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The nervous system coordinates pathways and circuits to process sensory information
and govern motor behaviors. Mapping these pathways is important to further
understand the connectivity throughout the nervous system and is vital for developing
treatments for neuronal diseases and disorders. We targeted long ascending
propriospinal neurons (LAPNs) in the rat spinal cord utilizing Fluoro-Ruby (FR) [10kD
rhodamine dextran amine (RDA)], and two dual-viral systems. Dual-viral tracing utilizing
a retrograde adeno-associated virus (retroAAV), which confers robust labeling in the
brain, resulted in a small number of LAPNs being labeled, but dual-viral tracing using
a highly efficient retrograde (HiRet) lentivirus provided robust labeling similar to FR.
Additionally, dual-viral tracing with HiRet lentivirus and tracing with FR may preferentially
label different subpopulations of LAPNs. These data demonstrate that dual-viral tracing
in the spinal cord employing a HiRet lentivirus provides robust and specific labeling of
LAPNs and emphasizes the need to empirically optimize viral systems to target specific
neuronal population(s).

Keywords: spinal cord, adeno associated virus, lentiviral vector, propriospinal, tract-tracing, MATLAB,
quantification

INTRODUCTION

Understanding the complexity and specificity of neural pathways and circuits in the mammalian
nervous system is a major goal for neuroanatomists and is vital to understand and treat nervous
system injuries and disorders (Nassi et al., 2015; Zeng, 2018; Horn and Fox, 2020; Lanciego
and Wouterlood, 2020; Ugolini, 2020; Wong et al., 2020). The development and refinement of
technologies such as functional near-infrared spectroscopy (Cao et al., 2015; Hu et al., 2020),

Abbreviations: CNS, central nervous system; AAV, adeno-associated virus; LAPN, long ascending propriospinal neuron;
FR, Fluoro-Ruby; C5–6, cervical spinal cord levels 5–6; L2–3, lumbar spinal cord levels 2–3; RDA, rhodamine dextran amine;
BDA, biotinylated dextran amine.
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diffusion weighted magnetic resonance imaging (Jeurissen
et al., 2019; Yeh et al., 2020), and resting-state functional
magnetic resonance imaging (Fox and Raichle, 2007; Horn and
Fox, 2020) have enhanced our understanding of macroscale
connectomics, and improved patient treatments and outcomes
(Horn et al., 2017; Joutsa et al., 2018; Okromelidze et al., 2020).
Mesoscale connectomics–characterizing a single population of
neurons and/or connectivity of those neurons–has made similar
progress (Lanciego and Wouterlood, 2020; Ugolini, 2020), but
traditional tracers such as horseradish peroxidase, cholera toxin
subunit B (CTB), hydroxystilbamidine (known commercially as
Fluoro-Gold), and conjugated dextran amines [which include
biotinylated dextran amine (BDA), and rhodamine conjugated
dextran amine (RDA), also known as Fluoro-Ruby (FR) or Mini
Ruby depending on molecular weight] remain the most widely
used technique. These traditional tracers allow for anterograde
and retrograde tract-tracing, are valuable for revealing the
locations of neurons projecting to or from and area of interest,
and have been widely used throughout the nervous system
for more than three decades (Lanciego and Wouterlood, 2011;
Wouterlood et al., 2014; Nassi et al., 2015). Despite their extensive
use, each of these traditional tracers has limitations including the
potential of labeling any/all neurons projecting to or from an
area. More specifically, dextran amines can be taken up by axons
damaged during injection procedures (Glover et al., 1986), long-
term exposure to Fluoro-Gold can be neurotoxic (Naumann et al.,
2000), Fluoro-Gold and CTB can inadvertently be taken up by
fibers of passage (Dado et al., 1990; Chen and Aston-Jones, 1995),
and biotin conjugates of CTB can be transneuronal (Lai et al.,
2015), all of which may hinder mesoscale connectomic analyses.

Targeted genetic manipulations and an improved
understanding of neurotropic viruses have overcome some
of the limitations of traditional tracers and allowed for precise
targeting of pathways and evaluation of connectivity throughout
the central nervous system (CNS) (Atasoy et al., 2008; Wertz
et al., 2015; Deng et al., 2016; Zingg et al., 2017). Since 1998,
adeno-associated viruses (AAVs) have been widely used for CNS
tract-tracing (Chamberlin et al., 1998). AAVs are neurotropic,
permit long-term stable gene expression in neurons, cause
little toxicity, and high titer production is easily achieved
(Chamberlin et al., 1998; Tervo et al., 2016; Chan et al., 2017).
While viral-based tracing using AAVs or other vectors offers
advantages over traditional tracers, there are numerous variables
that must be understood and optimized if robust and specific
tracing is to be achieved. For example, altering the AAV
capsid, and therefore the serotype, impacts cellular tropism
and changes the volumetric spread at the injection site (Burger
et al., 2004; Liu et al., 2005; Hutson et al., 2012; Aschauer
et al., 2013) and AAV dosage–volume and titer–influences
cellular tropism, transgene expression, and the direction of
viral transport (Klein et al., 2002; Hollis et al., 2008; Klaw et al.,
2013). Even the purification method and route of delivery
can alter AAV transduction (Klein et al., 2008; Rosenberg
et al., 2014). Similarly, when using lentiviral vectors for CNS
transduction, altering the viral envelope can impact transduction
efficiency, immune response, and the direction of viral transport
(Kitagawa et al., 2007; Kato et al., 2011a; Hirano et al., 2013;
Tanabe et al., 2019).

