 2013; Cottereau et al., 2014; Gevins
et al., 1989; Kohler et al., 2018; Philiastides et al., 2014;
Plomp et al., 2009). If this is the case, then the effects of
reliability will be most pronounced when time-locking
the VEPs to the behavioral response.

To investigate this, we repeated the regression
analysis after aligning the EEG data to the button
press. This response-locked analysis, however, did not
identify any clusters with significant slopes in either
Contour or Surface fixed condition (see Figure 6). This
shows that cue reliability effects are not systematically
time-locked to response initiation or execution
processes.

Peak amplitude and latency analysis
The second possible explanation for the absence

of effects at early latencies is that VEP components
were not consistently time-locked to stimulus onset
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Figure 5. EEG results. (A) Grand-averaged VEPs of Contour and Surface fixed condition, respectively, with corresponding voltage
topographies at the peak of four observed evoked components. (B) Shows slope estimates (in time for each electrode) of VEP-jitter
regression in the two conditions. All statistically significant clusters (corrected for multiple comparisons) are highlighted. Within these
clusters, black boundaries highlight regions where slope values that fell within the 95% confidence interval (CI) of the behavioral d′

slopes. The corresponding scalp distribution of slopes is shown on top (significant electrodes highlighted), in the interval delimited by
the vertical dashed lines. (C) Grand-averaged traces across the central electrodes identified B, illustrates the linear decrease in
amplitudes with increases in cue jitter for the two conditions.
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Figure 6. Response-locked results. (A and B) Show Contour and Surface fixed condition, respectively. The left plot presents the
grand-averaged response-locked EEG activity, right plot the estimated slopes for all electrodes in time. No statistically significant
clusters of non-zero slope were observed.

Figure 7. Temporally aligned peak amplitudes as a function of cue jitter. Error bars indicate 95% confidence intervals (CIs), thin lines
reflect 95% CI of the estimated regression lines. The only negative association between VEP amplitude and cue jitter was found at a
positive component peaking at around 400 ms after stimulus onset (P400).

across participants (Spencer et al., 2000). We therefore
investigated whether individual variability in the
timing of evoked components obscured the systematic
relations with jitter. Three visual evoked components
could be reliably identified in all participants, with peak
latencies at 89.9 ± 11.1, 307.2 ± 10.9, and 402.1 ± 27.9,
respectively (see Figure 5). The N170 was only evident
in half of the participants and, therefore, not analyzed
further.

Both the first component and the one around 300 ms
revealed a statistically significant positive association
between peak amplitude and jitter: the amplitude
increased linearly with the log of jitter (0.55 ± 0.40,
p < 0.01 and 1.46 ± 1.21, p < 0.05 for the first com-
ponent and the one at 300 ms, respectively; Figure 7).
At the 300 ms latency, this association was significantly
less pronounced in the Surfaced fixed condition (as
witnessed by the significant interaction: −1.26 ± 1,

p < 0.05). In contrast, the peak amplitude at around
400 ms was negatively associated with the log of jitter
(−1.02 ± 0.74, p < 0.01) in both Contour and Surface
fixed condition. Together, the results from peak-aligned
components confirm that negative associations between
jitter and amplitude occur only at long latencies.

Multivariate pattern analysis

As a last control analysis, we used an LDA decoder
to determine at what latencies information about the
ellipsoid shape is reflected in the VEPs. The results
were in line with our previous findings: information
about the ellipsoid discriminability appears quite late
in the trial (about 300–350 ms for the Surface and
Contour fixed, respectively), see Figure 8. Furthermore,
we inspected which electrode drove the classification
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Figure 8. EEG decoding results. Top and bottom panels show
results from the Contour and Surface fixed condition,
respectively. Temporal evolution of the classification accuracy
of the LDA along with a 95% confidence interval (CI) envelope.
Cluster-based permutation identified significant temporal bins
late in the trial evolution. The topographical maps portray the
reconstructed signal activation based on estimated LDA
weights, averaged across the vertical shaded areas.

performance using a weight projection technique
that reconstructs the neural activation patterns
(Grootswagers et al., 2016; Haufe et al., 2014). The
activation maps associated with peak discrimination
accuracy suggested a prominent activation of central
electrodes, at longer latencies (Surface fixed: 320–340
and 425–445 ms; Contour fixed: 350–360 and 425–445
ms). These results are consistent with our modelling
results in that they suggest that relevant information
about the ellipsoid shape is only present at late latencies,
and over parietal areas.

