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Background: Multiplex tissue analysis has revolutionized our understanding of the tumor
microenvironment (TME) with implications for biomarker development and diagnostic
testing. Multiplex labeling is used for specific clinical situations, but there remain
barriers to expanded use in anatomic pathology practice.

Methods: We review immunohistochemistry (IHC) and related assays used to localize
molecules in tissues, with reference to United States regulatory and practice landscapes.
We review multiplex methods and strategies used in clinical diagnosis and in research,
particularly in immuno-oncology. Within the framework of assay design and testing
phases, we examine the suitability of multiplex immunofluorescence (mIF) for clinical
diagnostic workflows, considering its advantages and challenges to implementation.

Results:Multiplex labeling is poised to radically transform pathologic diagnosis because it
can answer questions about tissue-level biology and single-cell phenotypes that cannot be
addressed with traditional IHC biomarker panels. Widespread implementation will require
improved detection chemistry, illustrated by InSituPlex technology (Ultivue, Inc.,
Cambridge, MA) that allows coregistration of hematoxylin and eosin (H&E) and mIF
images, greater standardization and interoperability of workflow and data pipelines to
facilitate consistent interpretation by pathologists, and integration of multichannel images
into digital pathology whole slide imaging (WSI) systems, including interpretation aided by
artificial intelligence (AI). Adoption will also be facilitated by evidence that justifies
incorporation into clinical practice, an ability to navigate regulatory pathways, and
adequate health care budgets and reimbursement. We expand the brightfield WSI
system “pixel pathway” concept to multiplex workflows, suggesting that adoption
might be accelerated by data standardization centered on cell phenotypes defined by
coexpression of multiple molecules.

Conclusion: Multiplex labeling has the potential to complement next generation
sequencing in cancer diagnosis by allowing pathologists to visualize and understand
every cell in a tissue biopsy slide. Until mIF reagents, digital pathology systems including
fluorescence scanners, and data pipelines are standardized, we propose that diagnostic
labs will play a crucial role in driving adoption of multiplex tissue diagnostics by using
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retrospective data from tissue collections as a foundation for laboratory-developed test
(LDT) implementation and use in prospective trials as companion diagnostics (CDx).

Keywords: multiplex, digital pathology, whole slide image, tumor microenvironment, immunohistochemistry,
immunofluorescence, pixel pathway, laboratory developed test

INTRODUCTION

In diverse human cultures, knowledge is disseminated by an
esteemed individual who has achieved wisdom through discipline
and sacrifice. Visualize the archetype: a wise sage, sitting on a
mountain, legs folded, in meditative gaze. Advice seekers climb
the mountain to pose their question or dilemma. Magic happens,
wisdom is dispensed, and the seeker descends the mountain.
From its origins in the mid-19th century to today, diagnostic
anatomic pathology follows a similar construct. The foundation
of knowledge is histopathology – examination of changes in cells
and tissues viewed by microscopy to diagnose disease. The sage is
the pathologist, who, through years of observation and
discernment dispenses wisdom. Tissue samples and data
workflows converge on the mountaintop, where the
pathologist’s gaze is directed in a microscope. The “magic” is
the pathologist’s integration, interpretation and judgment of data
to establish a diagnosis that is reported in the medical record,
codified in journals and textbooks, or simply Tweeted.

Rudolf Virchow, known as the father of histopathology, wrote
that the body is like a state “. . .in which every cell is a citizen.
Disease is merely the conflict of citizens of the state. . .” (Virchow,
1858). Diagnosis of disease, in particular cancer, is based on
examination of cells by microscopy and on detection of specific
molecules in cells. Proteins and nucleic acids are routinely
identified in biopsy tissues by antibody-binding or nucleic
hybridization technologies such as IHC and in situ
hybridization (ISH). Nucleic acid amplification and sequencing
technologies such as polymerase chain reaction (PCR) are
routinely used in clinical practice to identify molecular
alterations such as point mutations, chromosome
translocations, and gene amplification/transcript
overexpression. In the past decade, next generation sequencing
(NGS) of hundreds to thousands of genes in parallel has entered
clinical practice, increasing the efficiency of detection of
abnormal genes that drive disease and impact treatment
choices. Bulk transcript profiling of tissue samples over the
past 2 decades has provided critical molecular insights into
various cancers including lymphoma (Scott, 2015) and breast
cancer (Perou et al., 2010), that have served as the basis of
prognostic and predictive transcript signature tests such as
OncotypeDX (Exact Sciences) (Siow et al., 2018). More
recently, by deeply profiling each “citizen” involved in the
conflict, single-cell profiling (transcriptomics, proteomics, etc.)
has advanced understanding of cell phenotypes that drive disease,
with implications for clinical practice (Marx, 2019; Aldridge and
Teichmann, 2020). These data-rich sequencing and profiling
techniques are powerful discovery tools, but for diagnostic use,
the vast majority of data generated is extraneous and lacks the
spatial context of histopathology. Nature’s 2020 Method of the

year, spatially resolved transcriptomics, captures spatial context,
but most of the methods do not have the cellular resolution of
histopathology, the size and complexity of data remains largely
beyond diagnostic comprehension, and the majority of the data
produced will ultimately lack clinical utility (Marx, 2021). We
hypothesize that multiplex immunofluorescence (mIF) will
emerge as a leading technique that allows each pathologist,
within their lab and scope of practice, to answer critical
questions about disease diagnosis, prognosis, and prediction of
response to the next generation of targeted therapies and their
combinations, particularly in immuno-oncology (Tan et al.,
2020).

IHC and the Clinical Diagnostic Landscape
Despite increases in molecular diagnostic testing in recent years,
IHC remains critical for histopathology diagnosis by revealing
various molecular species in situ in a tissue sample. In IHC,
antibodies against epitope(s) of a specific target (also referred to
as a “marker” - most often proteins but also carbohydrates or
nucleic acids – because they are used to mark cells) are applied to
thin, formalin-fixed and paraffin embedded (FFPE) tissue
sections mounted on glass slides. Slide pretreatment (“antigen
retrieval”) breaks formalin cross links, allowing the antibody to
diffuse into the tissue and bind mostly linear peptide (as opposed
to conformational) epitopes (Sompuram et al., 2006). Bound
antibodies are then detected with visualization reagents, most
commonly secondary antibodies conjugated to the enzyme
horseradish peroxidase (HRP). With peroxide, HRP converts
soluble 3,3′-diaminobenzidine (DAB) into an insoluble brown
precipitate that reflects antigen abundance and distribution in
otherwise colorless tissue. Tissue structure is then visualized with
a counterstain, typically hematoxylin, which labels,
predominantly nuclei, a bluish-purple color. Robotic
autostainers and optimized, prediluted reagents have improved
speed and reproducibility of IHC in disease diagnosis (Grogan,
1992; Prichard, 2014). ISH to detect DNA is used to identify
chromosomal translocations and gene copy number changes, and
RNAscope (Advanced Cell Diagnostics, BioTechne Inc.) has
emerged as a sensitive ISH technique to visualize RNA in
FFPE tissue, offering advantages over traditional RNA ISH
techniques to detect low abundance transcripts, and over
antibodies in detecting some targets such as soluble cytokines
or infectious agents (Wang et al., 2012; Carossino et al., 2020;
Stein et al., 2021). The DAB/hematoxylin-stained slide is
interpreted by a pathologist using a microscope, or
increasingly, by viewing a scanner-generated whole slide image
(WSI) on a computer monitor (Gurcan et al., 2009; Dimitriou
et al., 2019).