An improved understanding of viral vector transduction in the
CNS, in combination with other technologies such as transgenic
labeling and traditional tracers, has led to projects such as the
Allen Mouse Brain Connectivity Atlas which has provided a
high-resolution map of the mouse brain connectome (Oh et al.,
2014). However, viral-based tracing for targeting and mapping
the spinal cord has not received as much attention. The main goal
of the current study was to evaluate various tracing methods for
targeting long ascending propriospinal neurons (LAPNs) in the
rat. LAPNs are an ideal system for this as, they have relatively
long axons, they have been found in numerous species, and
they have similar numbers of ipsi- and contra-lateral projections
(Giovanelli Barilari and Kuypers, 1969; Reed et al., 2006; Ruder
et al., 2016; Pocratsky et al., 2020). We utilized FR, a 10 kD
rhodamine-conjugated dextran amine, as well as two dual-viral
systems for target-defined projection labeling (Figures 1A,C,E;
Zeng, 2018). AAV2 containing a Cre-dependent flip-excision
switch (FLEx) was injected at the level of the cell bodies,
lumbar levels 2–3 (L2–3) (Atasoy et al., 2008). For retrograde
transduction and Cre delivery, either the retrograde adeno-
associated virus (retroAAV) developed by Tervo et al. (2016)
or the highly efficient retrograde (HiRet) lentivirus developed
by Kato et al. (2011b), was injected at the level of LAPN axon
terminals, cervical 5–6 (C5–6) (Figure 1). For either of these
vectors to provide efficient retrograde transduction, subsequent
FLEx recombination, and labeling of LAPNS, the vector must
readily infect axon terminals, undergo retrograde transport, and
deliver its cargo to LAPN nuclei.

The process of quantifying labeled neurons in spinal cord
tissue sections can be problematic. While the accuracy of
manually counting is high, it is inefficient and introduces
human error. To improve reproducible counting and reduce
the time required for the quantification of large numbers
of tissue sections, we developed a custom application using
MATLAB (ver. R2019a) to accurately count the number of
labeled cells. The application developed allows for easy navigation
through large numbers of tissue sections and lets users overlay
anatomical maps or grids for more detailed quantification. The
application can be downloaded1, a step-by-step instructional
video shows how to use the application successfully2, and details
of the program along with written directions can be found in
Supplemental Document 1.

MATERIALS AND METHODS

Tracer and Virus Preparation
10% stocks of FR were made by dissolving 10 mg of
FR dry powder in 100 µL of distilled water, and 10 µL
aliquots were stored at −20◦C. FR aliquots were thawed
the morning of injection surgeries. 100 µL of AAV2-FLEx-
GFP (3.7 × 1012 vp/mL) and of retroAAV2-CAG-Cre
(5.3 × 1012 vg/mL) (referred to here as retroAAV-Cre) were
ordered from the Gene Therapy Center Vector Core at the
University of North Carolina at Chapel Hill. 10 µL aliquots

1https://github.com/rachz18/CellCountingApplication.git
2https://vimeo.com/485620502
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FIGURE 1 | Experimental design and overview for labeling left ipsilateral long
ascending propriospinal neurons (LAPNs) in the adult rat. (A) The chemical
tracer Fluoro-Ruby was injected ipsilaterally at C5–6. (B) Lumbar spinal cord
cross section showing labeled neurons from Fluoro-Ruby group.
(C) HiRet-Cre was injected ipsilaterally at C5–6 and AAV2-FLEx-GFP
ipsilaterally at L2–3. (D) Lumbar spinal cord cross section showing labeled
neurons from the HiRet-Cre group. (E) RetroAAV-Cre was injected ipsilaterally
at C5–6 and AAV2-FLEx-GFP ipsilaterally at L2–3. (F) Lumbar spinal cord
cross section showing labeled neurons from the retroAAV group. (B’,D’,F’)
Maximum intensity projections of confocal z-stacks illustrate the intensity and
detail of labeled cells.

of each were made, stored at −80◦C, and thawed the morning
of injection surgeries. HiRet-Cre (1.6–2.0 × 1010 vg/mL)
was produced by Zhigang He’s laboratory (Boston Children’s
Hospital) using previously described methods (Wang et al.,
2017). 10 µL aliquots of Lenti-HiRet-Cre were stored at −80◦C
and thawed the morning of injection surgeries.

