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Abstract: The study was devoted to the creation of transparent electrodes based on highly conductive
mesh structures. The analysis and reasonable choice of technological approaches to the production
of such materials with a high Q factor (the ratio of transparency and electrical conductivity) were
carried out. The developed manufacturing technology consists of the formation of grooves in a
transparent substrate by photolithography methods, followed by reactive ion plasma etching and
their metallization by chemical deposition using the silver mirror reaction. Experimental samples of
a transparent electrode fabricated using this technology have a sheet resistance of about 0.1 Ω/sq
with a light transmittance in the visible wavelength range of more than 60%.

Keywords: transparent electrode; mesh structure; sheet resistance; transparency; groove; lithography;
chemical deposition; shielding efficiency

1. Introduction

Electrode element is an indispensable component of modern acousto-optical devices.
It defines the shape of the acoustic field induced in the crystalline media [1,2]. Accurate
apodization of the electrodes provides diffraction efficiency increase, higher apertures and
better acoustic field homogeneity [3].

Transparent electrodes are necessary for acousto-optic devices, where the direction
of light propagation coincides with sound wave (Figure 1). Such collinear geometry of
acousto-optic interaction is widely used, for example, in acousto-optical tunable filters
with high spectral resolution [4], which are necessary for Raman spectroscopy [5] and
spectral-domain optical coherence tomography [6]. Propagation of light along ultrasound
may be also potentially effective for multi-beam diffraction configurations [7] and other
applications. Applying optically transparent electrodes in these devices may simplify its
design and reduce its dimensions.

In conventional schemes of such electrodes, an ultrasonic wave may be formed by a
transparent piezoelectric transducer based on ceramic materials with a perovskite structure
(titanate-zirconate of a divalent metal (for example, lead), etc.) or polymer films (for
example, polyvinylidene fluoride and its copolymers) with a thickness up to several tens
of micrometers [8–14].

In addition, transparent electrodes are widely used in solar panels, touch screens,
organic and inorganic diodes, etc. [15]. Among the approaches to the creation of such
electrodes are the usage of transparent conductive oxides [15], metal nanowires [16,17],
carbon nanomaterials [18], and metal micro- and nano-grids [19]. Today, thin films based
on tin indium oxide (ITO) are the most widely used [20]. Still, their usage is limited by
the low ratio of transparency and electrical characteristics for many current tasks; the best
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samples of ITO coatings have a surface resistance of about 20 Ω/sq with transparency
in the visible range of about 90% [21]. In addition, this material is expensive due to the
depletion of global indium reserves [22], and requires high-temperature annealing to obtain
a high Q factors φs (φs = T550

10/$s [23]), which complicate the production of high-quality
transparent electrodes on flexible polymer substrates. The latter is relevant due to the
recent intensive development of flexible LCD touch screen technology [24,25].

A decrease in the electrode resistance leads to an increasing the transparent piezoelec-
tric transducer efficiency. Additionally, electrodes with high electrical conductivity and
transparency are necessary to increase the efficiency of solar cells or to increase electromag-
netic protection and compatibility of electronic devices and equipment.

Among the approaches to creating high-electrical-conductivity and transparent struc-
tures, ordered metal mesh structures formed on the surface or inside a transparent substrate
have considerable potential. The geometry of such systems can be calculated in advance
and specified during manufacture. Electrodes based on these structures have the best
characteristics at the moment [21] in terms of the ratio of sheet resistance and transparency
(3–5 Ω/sq with transparency of more than 85% [19]).
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Figure 1. Design of a transparent acousto-optic modulator.

Currently, several approaches are being developed to produce such microgrids [21,26].
One of the general approaches consists of forming microgrooves with a high aspect ratio in
an optically transparent material, such as quartz, into which metal, for example, silver or
copper, is subsequently deposited [22]. The grooves can be filled with metal by magnetron
or electron beam deposition, or chemical deposition from the gas phase. However, due
to the high aspect ratio and the small width of the groove, their use is problematic [22].
A rapid blockage of the inlet and the cessation of mental growth inside the grooves may
occur during the deposition process. Similar problems are also typical for galvanic metal
deposition into structures with a similar aspect ratio [27].