Discussion

We investigated how variations in cue reliability
affect the spatiotemporal dynamics of visual evoked
responses, using behavioral modeling to establish a
principled link between brain states and sensitivity to
cue reliability. We simultaneously presented contour
and surface cues in a shape discrimination paradigm
and found that VEPs parametrically reflect cue
reliability at relatively long latencies, beyond 360

ms after stimulus onset, at electrodes over parietal
and lateral frontal brain areas. Similar findings were
independently obtained for the Contour fixed and
Surface fixed conditions. In further analyses, we found
that cue reliability effects were not time-locked to the
behavioral response, and that they occurred at latencies
when signals reflected stimulus orientation, as shown by
an independent machine learning analysis.

We developed a model-based analysis pipeline that
linked VEP amplitudes to behaviorally derived linear
functions of d’ to determine at what latencies evoked
activity reflects individual discrimination capacity.
First, participants’ rectified psychometric functions
were derived by transforming probabilities of correct
responses to discriminability values (d’) and regressing
them against jitter to obtain slopes of behavioral
discriminability. Separately, we regressed rectified
VEP amplitudes against jitter levels and retained the
data points where the VEP slopes matched the slopes
of behavioral discriminability. This way we revealed
latencies and electrodes where VEP amplitudes increase
with cue reliability at the same rate that behavioral
discriminability increases with reliability. Previous
work studied how information about uncertain sensory
evidence is neurally represented and by linking this
representation to behavioral outcomes they suggested
a unified psychophysical-neural model (Boyle et al.,
2017; Philiastides & Sajda, 2006). The main advantage
of our methodology lies in establishing an equivalence
with the sensitivity to cue reliability (i.e. via the rectified
d’ function): the fit of behavioral and EEG data is
essentially the same with the extra benefit of not having
to impose arbitrary limits on VEP amplitudes based
on behaviorally derived asymptotes. This methodology
produced novel results that could be validated with
an independent decoding analysis as explained
below.

Our results revealed a surprising finding: we only
observed effects of cue reliability at longer latencies,
well after the typical latencies of visual processing that
show contour, surface, and shape processing. Neural
encoding of cue reliability may be expected to occur
earlier in the evoked response because reliable cues
form shapes and objects, whereas unreliable cues do
not. Contour and surface grouping are considered
mid-level vision mechanisms: collinear elements group
into contours and shapes, and iso-oriented lines form
surfaces that instantiate figure-ground segregation
(Loffler, 2008; Wagemans et al., 2012). Such processes
are thought to be elementary and are reflected at
latencies before 200 ms with line and surface stimuli
(Chicherov et al., 2014; Lamme, 1995; Scholte et al.,
2008). Even more complex stimuli, such as objects
and faces, evoked specific EEG signals between 100
and 200 ms (Bentin et al., 1996; Cichy et al., 2014;
Isik et al., 2014; Itier & Taylor, 2004; Kirchner &
Thorpe, 2006; Plomp et al., 2010). For example,



Journal of Vision (2020) 20(8):23, 1–17 Mancuso & Plomp 12

in the context of a face/car discrimination task,
there is evidence that the N1, at around 170 ms, can
proportionally reflect stimulus visibility manipulations
that resemble our variations in local cue reliability
(Philiastides, 2006; Ratcliff et al., 2009). Our findings
seem at odds with these observations and we therefore
did follow-up analyses to determine what drove the late
effects of cue reliability.

We excluded the possibility that individual variability
may have hindered detecting effects of cue reliability
at earlier visual evoked components. Time-locking
the analysis to stimulus onset, and averaging across
participants only preserves effects that are precisely
temporally aligned across participants (Spencer et al.,
2000). To account for possible inter-participant
variability we temporally aligned visual evoked
components that could be reliably identified in each
participant. At around 400 ms, this analysis confirmed
a clear negative association between VEP amplitudes
and jitter (see Figure 7), reinforcing the idea of late
effects of cue reliability. The analysis also confirmed
that temporally corrected peak amplitudes at around
100 and 300 ms after stimulus onset did not show
increased amplitudes with cue reliability. Rather, these
components showed the opposite effect, with a linear
increase of amplitudes for less reliable cues. This
suggests that cue reliability is in some way reflected at
earlier latencies, although these effects are not reliably
time-locked to stimulus onset across participants in our
data. One explanation for these positive slopes is that
they reflect task difficulty (i.e. increased amplitudes
for more difficult conditions; Philiastides et al.,
2006; Philiastides et al., 2014). Alternatively, similar
amplitude increases have previously been attributed to
predictions about stimuli (Alink et al., 2010; Murray et
al., 2002), but because we did not systematically vary
surprise or prediction in this study, this interpretation
remains speculative.