How is IHC used in clinical diagnosis? Early IHC applications
in the 1970s and 80s distinguished between major categories of
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neoplasia through demonstration, for example, that carcinomas
express cytokeratins and lymphomas express leukocytic antigens,
but not vice versa (Taylor, 1980; Debus et al., 1984). Over several
decades the diagnostic roles for IHC have expanded to include:
aiding in distinction between benign and malignant processes
[e.g., p53 upregulation associated with malignancy (Yemelyanova
et al., 2011), or p16 expression with HPV-positive squamous
carcinomas (Shelton et al., 2017)], identification of specific cell
types (e.g., CD68-positive macrophages, CD31-positive
endothelial cells, Foxp3-positive regulatory T lymphocytes),
subclassifying and refining diagnoses [e.g., association of
marker positivity or negativity with histopathology-based
differential diagnosis or molecular lesion, such as DNA
mismatch repair deficient carcinomas (Wong et al., 2018) or
BAP1-subtype melanomas (Shah et al., 2013)], providing
information about disease drivers [e.g., C-myc translocated
Burkitt’s lymphoma (Nwanze et al., 2017), N-myc amplified
neuroblastoma (Santiago et al., 2019), EGFR-amplified cancers
(Atkins et al., 2004)], allowing inference of various cell states and
behaviors (e.g., Ki67 positivity and cell proliferation, Granzyme B
positivity and activated cytotoxic T lymphocytes), activity of
various growth stimulating and inhibiting pathways (Ras/
MAPK, Hippo, Wnt/β-catenin, Hedgehog, Notch, TGF-β, and
others), and assessment of predictive biomarkers associated with
response to targeted therapies (Her2, ER/PR, PD-L1). While IHC
may be capable of revealing a molecule of importance within
tissue, whether it is the favored diagnostic modality is dependent
on clinical context and test performance relative to other options
such as FISH or NGS, such as is the case with detection of NTRK-
family gene translocations that occur with low frequency in a
wide variety of malignancies (Solomon et al., 2020).

Diagnostic IHC tests evolve. Pathologists refine IHC tests by
testing new antibody clones, platforms, and detection reagents,
and create new IHC tests based on markers discovered through
research, diagnostic surveys, or to recapitulate other tests such as
DNA mutation sequencing [e.g., mutation-specific antibodies
such as BRAF V600E (Tetzlaff et al., 2015)] or transcript
profiling [IHC panels to recapitulate subtypes of diffuse large
B cell lymphomas (Yan et al., 2020a)]. Candidate IHC markers
start in research laboratories—and most markers stay in research
applications. A new marker can enter diagnostic practice through
retrospective studies that demonstrate the marker’s improved
utility over existing markers in defining a diagnosis or prognosis
in a particular lesion type. Alternatively, the marker can enter
diagnostic practice as the basis of a new standard of care through
prospective investigations as a companion diagnostic (CDx)
assay, as was the case with Her2 and PD-L1 IHC tests (Roach
et al., 2016).

Because IHC tests are interpreted visually by a pathologist,
marker choice and assay optimization is part science, part art –
the intersection of truth and beauty. “Beauty” is ultimately
subjective, assessed by signal strength, staining pattern, and
signal to noise, whereas “truth” is assessed by biological
plausibility, comparison of staining to reference standards (if
they exist), and eliminating artifacts (Tsutsumi, 2021). Each IHC
slide is typically scored for positivity or negativity of the tested
marker in specific cell types; for cancer, whether the marker is

present in cancer cells or the tumor microenvironment (TME) or
both is assessed, always with reference to the location and
appearance of different cell populations in the corresponding
section stained with H&E. IHC CDx’s are usually scored in a
semiquantitative fashion, based on marker distribution, percent
of positive cells and/or stain intensity. However, it is important to
note that IHC marker panels only aid in establishing a diagnosis
of cancer; rather, it is the appearance of individual cells and
overall tissue by H&E that forms the basis of a cancer diagnosis,
with interpretation of a specific set of IHC stains helping to
confirm, refine, or subclassify a diagnosis. For example, a lung
cancer biopsy showing “carcinoma” on the H&E section is
typically stained for a set of markers to determine whether it
is best classified as adenocarcinoma or squamous carcinoma, as
most adenocarcinomas will be positive for TTF1 and NapsinA,
but negative for p63, and vice versa (Inamura, 2018). For
carcinomas with unambiguous squamous, ductular, or other
type of differentiation, IHC stains usually confirm the
histological impression, but for the not uncommon tumor that
displays few or paradoxical features of differentiation (e.g.,
epithelioid sarcomas, which display epithelial differentiation
but express mesenchymal markers, or sarcomatoid carcinomas,
which display mesenchymal differentiation but express epithelial
markers), IHC marker panels are crucial for accurate, state of the
art histopathology diagnosis (Huey et al., 2019; Czarnecka et al.,
2020).

Today, most IHCs are used as an adjunctive to diagnosis,
with specific markers chosen in groups or panels based on
algorithms that aim to subclassify the lesion and answer
diagnostic questions relevant to the specific clinical scenario
(patient age, anatomic location), specimen type (skin, soft
tissue), and histologic features of the H&E-stained tissue. In
the United States, IHC of adjunctive markers poses a relatively
low risk to patients because they are often used redundantly, as
part of a panel or suggested diagnostic algorithm. Such
algorithms are typically not standardized, with variation in
algorithms across institutions and geographies attributed to
variation in medical practice. Thus, a testing error - a false
positive or false negative result - of a single IHC assay is unlikely
to impact the final diagnosis. Accordingly, adjunctive IHC tests
are classified by the United States Food and Drug
Administration (FDA) in the lowest risk class (Class I) of
in vitro diagnostics (IVD) (Medical Devices, 1998). A small
but critical and growing set of markers, such as Her2, ER, PR,
and PD-L1, predict (or, at best enrich for) response to specific
therapies and are classified as companion diagnostics (CDx)
(Scheerens et al., 2017). A related category of test, a
complementary diagnostic, is similar to a CDx by providing
useful predictive information, but is not required to administer a
particular therapy (Scheerens et al., 2017). Predictive IHC
markers are often single “high stakes” tests, errors in which
entail a greater risk to patient safety, and are thus classified by
FDA in the highest risk class (class III) of IVD (Jørgensen,
2016). While some benign and a few malignant diagnoses do not
require any IHC, the current standard of diagnosis in 2021 for
most malignant diagnoses, in particular a patient’s initial
diagnosis, requires some IHC tests.
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IHC used for patient diagnosis as a basis of medical decision
making is regulated in the United States at a variety of levels.
Assays must be validated and performed in a Clinical Laboratory
Improvement Amendments (CLIA)-certified diagnostic
laboratory, and be interpreted by qualified personnel such as a
pathologist licensed to practice medicine in the state where the
sample originates (Fetsch and Abati, 2010). Further lab
certification by the College of American Pathologists (CAP)
covers CLIA standards as well as assay performance
assessment, proficiency testing, and adherence to specific
practice guidelines such as processing and interpretation of
breast cancer specimens (College of American Pathologists
LEP, 2017). States such as New York have more rigorous
laboratory standards and certification, enforced by the New
York State Department of Health (NYSDOH) (New York State
CLEP, 2021). A largely comparable but distinct international
standard for diagnostic medical laboratories is ISO 15189
(Schneider et al., 2017). Laboratory tests are generally of two
types: IVDs and Laboratory Developed Tests (LDT). While both
test types require in-laboratory assay validation, IVDs are
components and/or systems manufactured and distributed to
laboratories for a specific purpose defined by an intended use
statement, whereas LDTs are custom “single site” tests that may
not be performed in laboratories other than where the test was
developed. FDA regulates both IVDs and LDTs, but exercises
enforcement discretion over most LDTs as constituting a part of
medical practice, which is not regulated by FDA (Genzen, 2019).
LDT and related regulation in the United States has been subject
to attention and neglect over decades, and is not yet settled
(Genzen et al., 2017). Recently, the United States VALID
(Verifying Accurate, Leading-edge IVCT Development) Act,
which proposes to classify all assays performed in diagnostic
laboratories as In VitroClinical Tests (IVCT) and would allow the
FDA to exert greater oversight of testing based on patient risk, has
undergone several cycles of stakeholder feedback and revision
(Konnick, 2020). In Europe, new legislation (IVDR) that applies
to IVDs takes effect in May 2022, with implications for LDT
development and practice (Bank et al., 2020; Stenzinger and
Weichert, 2020). The language, interpretation, and
enforcement of these regulations will impact global test
development and deployment, particularly new tests based on
innovative technologies, for decades to come (Huang et al., 2021).