In this paper, the manufacturing technologies for transparent mesh structures are
analyzed. A proposed method for filling the grooves produced by lithography methods
with silver using the silver mirror reaction is also described. In addition, the article
describes the results of studies of the deposited metal morphology and the measurements of
transparency, sheet resistance, and the S parameters in the radio and microwave wavelength
ranges in the open coaxial waveguide of the obtained structures.

2. The Analysis of the Production Technologies of Transparent Mesh Structures

There are three groups among technological approaches used to obtain ordered mesh
structures:
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• Approaches based on the formation of grooves of a specified geometry in a substrate
or photoresist and their subsequent filling with metal. The grooves are formed using
photolithography methods in combination with liquid or ion plasma etching or laser
ablation;

• Approaches based on the removal of the preliminarily deposited metal layer using the
same etching methods;

• Approaches based on additive processes (electrohydrodynamic printing).

Based on the literature data [27–77], Figure 2 plots of the technological limitations
of various approaches to forming grooves in transparent materials or directly forming
conductors on the substrate surface. The markers show the values of the width and depth
of the groove’s or line’s height, obtained from the literature sources, and the lines show the
technological limitations of the approaches.
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Two studies [78,79] provide a description of the calculated model and the results of the
conductive mesh structures’ calculation, obtaining a screening coefficient SE of more than
50 dB with transparency of more than 90% in the visible range. These calculated values
were obtained for a width and height of the mesh conductors of 1.5 and 14 µm, respectively.
Per Figure 2, structures with such parameters can be produced by the following methods:
forming grooves in a transparent substrate by photolithography followed by reactive ion
plasma etching (RIE), nanoimprinting (hot embossing), or multilayer electrohydrodynamic
(EHD) printing.

At this stage, the first method was chosen for the practical implementation of the
calculated structures due to the wide availability of the necessary technological equipment
and verified technological regimes. Notably, the methods of nanoimprinting and EHD
printing, with their further development, have considerable potential for creating serial
technology for producing large-area, micro-mesh, transparent electrodes.

3. Materials and Methods

Experimental samples were pure quartz wafers with a thickness of 0.5 mm. A system
of grooves was formed in the first step of preparation as a network. In the second step, the
grooves were filled with silver metal. The topological network was an artificial, disordered
mesh with a Voronoi diagram randomly distributed inside a cell of equal probability
density (Figure 3).
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Figure 3. The topological figure of a conductive mesh.

The technological process of groove formation included these steps: the cleaning of a
wafer, the coating of an α–Si:H masking layer with plasmochemical deposition using SPTS
APM equipment (SPTS Technologies Ltd., Newport, UK); positive photoresist SPR700-
1.0 coating by centrifuge, drying, and exposure with a ASML PAS 5500 stepper (ASML,
Veldhoven, The Netherlands); followed by the development and plasmochemical etching
of the α–Si:H masking layer with the Bosh process; and plasmochemical etching of grooves
on the quartz wafer through the windows (holes) at the masking layer with the help of
C4F8. (Figure 4).
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Figure 4. Technological process of micro-mesh formation.

A silver mirror reaction (a process of silver salt reduction, for example, silver nitrate)
was used for filling the experimental samples with metal. The formation of a silver layer
with few defects is possible only with a low rate of chemical reaction [80]. Glucose was
used as a weak reducing agent, which increases silver adhesion to a surface [81]. The
synthesis was carried out at 25 ◦C for the same reason.