To independently determine at what latencies EEG
signals contain information about the task-relevant
shape, we applied LDA classification across jitter
levels on the two response-categories (horizontal and
vertical; Blankertz, Lemm, Treder, Haufe, & Müller,
2011; Grootswagers, Wardle, & Carlson, 2016; Haufe
et al., 2014). EEG decoding can be expected to be more
sensitive than electrode-by-electrode analysis because it
capitalizes on single trials and simultaneously evaluates
signals from all electrodes. Previous decoding analyses
have shown that shape information can be decoded from
early latencies onward (sometimes < 100 ms) (Cichy
et al., 2014; Isik et al., 2014). In our data, however,
decoding analysis showed similarly late findings as with
the behavioral modeling approach. We found that shape
discrimination signals become available at around 300
ms in the Surface fixed condition and after 400 ms
in the Contour fixed condition. This decodability of
signals into shapes at long latencies supports the notion

of a late effect of stimulus reliability, as obtained with
the behavioral modeling approach.

We thus obtained converging evidence from
peak-amplitude, LDA, and model-based analyses
that differences between shapes that can be reliably
discriminated and ones that cannot be reliably
discriminated, need not happen at the early latencies
that are typically associated with visual processing.
What could explain this absence of earlier effects
in our results? It seems unlikely that the Gaborized
stimuli alone account for the late effects. Our stimuli
were designed to reflect segmentation of shapes from
background in scenes, and they leveraged contour
and surface grouping mechanisms using ellipsoid
shapes embedded in noise (Hess et al., 2003; Loffler,
2008). With similar displays, contour and shape effects
have been previously observed at around the N170
component (Bowden et al., 2015; Machilsen et al.,
2011; Mathes et al., 2006; Shpaner et al., 2013), which
reflects the processing of shapes, complex objects,
and faces (Itier & Taylor, 2004; Philiastides & Sajda,
2006; Plomp et al., 2010). Shape detection in such
displays results from grouping operations and complex
recursive interplay among different brain regions
that typically manifest before or around 300 ms after
stimulus onset (Mijović et al., 2014; Scholte et al.,
2008). Furthermore, we used a discrimination task
that requires processing the shape as a whole, and we
calibrated difficulty at individual sensitivity. Despite
these stimulus characteristics and their task relevance,
our stimuli did not reliably generate a distinctive N170
component, nor any shape effects before 300 ms after
stimulus onset.

The observed late effects of cue reliability may reflect
a cue combination process. In our stimuli, task-relevant
shapes were formed by two simultaneously presented
cues - the aligned contour and surface elements. In this
way, our stimuli reflect natural scenes better than when
only one cue is presented. In the behavioral session,
we observed improved performance when both cues
were available compared with when only one cue was
presented (see Figure 3), a cue combination effect in
line with previous work (Machilsen & Wagemans,
2011). In the EEG session, one cue was held constant at
individual, performance-derived levels while the other
cue was varied. Because both cues were task-relevant,
participants are expected to use their combined
information for perceptual decisions (Landy et al.,
1995). Given that low-level differences were carefully
controlled for in our displays, and that we did not
find typical VEP signatures of contour and surface
processing, we interpret the late cue reliability effects to
reflect the integration of surface and contour cues under
varying levels of cue reliability. In other words, contour
and surface cues are combined and the variations in
their reliability are resolved at a relatively late stage of
processing.
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Late VEP components are thought to reflect target
detection, evidence accumulation for perceptual
decisions, as well as motor planning or execution
(Heekeren et al., 2008; Philiastides et al., 2014;
Plomp et al., 2009). In perceptual decisions, prior to
committing to a choice, stimulus evidence is evaluated
and integrated over time - in that sense, the late
representation of stimulus reliability may reflect the
ongoing accumulation of sensory evidence in decisional
units. Electrodes over parietal areas have been shown to
reflect evidence accumulation in perceptual decisions.
In a face-car discrimination task, VEPs at long latencies
(> 300 ms) reflected the amount of randomization of
the images (i.e. the reliability of local cues), and were
well-modeled as an evidence accumulation process
(Philiastides et al., 2014; Philiastides & Sajda, 2006).
However, the effects of cue reliability in our data differ
from evidence accumulation processes in important
ways. The scalp topography associated with evidence
accumulation includes parietal electrodes but also
frontal electrodes associated with motor command
(Donner et al., 2009; Gold & Shadlen, 2007; Polanía
et al., 2014; Wyart et al., 2012), resembling a P300
topography, defined spatially by one centrally located
and circularly shaped positivity (Linden, 2005; Picton,
1992; Twomey et al., 2015). In our data, however,
the topography that reflected cue reliability did not
resemble a classical P300 topography. In our VEP data,
the distribution of positive amplitudes over posterior
areas around 300 ms after stimulus onset seems more
indicative of ongoing visual processing than of target
detection and decision processes. In addition, the traces
from electrodes that showed cue reliability effects do
not reflect a drift-diffusion trajectory of linear increases
with time (see Figure 5C; c.f. Philiastides et al. 2014,
see Figure 2). Another indication that cue-reliability
effects are different from evidence accumulation is
that the effects are not tightly linked to response
processes. We found that ERPs time-locked to the
button press showed no systematic effects of cue
reliability (see Figure 6), whereas previous work showed
that time-locking the analysis to the response preserves
evidence accumulation processes (Philiastides et al.,
2014), and can unveil decision-related information
in visual areas (Ales et al., 2013; Cottereau et al.,
2014; Kohler et al., 2018). Our response-locked results
likewise refute the idea that pre-motor processes play a
role. Taken together, these considerations suggest that
our results do not reflect decision or motor outputs
per se, but rather that cue reliability affects VEPs
before participants commit to a choice - as if unreliable
cues impaired the ability to form and maintain stable
decisions prior to the behavioral outputs (Kubovy &
Healy, 1977).