Not all LDTs are equivalent, generally falling into two
categories. A de novo or traditional LDT is a novel test
“system” made from individual components, often sourced
separately, each piece of equipment, input reagent, or other
part of the assay system which may be labeled as an IVDs or
for Research Use Only (RUO). A derived LDT is when a
laboratory alters system components, instrument settings, or
reaction conditions of an approved or cleared IVD, such that
system definition and/or laboratory use deviates from the original
product design and/or intended use statement of the parent IVD.
If an LDT uses an IVD-labeled component, either type of LDT is
considered an “off label” use of the IVD component. With IVDs,
responsibility for test performance and thus risk of test failure is
shared between the device manufacturer and the laboratory: the
manufacturer is responsible for design, manufacturing, and

performance of the IVD under defined conditions, and the
laboratory is responsible for using the assay/device according
to those conditions—only for its defined and specific purpose. In
contrast, LDTs are the primary responsibility of the laboratory
offering the test. Many IVD assays were first introduced to clinical
practice as LDTs, so one key advantage of LDTs is the ability to
quickly bring novel diagnostic technology to clinical practice.
However, accompanying the lower barrier of LDTs to market
entry is the possibility that poorly designed, developed, or
performing tests may be used in patient care. Typically, the
strict design, manufacturing, and testing requirements of IVDs
are associated with more robust real-world product performance
(such as accuracy, precision, multisite/multi-operator
consistency, known failure modes with risk mitigation
strategies in place) as well as market exclusivity that justifies a
premium price or level of reimbursement. However, established
IVDs can act as a barrier to rapid technological innovation by
blocking competing technologies or companies who may offer
superior technology or aspects of performance (e.g., lower cost,
faster turn-around time, greater analytical sensitivity) but lack
adequate clinical evidence to gain regulatory approval that drives
adoption.

Visualizing Multiple Markers
Cells of the immune system and the majority of hematolymphoid
neoplasms are defined by coexpression of multiple cell surface
markers, commonly assessed by flow cytometry. However, the
vast majority of IHCs used in clinical diagnosis of solid tumors
interrogate a single marker per tissue section (termed
“singleplex”) and are thus unsuited to characterize cell
phenotypes defined by coexpression of multiple markers when
those markers are in the same subcellular compartment. In
current diagnostic practice, many cases require multiple IHC
markers, and the pathologist examines one marker at a time, one
slide at a time, noting which cell populations on the slide are
positive vs. negative for each marker then integrating the results
to establish a final diagnosis. Occasional cases, particularly
undifferentiated solid tumors and lymphomas, require more
than two dozen different markers to arrive at a proper
diagnosis, making the task of tallying and interpreting IHC
results challenging. For such tumors, molecular profiling is
playing an increasingly important diagnostic role (Yan et al.,
2020b). For tumors in which sampling may be restricted to fine
needle aspirates (FNA) or core needle biopsies (CNB) that yield
limiting tissue, using multiple consecutive sections for singleplex
IHC as well as possibly splitting the biopsy for diagnostic
molecular testing such as PCR or NGS can compromise
accurate diagnosis. For example, the majority of lung cancer
patients present with advanced disease that is not amenable to
surgical intervention, so diagnostic, prognostic, and predictive
factors must be obtained from FNA or CNB of a mediastinal
lymph node, or even a “liquid biopsy” (NGS to detect circulating
tumor DNA in a peripheral blood sample) (Chen and Zhao,
2019). For such cases, multiplex staining allows visualization of all
markers of interest using a minimal number of tissue sections.

By performing sequential or simultaneous chromogenic IHC
staining reactions on a single slide, it is possible to generate
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multiplex chromogenic stained slides (Morrison et al., 2020).
However, there are only limited diagnostic scenarios where
chromogenic multiplex staining is currently used. These are
situations in which the pathologist has greater confidence in a
diagnosis when two markers labeling different cell populations or
tissue compartments are present in the same slide than when the
same two markers are present in different slides of the same tissue
block. Given the availability of >1 enzyme to detect antibodies in
chromogenic IHC [in addition to HRP, alkaline phosphatase
(AP) is commonly used], and various enzyme substrates with
distinct absorption spectra, two or more staining reactions can be
performed sequentially, creating two or more different colors
(plus a counterstain), each color representing a different marker
or cocktail (mixture) of markers. Such assays typically require
more complex test development and validation to ensure the
multiplex staining reactions recapitulate the performance of each
singleplex marker. For labs requiring fast assay turn-around time,
duplex assays take longer to develop, cost per slide is typically
higher than an equivalent number of singleplex reactions, and, at
least in the United States, reimbursement mechanisms to
incentivize use do not exist. One widely used stain is “PIN4,”
which labels, in different colors, benign and malignant cell
populations on the same slide to help the pathologist
distinguish in situ from invasive cancer (Tacha and Miller,
2004). Most chromogenic multiplex assays are developed to
label separate cell populations (e.g., cancer vs. non-cancer
cells) or cell structures (plasma membrane vs. nucleus of same
cell), without the intention of assessing marker colocalization,
and, like adjunctive singleplex IHCs, are also interpreted in a
qualitative fashion by a pathologist using light microscopy. There
are many multiplex marker combinations commercially available
(see e.g., BioCare Medical, Cell Marque, Mosaic Laboratory
websites), and for ease of application to a wide variety of
clinical scenarios most currently available kits consist of
adjunctive diagnostic markers (United States FDA risk class I).

Assessment of marker coexpression (within cells) and
colocalization (by x-y pixel value coordinates) with current
chromogenic IHC methods can be challenging. For singleplex
DAB/IHC stains, it is usually straightforward to discern whether
specific populations of cells (e.g., cancer cells, mononuclear
inflammatory cells, vascular cells) are positive or negative for
each marker. However, due to the requirement for IHC of one
section per marker and the size of most cells (∼10 μm) relative to
typical section thickness (4–5 μm), it is difficult to discern
whether specific cells seen in an adjacent H&E-stained section
are positive or negative for a given marker, and impossible to tell
whether such cells viewed in the original H&E section are positive
for more than two IHC markers. For current multiplex IHC
assays that precipitate chromogens in tissue, when two different
markers colocalize to the same subcellular compartment in the
same cells, most commonly with brown and red chromogens,
marker colocalization is easily overlooked. This is because mixing
light-absorbing chromogens generates dark signals that to the
human eye can mimic dark staining of individual chromogens,
and overlapping absorption spectra of many chromogens can
confound digital image collection and analysis. Another challenge
is determination whether lack of marker colocalization is genuine

or due to technical interference based on assay technology or
design. Moreover, in triplex or higher-plex chromogenic assays,
even when markers localize to completely different cell
populations, it is difficult for the human brain to comprehend
the multicolored patterns and to accurately quantify cell
intensities and proportions of positive cells for each marker.
Confidence in visual recognition of marker colocalization may be
further compromised by microscope setup as well as the limited
sensitivity and dynamic range of chromogenic assays. Thus,
current singleplex and multiplex chromogenic IHC
technologies offer only a limited capability to assess multiple
marker colocalization in specific cells. Moreover, as the need to
define newly recognized cell phenotypes characterized by
simultaneous expression of multiple markers increases,
comprehension of stained tissue sections will require
automated image acquisition (slide scanning) and software-
assisted marker visualization and interpretation.

Immunotherapy, the Tumor
Microenvironment and Multiplex Staining
In the past decade, immunotherapies have transformed oncology
research and clinical practice while revealing the importance of
endogenous immune “checkpoints” such as PD-L1 and CTLA4
that prevent cytotoxic T lymphocytes in the tumor
microenvironment (TME) from targeting a variety of
hematological and solid malignancies (Couzin-Frankel, 2013).
Despite widespread use of predictive singleplex PD-L1 IHC tests
to enrich for likelihood of response to PD-1/PD-L1 axis blockade,
the majority of patients do not benefit, and effectiveness is limited
in several cancer types likely due to a highly immunosuppressive
TME or lack of tumor-specific antigens (Xu-Monette et al., 2017;
Hack et al., 2020). By contrast, ipilimumab, targeting CTLA4,
does not have an accompanying predictive IHC CDx, although
expression of MHC class I has been associated with response to
ipilimumab in melanoma (Rodig et al., 2018). Immunoscore®
(HalioDx) is an image analysis-based IHC assessment of CD3 and
CD8 positive T lymphocytes in defined regions of a tumor biopsy
sample, which has shown clinical utility in colon cancer (Angell
et al., 2020; Bruni et al., 2020). In recognition of this and other
work, tumor immune microenvironment has been added as a
prognostic factor by the WHO tumor classification of colon
cancer (Digestive System Tumours, 2019). It is important to
note that development of Immunoscore preceded successful
blockade of immune checkpoint targets in human (Galon
et al., 2006), so these and other immune checkpoints as well
as other TME immune cell phenotypes of known importance are
not assessed by Immunoscore. A better understanding of the
interactions among tumor, immune cell subsets, immune
checkpoint pathways and other cell types in the TME,
including response and resistance mechanisms, will be crucial
to develop effective cancer therapies.