Two solutions were used. The first solution was prepared by dissolution of 1.25 g of
silver nitrate (AgNO3) in 30 mL of deionized water, the addition of 4 mL of 25% water
ammonia (NH4OH), and the addition of 30 mL of an alkali solution (1.1 g of NaOH was
dissolved in water and diluted until 30 mL of solution was formed). The initial rate of the
silver mirror reaction decreased with increasing ammonia concentration; the silver nitrate
solution stability and the thickness of the silver layer increased simultaneously [81]. The
silver alkali ammonia solution was diluted to 100 mL, and the first solution was prepared.
The second solution was prepared by dissolution of 1.1 g of glucose in water and dilution
to 100 mL. A higher glucose concentration (higher than 1.3 g/L) decreases the maximal
thickness of the silver layer [81] and facilitates silver particle agglomeration [24]. The shelf
life of the solutions was less than 10 h. The samples for the metallization were placed
into a beaker. The first solution was poured, and then the second solution was added in a
volume ratio of 1:1. The reaction time was less than 10 min (usually 3–5 min). The long
duration of the silver mirror reaction leads to the morphology of silver particles differing
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from a sphere [82], which can inhibit groove filling. The silver mirror reaction was repeated
several times. The excess metal from the surface was removed after each iteration of silver
deposition.

The geometric dimensions and surface morphology of the manufactured grooves and
the surface morphology and structure of the deposited silver were studied by scanning
electron microscopy (SEM, TESCAN ORSAY HOLDING, Brno, Czech Republic) using a
VEGA 3. Imaging was performed at an accelerating voltage of 10 kV and a beam current of
10 A in secondary electron detection mode to obtain images with the highest resolution,
and in back-reflected electron mode to obtain a compositional contrast.

Sheet resistance was determined by the four-probe method using a Keithley 2000
multimeter (Tektronix, Inc, Beaverton, OR, USA) and a Mill-Max 854-22-004-10-001101
four-probe head (Mill-Max Mfg. Corp., Oyster Bay, NY, USA).

The transmission coefficient in the visible wavelength range of 380 to 780 nm was de-
termined on a Shimadzu UV-3600i Plus spectrophotometer (SHIMADZU CORPORATION,
Kyoto, Japan) with a resolution of 1 nm at normal incidence of light on the sample.

Since the materials under development had considerable potential for application in
radio engineering, the shielding efficiency (SE) was measured to evaluate the obtained
materials’ radio engineering properties. The measurements were obtained in the frequency
range from 10 MHz to 7 GHz on a specialized measuring stand based on a FieldFox N9916A
vector circuit analyzer (Keysight Technologies, Santa Rosa, CA, USA) in a coaxial path
(type II). The SE value was determined from the S21 transmission coefficient of the path
with the sample in relation to the transmission coefficient S21 of the path without the
sample. Electro-sealing gaskets composed of dense metalized fabric were used for better
electrical contact between the sample and the walls of the coaxial tract. The SE dynamic
measurement range of the stand is 80 dB and the measurement error is ±2 dB.

4. Results

A photo of an obtained sample is shown in Figure 5. The geometrical dimensions
of the sample were an outer diameter of 16 mm and an inner diameter of 6.95 mm. The
sample was fabricated in this shape due to the requirements for SE measurements in the
coaxial path.
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Figure 5. Photo of the manufactured sample.

The grooves in the quartz substrate obtained by lithography and plasma chemical
etching were examined by scanning electron microscopy (Figure 6). The groove walls
obtained in quartz glass showed vertical deviations up to 10◦, which led to distortion of
the specified topology (Figure 3). The groove cross-section was trapezoidal with a depth of
16.24 µm and a width of 1.15 (in-depth) to 4.47 µm (at the surface). The deviation from the
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verticality of the groove walls was caused by lateral subtraction during plasma chemical
etching.
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The degree of groove filling with silver was evaluated after the metallization process
(Figure 7). We found that the silver filled all the grooves throughout the sample, but the
silver structure was porous.
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7000×magnification.
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The sheet resistance of the manufactured sample was (0.084 ± 0.016) Ω/sq. Measure-
ments were taken at 22 different points on the sample surface (Figure 8a).