Our findings, therefore, most likely reflect late,
distributed perceptual processes. Previous work has
shown that P400 amplitudes decrease when stimuli

are ambiguous in their interpretation (Kornmeier
et al., 2016). This effect held for a variety of high-level
visual stimuli and was interpreted as an evaluation
of the reliability of perceptual processing results.
Likewise, our results may be best interpreted as an
evaluation of the reliability of visual inputs, as a late
decision-related process that precedes the behavioral
choice. This notion is strengthened by the following
considerations. Despite the attempt to equate the
difficulty of the Surface and Contour fixed conditions,
we found a superior behavioral performance in the
case of the Surface fixed condition (contour reliability
varied). Increased sensitivity for contour over surface
information is supported by animal recordings where
neural responses to surface stimuli decrease with the
distance to boundary signals (Lee, Mumford, Romero,
& Lamme, 1998). This difference can be leveraged
to diagnose at which stage, in the architecture of
visual processing, our results are located. The first
cluster of significant associations between VEP and
jitter in the Contour fixed condition appeared before
400 ms, whereas in the Surface fixed condition they
appeared after 400 ms (see Figure 5B). This observation
was corroborated by the decoding analysis in which
discriminant signals appeared at shorter latencies in
the Surface fixed (prior 300 ms) than in the Contour
fixed (after 300 ms) condition (see Figure 8). The result
suggests that perceptual processes are slower when the
system is engaged in the resolution of more difficult
stimuli such as our Contour fixed stimuli. The recurrent
interplay between brain areas involved in the grouping
of elements requires greater efforts for displays mainly
defined by surface cues; consequently, the effect of cue
reliability is delayed as well.

Although several control analyses confirmed our
conclusion, the absence of earlier cue reliability effects
can also be due to methodological limitations. First,
our statistical analysis used appropriate corrections
for multiple testing (Bullmore et al., 1999; Maris &
Oostenveld, 2007), but this may have led to the exclusion
of weaker and less reliable effects from the results. An
example of this is the early, reversed cue reliability
effect that became statistically significant after temporal
peak alignment (see Figure 7). Second, recorded EEG
potentials reflect the sum of activity (ion currents)
throughout the brain, but EEG is not uniformly
sensitive to currents in all 3D directions (Nunez &
Srinivasan, 2006). The EEG picture of the underlying
brain activity is therefore imperfect and allows for
the possibility, in principle, that cue reliability effects
occurred at earlier latencies but escaped detection, due
to unfavorable orientations or because of cancelation of
weak currents. Although we can therefore not conclude
with certainty that cue reliability is reflected only at
long latencies, our data do indicate that the late effects
are stronger and more reliable. Complementary work
using fMRI, magnetoencephalography (MEG), or
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intracranial recordings could help to further establish
whether cue reliability effects exist in visual areas, at
earlier latencies (Foucher et al., 2003; Hermes et al.,
2017; Itthipuripat et al., 2019).

In conclusion, our results show a late VEP
component that reflects cue reliability under conditions
where separate cues are integrated. This implies that
mid-level visual displays do not necessarily invoke
robust mid-level sensory processes, but can involve
late decision-related activity that reflects the reliability
of the presented local cues. At these latencies, the
underlying brain activity involves a complex mixture of
activity and interactions (Mijović et al., 2014; Plomp
et al., 2015; Scholte et al., 2008), the exact nature of
the underlying sources, their interactions, and how this
effectively evaluates cue reliability remains to be further
investigated.

Keywords: detection/discrimination, shape and
contour, 3D surface and shape perception, visual evoked
potential, uncertainty
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