The TME is a complex ecosystem consisting of tumor cells,
endogenous and tumor-induced stromal cells, vasculature
(including vascular endothelia, pericytes, and perivascular
cells), nerves and other sensory structures, and various
organ/tissue-resident and recruited immune cell types as well
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as non-cellular components of the extracellular matrix such as
collagen, fibronectins, and proteoglycans (Li et al., 2021;
Rameshbabu et al., 2021; Vitale et al., 2021). The TME
promotes tumor stem cell renewal, proliferation, invasion,
and angiogenesis while creating an immunosuppressive
environment (Nicholas et al., 2016; Najafi et al., 2019). In
solid tumors, dense stromal collagen (desmoplasia) creates a
physical barrier that supports cancer growth, in part by
promoting hypoxia and precluding entry of immune cells
into the tumor mass while maintaining blood vessels that
allow tumor cells to metastasize (Mortezaee, 2021), a
particularly common feature of pancreatic cancer (Bulle and
Lim, 2020). Other components of the TME, such as tumor-
associated macrophages (TAMs) (Vitale et al., 2019) and
intercellular signals such as IL10 (Ouyang and O’Garra,
2019) and TGF-β (Ganesh and Massagué, 2018) represent
therapeutic targets responsible for primary resistance to
immune checkpoint blockade (Bulle and Lim, 2020).

Recent advances in cell profiling technologies, data analysis,
and visualization tools have unveiled a hitherto unappreciated
complexity of the TME and its constituent cell phenotypes (Galon
et al., 2006; Digestive System Tumours, 2019; Angell et al., 2020;
Bruni et al., 2020). As many TME cell phenotypes most relevant
to immuno-oncology are defined by simultaneous detection of
more than two markers, singleplex IHC panels will be inadequate
to unambiguously identify these cell types in a single tissue
section. Several technologies have recently been employed to
characterize the TME in research investigations, including
multiplexed immunohistochemistry (mIHC) and
immunofluorescence (mIF) (Hofman et al., 2019; Parra et al.,
2019), mass spectrometry (IMC/CyTOF, MIBI) (Baharlou et al.,
2019), single-cell RNA sequencing (scRNAseq) (de Vries et al.,
2020), and spatial transcriptomics (Ji et al., 2020).

Several recent studies have employed multiplex methods to
investigate the relationship between TME and treatment efficacy
as part of exploratory or retrospective analyses of tissue biopsies
from clinical trial cohorts. Chaudhary et al. evaluated both short-
and long-term effects of prexasertib, a CHEK1 checkpoint kinase
inhibitor, on TME of head and neck squamous cell carcinoma,
coupling transcriptomics withmultiplex mIHC (Chaudhary et al.,
2021). Acutely, treated tumors demonstrated increased
expression of T-cell activation and immune cell trafficking
transcripts and decreased expression of immunosuppression-
related transcripts, but over the longer time points there was
an increase in immunosuppression-related transcripts suggesting
evasion of immune surveillance that correlated with acquired
prexasertib resistance. Schwarze et al. used IHC and mIF on
cancer biopsies from a phase IB trial of immune checkpoint
inhibition combined with administration of myeloid dendritic
cells, revealing treatment-related immune cell infiltration into
tumor (Schwarze et al., 2020). Sathe et al. integrated scRNAseq
with mIHC to demonstrate dramatic increases in exhausted and
regulatory T lymphocytes in gastic carcinoma compared to
normal mucosa (Sathe et al., 2020). Gundle et al., in reporting
microdosing of drug combinations in soft tissue sarcoma (STS),
used mIHC and GeoMx Digital Spatial Profiling (Nanostring) to
reveal putative mechanisms of tumor resistance to drug treatment

(Gundle et al., 2020). These studies highlight the power of
multiplex analysis to reveal a variety of immune cell
phenotypes and their spatial arrangements in the TME from a
single cancer biopsy, and based on these reports we anticipate
growing use of multiplex technologies to probe patient tumor
biopsies.

Multiplex Technologies and the Path From
Research to the Clinic
We hypothesize that multiplex technologies most likely to reach
clinical application, at least initially, will need to fit in existing
histopathology sample workflow with results able to be viewed
and interpreted on computer monitors. Many multiplex
technologies use fluorescence emission as a means of marker
visualization, with some combination of simultaneous and/or
cyclic sequential labeling and detection (Lin et al., 2018; Tan et al.,
2020). Because fluorescence microscopy is a mature research
technique that is already used for a limited number of clinical
applications, we believe fluorescence detection will be best suited
for initial clinical use.

Diagnostic fluorescence microscopy in use today
The use of fluorescence microscopy in routine diagnostic
anatomic pathology is currently limited to DNA ISH to detect
chromosomal abnormalities (translocations, gene amplifications)
and to antibody-based investigations of specific immune and
genetic diseases in dermatopathology and nephropathology. A
fluorescence microscope and its accompanying viewing monitor
are typically located in a darkroom, outside of the main lab, in
order for users’ eyes to accommodate viewing images with a dark
background. In contrast, the background of the H&E or DAB-
stained image viewed in a brightfield microscope is usually white,
and such images can be comfortably viewed for hours in a
brightly lit room. Typically, dedicated technicians gather
images from fluorescent diagnostic assays (e.g., DNA FISH)
for the pathologist to review for case sign-out, freeing the
pathologist from the dark room. One solution to the “dark
room” problem is for the pathologist to review and interpret
fluorescent WSI, possibly with false coloring or color inversion to
create an artificial white background on a computer screen. Such
images can be obtained from whole slide fluorescence scanners,
that, unlike the fluorescent microscope, are not required to sit in a
darkroom, but rather feature automated workflows and high
throughput for enhanced viewing and analysis on computer
monitors.

Differences between brightfield and fluorescence
microscopy
In addition to these practical differences between fluorescence
microscopy and brightfield microscopy, there are important
differences in the relevant laws of physics that underlie
viewing stained tissue by each type of microscopy. To the
detector, whether a camera or the human eye, brightfield
microscopy measures an absorption process (subtraction of
light), while fluorescence microscopy measures an emissions
process (addition of light). Radiative transfer, which accounts
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for the emission and transport of electromagnetic radiation
(light) through a medium, confers significant advantages for
fluorescence over brightfield imaging in terms of dynamic
range, sensitivity, and the ability to measure multiple signals at
once (multiplexing):

Dynamic range
With chromogenic staining and brightfield microscopy,
transmitted light passes through the sample, and light
intensity in each “column” of absorption [i.e., tissue thickness
(z) at each x-y coordinate of the tissue plane] is inversely
proportional to the abundance of deposited chromogen. Once
the absorption column has become optically thick (e−τ where the
optical depth, τ > 1), the ability to detect additional chromogen in
a heavily stained column becomes exponentially more difficult
(i.e., the stain “shadows” itself). Consequently, with heavy
staining, section thickness and enzyme reaction time can
dramatically impact perceived stain intensity and can create
challenges in consistently distinguishing between moderate vs.
strong staining in semiquantitative IHC assays. In addition,
chromogen diffusion can leave a lightly stained “diffusion
halo” of several hundred nanometers or more around
intensely stained structures (more prominent with fast-red
based detection by alkaline phosphatase). In areas with low
levels of chromogenic staining, focal plane, objective lens
magnification and numerical aperture, and other features of
the optical system can impact detection sensitivity. A recent
study on focus standardization of H&E-stained WSI, obtained
from different scanners, revealed that a substantial amount of out
of focus information is retained by an “in focus” brightfield image
(Kohlberger et al., 2019). Fluorescence imaging uses a completely
different method to detect marker abundance, with the intensity
of the emission column at each x-y position in the sample being
directly proportional to amount of the fluorophore in the column.
Because a thin tissue section is nearly optically transparent,
essentially all emitted light from fluorophores passes easily
through the column and is detected by the camera. As
discussed above, colocalization of chromogenic dyes increases
the darkness of tissue when viewed by brightfield microscopy,
whereas with fluorescence based detection overlapping signals
become brighter with increased marker abundance. These
differences in the physics of brightfield vs. fluorescence
imaging contribute to the fact that, in practice, HRP/DAB is
limited to ∼2 orders of magnitude of dynamic range while
fluorescence can detect ∼5–6 orders of magnitude,
approaching the intrinsic dynamic range of the protein
concentration in biological specimens of ∼7 orders of
magnitude or more (Rimm, 2006; Zimak et al., 2012; Vani
et al., 2017).