The frequency dependence of the SE is shown in Figure 8b. The average SE value
in the frequency range of 10 MHz to 7 GHz is 54.6 dB. The horizontal behavior of the SE
spectrum indicates the absence of significant metallization defects.
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The transmission spectrum measurements were taken at eight different points on the
sample surface using a specially designed fixture (Figure 9a). The average, maximum and
minimum transmission spectrums of the test sample in the visible wavelength range are
shown in Figure 9b. The light transmittance coefficient calculated for the wavelength range
from 380 to 780 nm following GOST R 54164-2010 is 64.1%.
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5. Discussion

The deviation from the groove walls’ geometry due to the technological peculiarities
of quartz etching led to a width increase from 1.5 to 4 µm at the groove entrance. This
increased the surface area of the conductive grid paths and decreased the light transmission
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coefficient from 90% (according to the simulation results) to 64%. In order to increase this
parameter, further development of the plasma chemical etching process of a transparent
substrate is required. Notably, no such problems are encountered, for example, when
forming grooves on Si substrates: it is possible to produce grooves with a high aspect
ratio without distorting the geometry using the Bosh process, but such samples are only
transparent in the IR range (Figure 10).

Transparency can also be increased by applying antireflective coatings based on metal
oxides to the sample surface. These coatings will protect the metal mesh structure from
oxidation in addition to improving optical properties.
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high availability of necessary technological equipment and the verified technological re-
gimes. Notably, methods of nanoimprint lithography and multilayer electrohydrody-
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The experimental sample was prepared according to developed technology with a 
sheet resistance of 0.09 Ω/sq and a visible light transmittance of more than 60%. The de-
velopment of technology will allow for upgrading the functional characteristics of the pre-
pared samples. In particular, the verticality of the groove wall needs to be improved for 
transparency improvement. The grade of the metal filling and the density of the metal 
need to be increased for enhancing the SE and decreasing sheet resistance. The first prob-
lem can be solved by reworking the reactive ion plasma etching of transparent wafers. 
The second task may be achieved using a sintering process for the prepared samples. 
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Figure 10. SEM images of the Si sample with grooves formed in its surface using the Bosch process
with a high aspect ratio.

The values of SE and sheet resistance obtained on the experimental sample were
close to the calculated values. The silver synthesized in the grooves using the silver
mirror reaction had a porous structure, and its electrical conductivity differed significantly
from that of a monolithic material. The low value of the sheet resistance of the resulting
microgrid (0.084 ± 0.016 Ω/sq) and, consequently, the high SE coefficient were caused by
an increase in the cross-section of the conductors when the geometry of the conducting
lines was distorted. Adjustment of the technology used for filling the grooves accompanied
by an increase in the density of the formed channel can significantly increase the values of
these parameters.

6. Conclusions

We developed a technology for producing transparent conductive electrodes. The
technology consists of forming grooves in a transparent wafer by photolithography meth-
ods, followed by reactive ion plasma etching and its metallization by chemical deposition
with a silver mirror reaction (Tollen′s reagent). This technology was chosen due to the high
availability of necessary technological equipment and the verified technological regimes.
Notably, methods of nanoimprint lithography and multilayer electrohydrodynamic (EHD)
printing have considerable potential with the development of the methods for the creation
of serial technology micro-mesh transparent electrodes with a large surface area.

The experimental sample was prepared according to developed technology with a
sheet resistance of 0.09 Ω/sq and a visible light transmittance of more than 60%. The
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development of technology will allow for upgrading the functional characteristics of the
prepared samples. In particular, the verticality of the groove wall needs to be improved for
transparency improvement. The grade of the metal filling and the density of the metal need
to be increased for enhancing the SE and decreasing sheet resistance. The first problem can
be solved by reworking the reactive ion plasma etching of transparent wafers. The second
task may be achieved using a sintering process for the prepared samples.

The proposed approach to the design of optically transparent electrodes may be
effective for multiple scientific and industrial applications including acousto-optics, pho-
toacoustics, lithography, radio shielding applications, etc.
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