Stereotaxic Spinal Cord Injection
Surgeries
This animal study was reviewed and approved by the University
of Louisville Institutional Animal Care and Use Committee.

A total of N = 12 female Sprague Dawley rats (200–220 g:
Envigo) were evenly divided among the groups (N = 4 per
group). Prior to surgical procedures, animals were housed two
per cage with ad libitum food and water under 12 h light/dark
cycle. Glass micropipettes for intraspinal injections were pulled
from borosilicate glass capillaries (World Precision Instruments,
Inc.) using a micropipette puller (Sutter Instrument Co.) and the
following parameters: heat = 600, pull = 29, velocity = 57, and
time = 150. Pipettes were trimmed to an external diameter of
25 µm, beveled using a micropipette beveller (World Precision
Instruments, Inc.), and sterilized with 100% ethanol prior to
use. The morning of injection surgeries, individual tracers/viruses
were loaded into pipettes and viral pipettes were kept on ice
between surgeries to minimize viral degradation.

Animals were anesthetized with a mixture of ketamine,
xylazine, and acepromazine (40, 2.5, and 1 mg/kg, i.p.), and
supplemented with 1–2.5% isoflurane in 98% oxygen at a rate of
1 L/min as needed. For FR injections, animals were placed into
a custom-built spinal stabilization unit (Zhang et al., 2008) and
received a C5–6 laminectomy and durotomy to expose spinal
levels C5–6. Two, 0.25 µL boluses of FR were injected at same
site into the left intermediate gray matter of C5–6 (0.55 mm
mediolateral, 1.2 mm dorsoventral) using a stereotaxic device
(World Precision Instruments, Inc.) (Reed et al., 2009). Boluses
were injected 2 min apart to allow FR to spread throughout
the tissue, mitigate extravasation from the injection site, and
minimize pressure exerted on the tissue at the injection site. This
volume was used as the rostrocaudal spread within the spinal gray
matter at the injection site was similar to the rostrocaudal spread
of volume of virus(es) injected (data not shown).

For viral injections, animals were placed into the spinal
stabilization unit, received a laminectomy and durotomy at
thoracic vertebrae 12 to expose spinal L2–3, and a C5–
6 laminectomy and durotomy to expose spinal C5–6. Two,
unilateral injections of either of HiRet-Cre or retroAAV-Cre
were injected into the left intermediate gray matter of C5–
6 (0.55 mm mediolateral, 1.2 mm dorsoventral, 1.3 mm
rostrocaudal). The two injections were given in two, 0.25 µL
boluses with 2 min between injections. AAV2-FLEx-GFP was
injected into the intermediate gray matter of L2–3 (0.5 mm
mediolateral, 1.35 mm dorsoventral, 1.3 mm rostrocaudal) using
the same injection protocol as the C5–6 injections. Following
injections, incision sites were sutured in layers and wounds closed
with surgical staples. Gentamicin (20 mg/kg) and saline were
given subcutaneously prior to animals waking, buprenorphine
(10 mg/kg, s.c.) was administered every 12 h for 48 h post-surgery
for pain management, and prophylactic doses of gentamicin
(20 mg/kg, s.c.) were administered for 7 days. Animals were single
housed until surgical staples were removed 7 days post-surgery.

Tissue Processing, Imaging, and Manual
Quantification
Two weeks following FR injections, and 3 weeks following
viral injections, animals were anesthetized using a cocktail of
ketamine, xylazine, and acepromazine (40, 2.5, and 1 mg/kg,
i.p.), and transcardially perfused with phosphate-buffered saline
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(pH 7.4) followed by 4% paraformaldehyde. Spinal cords were
harvested, post-fixed in 4% paraformaldehyde for 1–2 h, and
transferred to 30% sucrose for 3–4 days at 4◦C. L1–4 spinal
segments were isolated, embedded in tissue freezing medium,
cryosectioned at 30 µm, slide mounted, and stored at −20◦C.
For coverslipping, slides were warmed, rinsed in PBS for 5 min,
coverslipped with Fluoromount-G (SouthernBiotech), and air
dried overnight.

Every other tissue section was imaged to avoid double
counting labeled propriospinal neuron cell bodies. Images were
acquired using a Nikon TiE 300 inverted microscope (Nikon).
A 10× objective was used to create a 3 × 3 stitched image using
Nikon Elements Advanced Research software (Nikon). A Texas
Red filter was used for FR labeled tissue and green fluorescent
protein (GFP) filter used for GFP viral labeled tissue. Following
acquisition, all images were converted to grayscale and manually
counted by a single blinded individual. Lamina counts were
performed by overlaying segmental lamina maps (Watson et al.,
2009) onto each of the tissue sections in Illustrator (Adobe).