Sensitivity
In fluorescence imaging, to achieve higher sensitivity one can
increase the excitation light intensity to further increase the flux
of emitted light and/or increase camera exposure time to collect
additional signal. Autofluorescence of some FFPE tissues can
limit sensitivity by increasing background emissions at different
wavelengths (Lazarus et al., 2019). With chromogenic imaging,

above a certain level of absorption there is little sensitivity
gained with brighter illumination. The fluorescent signal can
also be amplified by introducing more fluorophores per
antibody in the staining assay (Zimak et al., 2012), while for
chromogenic staining, adding more absorbing molecules has a
fast-diminishing effect once the optical depth of the stain
column is above a certain amount.

Higher-order marker multiplexing
Higher order multiplexing is possible for fluorescence imaging
because the absorption and emission spectra of fluorescent probes
are generally narrower than those of chromogenic stains. Given
the finite bandwidth of the optical spectrum, this property allows
for a greater number of multiplexed signals to be simultaneously
detected—typically five fluorescent channels with conventional
filter sets and up eight or nine channels with special filter sets and
“spectral unmixing” (defined below) as compared with two or
three simultaneous colocalized colors in a chromogenic image.
DAB, the most commonly used chromogen, has a broad
transmission spectrum overlapping with red and yellow
(Gordon, 1988), making it difficult to accurately quantify DAB
when other chromogens are present. Spectral unmixing is a
mathematical operation, a nonlinear least-squares fit, that
estimates the proportion of each fluorophore’s contribution
(and any tissue autofluorescence) to the overall spectrum at
each wavelength when there is spectral overlap (spectral bleed-
through) (Dickinson et al., 2001). But, when considering potential
diagnostic uses of fluorescence, a requirement for spectral
unmixing in the detection system may compromise consistent
tracing of information through the so-called “pixel pathway” - the
framework, described below, that governs how regulatory bodies
view WSI systems for diagnostic use (Abels and Pantanowitz,
2017).

Standardization of multiplex immunofluorescence workflows.
Fluorescence microscopy as a technique is far less standardized
than brightfield microscopy, with each microscope manufacturer
offering distinct lens materials, light sources, optical paths, filter
and mirror sets, detection cameras, and viewing software. With
mIF, microscopists can generate images that maximize signal to
noise ratios for the given marker, antibody clone, fluorophore,
tissue/sample type, preparation method, strength of emission
light, camera exposure time, and experimental aim—all too
frequently with only the goal of generating a beautiful and
visually striking image for a publication, journal cover, or
marketing material. However, these parameters require
simultaneous optimization to achieve an optimal result—which
might be very different for the next experimental condition, set of
tissue samples, equipment setup, or laboratory. There are
increasing options for whole slide fluorescence scanners that
create multiplex WSIs, but these are not yet standardized with
respect to how images are generated or how the output files are
formatted. A critical aspect of diagnostic development and
validation, even in a single laboratory, is defining the
diagnostic system, locking it down, and then testing
performance on scaled sample sets in relation to the assay’s
expected use. Thus, one major challenge of implementing
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fluorescence-based tissue marker detection in clinical practice is
defining the best system parameters from a wide variety of system
components and configurations so that the fluorescent images
can be compared to ground truth, typically “gold standard”
brightfield IHC images.

Thus, for diagnostic use mIF has numerous potential
advantages over enzyme-based chromogenic staining, allowing
simultaneous detection of multiple markers in individual cells
and reducing the number of tissue sections necessary for
complete assessment of markers currently tested with IHC. As
noted, this may be advantageous in situations where diagnostic
tissue is limiting, such as lung cancer. Most importantly, as deep
profiling methods (transcriptomics, proteomics) are used to
probe individual cells in normal and diseased tissues, most
notably as part of the Human Cell Atlas (Regev et al., 2017), it
should be possible to specify a standard, minimal set of markers
to unambiguously identify specific and well-defined pathogenic
cell types and their locations using mIF on tissue biopsies.

Phases of multiplex immunofluorescence testing. A useful
framework to consider mIF assays is the preanatlytic, analytic,
and postanalytic phases of testing. For DAB/IHC assays, the
analytic phase is staining itself, either manually by a technician or
by an autostainer. Preanalytic factors include all steps from
sample procurement to staining, including fixation, processing,
embedding, slide preparation, and any manual tissue
pretreatment. It is estimated there are over 100 discrete steps
in the preanalytic phase, and beyond formalin fixation past a
certain time (e.g., 8 h for ER/PR IHC of breast biopsies per CAP
recommendations), practices are not standardized and thus vary
widely (Agrawal et al., 2018; Compton et al., 2019). Importantly,
antigen retrieval steps that lyse formalin cross links and expose
epitopes prior to staining allow many singleplex IHC assays to
retain robust assay performance, at least for qualitative
interpretation, despite variation in preanalytics (Bogen et al.,
2009). The analytic phase on the autostainer includes any
automated pretreatments, antibody blocking and incubation
steps, washes, and enzyme-based signal detection. The
postanalytic phase includes applying the slide coverslip, any
post-run slide labeling, and interpretation by the pathologist.
Variation in any of these test phases can cause variation in results,
as well as false positive or false negative results. Over 4 decades of
practice experience with DAB-based IHCs has led to improved
diagnostic assay standardization that—considering disparate
reagent sources and automation platforms – allows for some
degree of comparability between assays across antibody clones,
platforms, and laboratories. Such inter-assay comparability is
emphasized by FDA in IHC guidance documents and IHC-
based product approvals (Guidance for Industry, 1998) as well
as CAP-recommended updates in assay interpretation [e.g., for
the Her2 IHC and FISH assays (Wolff et al., 2018)]. mIF
workflows are far less standardized, and quantitation of images
requires additional analytic and post-analytic steps such as
fluorescent slide scanning and image capture, image processing
and analysis, and viewing on a computer monitor. Thus, for mIF
the diagnostic workflow is expanded relative to traditional IHC,
such that the postanalytic steps of staining become the preanalytic
steps for slide scanning and analysis. Tissue and slide quality

impacts scan quality, which can vary widely between vendors,
models, and laboratories; scan quality in turn influences image
analysis (Dunstan et al., 2011; Webster and Dunstan, 2014) as
well as performance of AI algorithms (Cui and Zhang, 2021).

Multiplex fluorescence technologies. Several multiplex assay
platforms, technologies, and protocols have been recently
reviewed (Lin et al., 2018; Hofman et al., 2019; Francisco-Cruz
et al., 2020; Tan et al., 2020; McGinnis et al., 2021). Traditional
mIF assays use fluorophores directly conjugated to primary or
secondary antibodies. With traditional IHC, sensitivity is
enhanced by increasing the number of HRP molecules per
primary antibody, such as by avidin/biotin complexes or HRP-
polymers. The same principle holds for mIF, with sensitivity
enhanced by increasing the number of fluorophores per primary
antibody molecule, allowing generation of quantitative data
across analyte concentration ranges that reflect relevant
physiologic or pathological states in tissue (Zimak et al., 2012).
In newer mIF methods, application and detection of antibodies
can be sequential, simultaneous, or some combination thereof.
Some methods can be performed manually, but recent data
suggests automation improves precision and reproducibility
(Surace et al., 2019; Taube et al., 2020), performance attributes
that will be essential to build confidence in diagnostic use. In each
method, specific fluorophores need to be matched to antibody/
target molecule, emissions spectra, filter sets, camera settings,
tissue type, and proposed data analysis pipeline. A variety of mIF
methods, including hapten-based, cyclic tyramide-based
amplification and DNA barcode-based detection allow higher
sensitivity and higher order multiplexing beyond the traditional
species barriers imposed by secondary antibody-based
detection. Emerging methods such as CODEX (Akoya, Inc.)
(Goltsev et al., 2018), MACsima (Miltenyi Biotec), Orion
(Rarecyte, Inc.), GeoMx Digital Spatial Profiling (Nanostring,
Inc.) (Toki et al., 2019), and Visium FFPE (10x Genomics)
generate higher-plex spatial analysis (20–40 or more markers on
a single section), but we speculate these techniques are better
suited for discovery rather than immediate clinical applications
until challenges associated with long turnaround times, high
cost per sample, sample destruction, and stringent validation
requirements are overcome.

Among the most widely used mIF method, especially in
immuno-oncology, is Tyramide Signal Amplification (TSA)
(Opal, Akoya, Inc.), a cyclic staining protocol using tyramide-
conjugated fluorophores (Stack et al., 2014). Briefly, the TSA
method amplifies fluorescent signals through a polymer-HRP
detection system similar to traditional IHC, but instead of using
DAB to deposit chromogen, HRP activates tyramide to covalently
bind multiple tyrosine residues near the epitope of interest. Non-
covalently bound antibodies are then stripped using heat, while
tyramide-linked fluorophores accumulate on the tissue with each
cycle of staining. This staining/amplification cycle is then
repeated up to 7 more times (generating up to an 8-plex
image) with different antibody/fluorophore combinations, with
consideration to order of target detection as well as rigorous
controls required during assay development and with each
experiment to ensure accurate detection of each marker. Once
an assay is developed, the advantages of this technique are its
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simplicity, enhanced sensitivity relative to fluorophore-linked
secondary antibodies, high specificity, and compatibility with
most fluorescent microscopy systems. Spectral unmixing,
discussed above, is an obligate requirement in the Opal
workflow. With multiple rounds of epitope retrieval, tissue
integrity may become compromised, limiting assay plexy and
precluding use of the mIF slide for additional assays such as H&E
staining. A recent improvement in the TSA method using a
stripping buffer instead of heat underscores the importance of
maintaining tissue integrity for any mIF analysis (Willemsen
et al., 2021).

One recently developed method with several advantages over
cyclic TSA-amplification is Ultivue’s InSituPlex (ISP) technology
(Figure 1). Antibodies against four different targets are each
conjugated to a unique DNA barcode sequence. After a single
antigen retrieval step, all antibody-DNA conjugates are applied to
the slide. The barcodes on each antibody are then amplified in
situ, avoiding secondary antibodies that can exhibit unwanted
cross-reactivity. Next, fluorescent probes complementary to each
barcode label each target, enhancing sensitivity. ISP has been
automated on autostainers (BOND RX, Leica Biosystems), and
slides can be imaged on a variety of fluorescent scanners and
analyzed using any image analysis software. ISP can be performed
inmultiples of 4-plex (e.g., 8, 12, 16 plex) by applying all barcoded
antibodies simultaneously and then detecting four fluorophores
(plus nuclear counterstain to detect DNA and mark cells) per
cycle. ISP features a rapid, low-complexity, easily automated
workflow with pre-optimized, highly sensitive assays that can
deliver reproducible results comparable to other methods
(Humphries et al., 2020), but with high throughput and faster
assay development times than TSA-based assays. Because ISP
uses standard, gentle antigen retrieval, following mIF staining the
slide can then be stained for H&E and the resulting WSI precisely
merged with mIF data, allowing association of every cell in the
H&E section with its marker profile (Figure 2).

Quantitative analysis of multiplex fluorescence images. Image
analysis software is required to analyze the massive datasets
created by whole slide mIF. A subdiscipline of computer
vision, image analysis can be applied to WSI to quantify
marker pixel counts or structures in regions of interest (such
as tumor vs. nontumor) selected manually or in an automated
fashion using marker status or AI. Various cell types, defined by
the presence or absence of one or more markers, can be quantified
in the tissue section by number, location, density, proximity to
other cell types or structures, or any other metric of interest.
Tissue image analysis using rules-based machine learning
algorithms has been used for decades in research, yet the few
FDA-cleared clinical applications for image analysis of IHC are
mostly restricted to algorithms that quantify CDx markers such
as Her2 and ER/PR (Abels et al., 2019; Aeffner et al., 2019; Zuraw
et al., 2020; Digital Pathology Association, 2021). Recently, deep
learning-based AI algorithms have been employed to analyze
large collections of H&E tissue slides to identify tissue features
such as various types of cancer and to predict molecular lesions
such as specific gene mutations (Couture, 2019; Chen et al., 2020;
Rana et al., 2020; Echle et al., 2021; van der Laak et al., 2021),
providing proofs of concept that image analysis can detect

information in WSIs that are not detectable by a trained
human observer. We hypothesize that unambiguous
assignment of multi-marker cell phenotype to every cell in the
tissue section, achieved by precise coregistration of H&E and mIF
images, will augment interpretation of the H&E section, whether
read by a human pathologist or an AI algorithm.

Regions of interest. One major area of relevance to cancer
diagnostics concerns specification of regions of interest (ROI) in
each tissue sample. Pathologists use (and are legally required to
view) representative sections of all stained tissue blocks, typically
by H&E and IHCs, to render a diagnosis; to do otherwise, by
intentional or unintentional omission of tissues for review,
increases likelihood of misdiagnosis and constitutes grounds
for malpractice. For TME assessment in immuno-oncology,
how many and which areas of the slide to analyze remains
largely undefined. Beyond the categories of hot, warm, and
cold tumors based on location and density of inflammatory
infiltrates (Bonaventura et al., 2019) - more recently referred
to as inflamed, immune excluded, and immune desert,
respectively (Hegde and Chen, 2020) - many tumors exhibit
heterogeneity and intermediate attributes between these
categories, and even tumors classified as “hot” exhibit
heterogeneity unrecognized by traditional IHC analysis
(Shembrey et al., 2019). To accommodate such heterogeneity
and estimate critical parameters, pathologists have historically
relied on identification of relevant random or defined “fields of
view” (FOVs), such as when estimating mitotic rates to grade
sarcomas (Neuville et al., 2014). Should TME analysis be based on
the whole slide or on specific FOVs? If the latter, how many
FOVs, and how should they be selected: randomly, with
consideration paid to tumor architecture, or by specific
criteria? For example, since the invasive front is a region
where tumor cells can be visualized interacting with adjacent
non-neoplastic tissue, it seems intuitive that invasive front FOVs
should be analyzed to estimate risk of metastasis (Eiro et al.,
2012). However, different driver mechanisms and intercellular
interactions may be operative within the tumor mass and its
invasive front, and different mechanisms may be dominant in
different areas of the invasive front (Lawson et al., 2018), so either
the entire invasive front should be analyzed, or FOV selection
should be guided by criteria linked to the pathogenic mechanism
being evaluated or by less biased image analysis or AI techniques.
In either case, we believeWSIs will need to serve as input for FOV
selection, whether chosen by a human pathologist or by computer
software.

Whole slide imaging systems for diagnostic use and the “pixel
pathway.” When considering how mIF might enter diagnostic
practice it is important to consider how health authorities such as
the FDA have approached regulation of WSI systems using
brightfield microscopy. Over 2 decades ago, whole slide
scanners that create high resolution images from standard
pathology tissue slides were marketed for research and
educational purposes, with the perceived promise (and among
some, fear) that they would someday augment or even replace
manual microscopy in diagnostic practice. Such was born, as an
extension of efforts around telepathology for remote diagnosis in
the 1980s and 1990s, the field of “digital pathology” (Soenksen,
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2009; Weinstein et al., 2019). Slide digitization enabled
quantitation of tissue parameters by image analysis, described
above. However, at that time there were no digital pathology
systems approved as IVDs for primary diagnosis by FDA. Several
years of negotiations between the Digital Pathology Association
(DPA), College of American Pathologists (CAP), various scanner
manufacturers, and the FDA eventually led to WSI system

definition and performance standards that could be used as a
basis of FDA approval (Abels and Pantanowitz, 2017). For a WSI
system to achieve FDA clearance for diagnostic use, it was agreed
that over 2000 cases of the variety seen in a typical surgical
pathology clinical practice needed to be assessed by over a dozen
pathologists using many, physically separate (but identically
specified) WSI systems. A WSI system consists of three

FIGURE 1 | Ultivue InSituPlex (ISP) assay workflow. (A,B): Four different DNA-barcoded antibodies are applied to a FFPE tissue section. (B,C): Barcode
amplification. (D): Targets are labeled through hybridization of fluorescent probes to their respective barcodes. Higher plex staining (greater than 4-plex) is possible by
initial application of all antibodies, each with a unique barcode, to the tissue and then detecting 4 markers per cycle, separated by gentle DNA exchange steps (not
shown).

FIGURE 2 | Ultivue InSituPlex workflow enables coregistration of multiplex IF and H&E tissue images. Left panel shows image of non-small cell lung cancer stained
with four-marker panel including CD3+ T cells (red), CD45RO+memory T cells (green), PD-1+ exhausted T cells (yellow), and Cytokeratin positive carcinoma cells (cyan)
obtained by fluorescent (FL) scan. H&E stain on same section (middle panel) obtained by brightfield (BF) scan. Right panel is coregistered overlay of multiplex and H&E
images, which allows assignment of marker phenotype to every cell in the H&E section, which may be used for integrated image analytics and training of deep
learning networks.
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separate but connected devices including the slide scanner,
viewing software, and computer monitor (Figure 3) (Abels
and Pantanowitz, 2017). At the heart of defining a WSI
system for manufacture, distribution, and promotion was its
“pixel pathway,” the path of each image pixel as it transited
through the WSI system—from the tissue slide to the
pathologist’s eye. The pixel pathway concept served several
purposes: 1) as an initial step toward WSI system
standardization, 2) generation of diagnostic accuracy data to
show that diagnoses made using different WSI systems were
noninferior to diagnoses made by manual microscopy, and 3)
identification of various system failure modes and the potential to
attribute system failures (e.g., a false positive or false negative
diagnosis) to a root cause such as a specific component of theWSI
system itself, the pathologist, or to an intrinsically challenging
differential diagnosis such as dysplasia vs. carcinoma in situ. To
date, only two such WSI systems have been cleared for primary
diagnosis by the FDA, the first by Philips in 2017 and the second
by Leica Biosystems in 2019 (Mukhopadhyay et al., 2018; Bauer
et al., 2020; Borowsky et al., 2020). These and other studies have
engendered confidence among pathologists that using WSI is as
safe as using their microscope for primary diagnosis. There
remain widespread barriers to uptake of digital pathology
systems, which will need to be addressed before mIF is
accepted as a diagnostic tool. Primary among these is a lack of
standardization and interoperability between different WSI
components and systems (Marble et al., 2020), meaning that
each WSI system has a distinct pixel pathway design. Moreover,
for WSI systems to fulfill current standards requires device
manufacturers to invest multiple years and millions of dollars
in system development, specification, and validation - a long-time

frame and large investment compared to the rapid technological
advancements and decreasing costs of digital imaging technology
and deployment options in individual labs under LDT
enforcement discretion. Additional factors that need to be
addressed include lack of incentives for digital pathology
infrastructure investments and reimbursements (Lasiter et al.,
2020), mouse-driven and ergonomically unfriendly “point and
click” viewing software (Molin et al., 2015), creation of viable
business cases for implementation (Lujan et al., 2021a), and a
pathologist’s fear of being tethered to a potentially unreliable
computer system as opposed to a trusted manual microscope.
Recognition of these issues was accelerated in 2020 by the COVID-
19 pandemic, which prompted some institutions to rapidly validate
their digital pathology systems for diagnostic use in order to
maintain continuity of care (Hanna et al., 2020; Stathonikos
et al., 2020; Samuelson et al., 2021; Lujan et al., 2021b), whereas
other institutions relied on less rigorous system validation guided
by the pathologist’s ability to judge when images are of insufficient
quality to make a diagnosis. A notable parallel concerns the
application of telecytology (remote microscopic viewing of
cytology specimens) for rapid onsite evaluation (ROSE) of
adequacy of biopsy specimens, which is recommended to follow
CAP guidelines for validation of diagnostic WSI systems
(Pantanowitz et al., 2013; Lin et al., 2019; Evans et al., 2021).

Standardize cell phenotypes before pixel pathways. It has been
proposed that widespread adoption of digital pathology in health
care will require ecosystem-wide implementation of standards
akin to those that enabled the field of diagnostic radiology to
convert from film-based to digital platforms over a decade ago
(Herrmann et al., 2018; Clunie, 2021). A pivotal element of
radiology’s digital conversion was establishing data format

FIGURE 3 | Pixel pathways for diagnostic whole slide imaging (WSI) and multiplex immunofluorescence (mIF) systems. In the current FDA WSI system paradigm
(top row), image pixels are traced sequentially through a three-component system that includes brightfield scanner, viewing software, and computer monitor to be
interpreted by the Pathologist. In a proposed cell-phenotype centric mIF system (bottom row), the pixel pathway originates with scanning of mIF and then H&E stains on
the same slide, a capability of Ultivue’s ISP technology. In model A (top), mIF and H&E images are separately analyzed using the indicated tools, and then images
are merged after analysis. In model B (bottom), merged mIF and H&E images are subject to a novel data pipeline such as cell-based annotation of H&E sections for
analysis by deep learning, allowing earlier definition of each cell’s phenotype in the system’s pixel pathway. Both models converge so the Pathologist can visualize the
merged image with analyses, followed by judgment of the diagnostic (Dx), prognostic (Px), and predictive (Rx) explanations and interpretations when issuing the patient’s
diagnostic report.
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standards and component interoperability standards that serve as
a basis of device regulatory approval, such that unique system
configurations and workflows can be established at each facility
from interchangeable components that will perform in a
predictable fashion when combined in a system. While some
digital pathology standards exist, particularly around the
emerging use of DICOM file formats, regulators and
manufacturers have not yet agreed upon standards that can
serve as basis of product development, testing, approvals, and
marketing (Herrmann et al., 2018). As a result, many digital
pathology systems used for primary diagnosis throughout the
United States are distinct, classified as LDTs, because each system
consists of a unique mix of components that may or may not be
approved by the FDA for specific uses.

Given the myriad potential mIF system configurations and
potential diagnostic uses, coupled with lack of standards in mIF
and in digital pathology in general, we do not foresee all relevant
stakeholders agreeing to a standardized “pixel pathway” for
diagnostic mIF-based WSI systems any time soon. Instead of
focusing on image pixels, since mIF is most commonly used to
identify cell phenotypes defined by coexpression of multiple
markers, one potential step towards standardization of mIF data
would be to first standardize data formats at the level of
identification and characterization of each individual cell in the
sample, perhaps in a manner analogous to how flow cytometry
manufacturers created the Flow Cytometry Standard (FCS) data
format (Spidlen et al., 2021), with addition of a cell position
coordinate in the x-y tissue plane (including the relevant image
patch) specifying the location of each cell in the tissue. Such “tissue
cytometry” is not a new concept (Ecker and Steiner, 2004; Blenman
and Bosenberg, 2019), but advances in multiplex technology,
understanding of single cell biology and the role of pathogenic
cell types in disease, increased computational power and AI, and a
requirement to better characterize the TME are creating urgency
around diagnostic use of multiplex staining. Irrespective of efforts
to standardize mIF and digital pathology, each diagnostic mIF
system used as a LDT will have a unique “pixel pathway” and data
pipeline to identify cell phenotypes that could serve as a basis of in-
laboratory verification and validation testing, as well as to identify
failure modes and their root causes. Similarly, by analogy to
brightfield WSI systems, stringent validation of single-site mIF
systems used as LDTs should be far easier than the multisite/
multisystem validation required of candidate mIF IVD systems.
Nearly all FDA-approved CDx IVD tests, including those based on
IHC or ISH, are class III risk class devices requiring premarket
approval (PMA); however, an increasing number of FDA-
approved CDx assays are classified as LDTs, but only one assay
(PDGFRB FISH for imatinib eligibility) is tissue-based, the
remainder being PCR or NGS-based (Jørgensen, 2021).

Use of immunofluorescence data in diagnostics. How might
mIF data be analyzed in future diagnostics? At least two cell
phenotype-centric models for mIF WSI system “pixel pathways”
can be proposed (Figure 3). In one model (“A” in Figure 3), the
H&E section and mIF data are subject to separate analysis
pipelines and then merged after analysis. In line with many
recent applications of AI to pathology, H&E image pixels and
features are linked by supervised training of convolutional neural

networks (CNNs) to data such as pathologist-annotated image
features, specialist-rendered diagnosis, presence or absence of
molecular lesions, prognosis, or treatment outcomes. In parallel,
mIF is used to identify and quantify specific cell phenotypes and
their locations in the biopsy (Wilson et al., 2021). This model is
analogous to the current addition of non-histology-based
biomarkers such as NGS panels to pathology diagnosis, with
results integrated at interpretation and reporting stages. An
alternative model (‘B” in Figure 3) exploits ISP’s ability to
generate a merged H&E and mIF image (Figure 2) as input data
to generate cell-level annotations of H&E slide images for training
CNNs. We envision at least two advantages of model B. First, it
eliminates the need for manual pathologist annotations of H&E
images for algorithm training, widely viewed as a key limiting factor
in global deployment of AI in pathology (van der Laak et al., 2021).
Second, identifying the multi-marker profile of every cell in the
H&E-stained tissue biopsy results in earlier identification of cell
phenotypes in relation to their interpretation appearances and tissue
distributions in the system’s pixel pathway. There are a few examples
using singleplex IHC to augment annotation of H&E sections for
training AI [reviewed by van der Laak et al. (2021)], including use of
cytokeratin IHC to aid identification of breast (Litjens et al., 2018) or
prostate (Bulten et al., 2019) cancer cells, detection of mitoses using
phosphohistone H3 (Tellez et al., 2018), and detection of breast
cancer cells using cytokeratin and Ki67 IHC (Valkonen et al., 2020),
and one recent example using mIF of tumor infiltrating lymphocyte
(TIL) markers to predict driver mutations in colon cancer (Bian
et al., 2021). In either model, mIF and H&E data could be merged by
the scanner or by analysis software after scanning to be rendered for
viewing and interpretation.

As mentioned, in addition to using H&E-stained tissues to train
AI to assist with histopathology diagnoses, recent reports have
shown that AI can predict a tumor’s mutational status normally
revealed by molecular diagnostic tests such as PCR or NGS
(Burlutskiy et al., 2020). This has in turned raised the question –
heretical to molecular pathologists - of whether molecular tests are
necessary for diagnosis. We speculate that given the substantial cost
of molecular testing, initial diagnostic uses of H&E interpretation by
AI may serve to increase the diagnostic yield of molecular testing by
screening out cases likely to yield a negative result (high sensitivity
with 100% specificity). Similarly, it is unknown whether mIF will
ultimately be necessary for diagnosis, i.e., whether specific cell
phenotypes such as pathogenic macrophage subtypes or
regulatory T cell subtypes currently identified only by multiplex
methods can be recognized in H&E sections alone by properly
trained AI, or whether multiplex staining will be required to identify
such cells in every biopsy. Since H&E-based interpretation is so
critical to diagnostic pathology, we anticipate that irrespective of the
pixel pathway model of the mIF system, the pathologist will require
direct coregistration of the H&E with the multiplex images so they
can visualize complex cell phenotypes on the same tissue section they
use to make the primary diagnosis.

Preparing for multiplex in clinical practice. Given the
established use of IHC to detect markers in routine anatomic
pathology, the promise of multiplex tissue analysis as a basis of
new diagnostics, and the current regulatory landscape of digital
pathology, we offer the following conjectures:
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1) Unlike singleplex IHC, the complexity and diagnostic
significance of multiplex data used to identify multi-marker
cell phenotypes cannot be grasped by the pathologist without
computational assistance. Therefore, pathologists must be
trained on digital pathology software to visualize, quantify,
and interpret multiplex tissue data.

2) Multiplex data needs to seamlessly integrate into the digital
pathology work environment used for primary diagnosis,
including integration with H&E-stained slide images,
molecular studies, and other patient and slide metadata.

3) Manual fluorescence microscopy is not a preferred diagnostic
modality for pathologists, meaning that expanded use of
fluorescence detection in clinical practice will require a
scanner to generate WSIs that can be viewed, manipulated,
and analyzed by digital pathology software.

4) Interpretation of mIF data will require image analysis,
augmented by explainable AI algorithms, to understand
and interpret data and report diagnoses (Huss and
Coupland, 2020; van der Laak et al., 2021).

5) Until Pathology adopts data formatting and component
interoperability standards akin to Radiology, including
integration of multiplex tissue data, end-to-end WSI
systems used in a diagnostic capacity will likely be custom
applications operating as LDTs in each laboratory site.

6) By analogy to brightfield WSI systems, health authorities such
as FDA will require mIF WSI IVD systems to have a defined
pixel pathway, from slide staining to stain visualization and
interpretation. Fundamental differences in brightfield vs.
fluorescent microscopy, the lack of standards around mIF
systems, protocols, data collection and software analysis
pipelines (especially if the WSI system provides decision
support as a medical device), and a requirement for similar
clinical interpretation across platforms and practice
environments, implies that establishing standards to
achieve clearances for a mIF WSI system (or even a for a
stand-alone scanner) will be challenging.

7) Since a major goal of mIF analysis is to assess multiple marker
colocalization in cells to identify and score specific cell
phenotypes, we propose that efforts to standardize data
should first focus, by analogy to flow cytometry, on
standardizing definitions of specific cell phenotypes rather
than on striving to create a standardized mIF pixel pathway.

8) Precisemulti-marker annotation of every cell in theH&E slide by
mIF data will augment training and performance of AI on H&E-
stained tissue samples for some but not all relevant elements of
tissue diagnosis. Optimal uses of AI on mIF data in diagnostic
workflows have yet to be defined (Mungenast et al., 2021).

9) Pathologists must have greater access to digital pathology
systems and software including image analysis/computational
pathology tools in order to begin to integrate multiplex
analysis of any kind into primary diagnosis.

Imagining the Pathologist’s Future
As WSI scanners and viewing software gained a dedicated user base,
the concept of the “pathologist cockpit” emerged as a model for digital
pathology-based case sign out of the future (Soenksen, 2009). Just like
an airplane cockpit, it was imagined that all the controls, dials and

knobs, sticks and gadgets necessary for the pathologist to navigate from
point A (tissue intake) to point B (the diagnostic report) would be laid
out on multiple screens. A decade later, many centers have created
multiscreen pathologist cockpits that bring pathology data and
relevant software to the pathologist’s fingertips. We can now
imagine, in outline and with some detail, the pathologist’s
cockpit of the future: multiplex profiling will identify the
phenotype of every cell in H&E tissue section; vast
computational power will enable access to knowledge databases
such as cell and tumor atlases; and AI will help the pathologist
make sense of it all to better help clinicians select the best therapy
for their patients. We expect that the next generation of
pathologists, like sages on mountaintops, will be ever the wiser
with an expanded ability to navigate disease.

CONCLUSION

Rules and regulations governing creation and deployment of
diagnostic tests are of necessity geared to ensure patient safety
and preserve equipoise in clinical investigations (Rabinstein et al.,
2016; O’Neill et al., 2019), but regulations can also oppose
innovation, thereby denying patient benefit. The potential of
digital pathology to transform anatomic pathology practice is not
limited to remote case sign-out or training AI to interpret H&E
slides; its potential will be realized when knowledge about single cell
phenotypes and disease driver pathways, unique to each patient and
their disease and revealed by multiplex marker labeling methods, is
available for every pathologist to interpret every patient’s tissue
biopsy. IHC has been amajor contributor to understanding the roles
of single cells and cell populations in diagnostic biopsies, but as
currently practiced only allows interrogation of one marker, one
molecular species at a time, and is incapable of identifying emerging
cell types of importance defined by coexpression ofmultiplemarkers
in the same subcellular compartment. Given the current regulatory
landscape of diagnostic anatomic and digital pathology, the technical
demands ofmultiplex assays, and lack of standardizedmIFmethods,
we propose that retrospective analysis of clinical trial cohorts and
development of diagnostic assays as LDTs in individual laboratories
will increase assay confidence and generate real world evidence of
clinical validity and, by inference clinical utility, which in turn will
inform the optimal design, performance and testing of standardized
diagnostic multiplex systems of the future.
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