Fluoro-Ruby injected at C5–6 has the potential to retrogradely
label any neuron with a projection at or near the injection
site and we found labeled neurons at all spinal levels that
were cryosectioned (L1–4). However, the rostrocaudal spread of
labeled neurons at L2–3 in both viral labeled groups is limited by
the rostrocaudal spread of the virus at the injection site(s) and
the need for dual viral transfection to confer labeling. For equal
comparison between groups, the number of quantified sections
in the FR group was limited to 61 tissue sections per animal, the
average number of sections quantified in the viral labeled groups.
Additionally, one animal in the HiRet group was excluded from
analyses for total and relative number of labeled neurons as the
rostrocaudal spread of labeled neurons was half of that seen in
all other virally labeled animals; this is likely attributable to an
inaccurate or missed intraspinal injection.

MATLAB Application Development,
Quantification, and Validation
A custom application was built using MATLAB and incorporates
the image processing techniques color thresholding and
boundary determination to determine the number of labeled
cells within a user-specified region of interest in the spinal
cord. The specific functions used to build the application can
be found in Supplemental Document 1. Of the cell detection
methods utilized in the MATLAB program, the elimination
of background involves pixel-based thresholding, while cell
counting is a combination of pixel and object-based detection
based on image properties. First, the background of the image
is eliminated using thresholding by labeling color and pixel
value. Cells are then detected and counted based on the image
region properties of pixel area and eccentricity. Pixel area is
defined as the actual number of pixels within a region, while
eccentricity is the ratio of the distance between the foci of
the ellipse and its major axis length for each object region.
The application was integrated into an interactive application
and graphical user interface (GUI) created with MATLAB’s
App Designer. The GUI enables users to seamlessly navigate
through a large number of images, while the semi-automated

cell counting function eliminates variability between users and
reduces quantification time. The application also allows user
to easily overlay anatomical maps or grids for more detailed
quantification. To validate the accuracy of the MATLAB
application, the number of labeled somata counted using the
application was compared to the number of somata counted
manually and the correlation between the counting methods
assessed. The application has been uploaded to an online data
repository and can be accessed using this source code/DOI link
for public use3. The instructional video4 provides a step-by-
step tutorial for the program, and written instructions are in
Supplemental Document 1.

Statistical Analyses
Results for the total and relative number of somata labeled
between groups were compared using an analysis of variance
followed by Tukey HSD post hoc t-tests using SPSS version 22
(IBM). Results for the percent of labeled somata by lamina were
compared using a multivariate analysis of variance followed by
Tukey HDS post hoc t-tests where appropriate in SPSS. P values
for all analysis were considered statistically significant when
p ≤ 0.05, and two-tailed p values are reported for post hoc t-tests.
Pearson correlation was performed to evaluate the relationship
between counting methods using RStudio version 1.2.5042.
Results for the differences between counting methods by group
were assessed using a one-way analysis of variance followed by a
Tukey HSD post hoc t-test using SPSS.

RESULTS

Tracing Methods Have Different
Efficiencies
To understand the differences in efficiency between tracing
methods, we evaluated the total number of neurons labeled and
the number of neurons labeled per tissue section. The total
number of labeled neurons (mean ± SD; FR: 135.5 ± 52.29,
HiRet: 126.33 ± 45.79, retroAAV: 31.5 ± 10.15) was significantly
higher in the FR and HiRet groups compared to the retroAAV
group (Figure 2A). The relative number of labeled neurons
was evaluated by normalizing the number of labeled neurons
to the number of sections counted (mean of labeled neurons
per section ± SD; FR: 2.12 ± 0.76, HiRet: 2.35 ± 0.47,
retroAAV: 0.50 ± 0.13). After normalization, the same differences
between groups were seen, with significantly fewer labeled cells
in the retroAAV group compared to the FR and HiRet groups
(Figure 2B). These results indicate that tracing LAPNs with FR
or target-defined projection labeling utilizing HiRet lentivirus
provide robust labeling of LAPNs, while target-defined projection
labeling using retroAAV significantly reduced labeling of LAPNs.
Additionally, as seen in Figures 1B,D,F, the prominence and
detail of labeled neurons differed between FR and virally labeled
neurons, with viral labeled neurons often being brighter and
easier to identify. However, signal from both viral and FR labeled
neurons can be amplified using immunohistochemistry and

3https://github.com/rachz18/CellCountingApplication.git
4https://vimeo.com/485620502
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FIGURE 2 | The number of labeled neurons in the lumbar spinal cord is significantly impacted by the tracing method(s) used. (A) The total number of labeled
neurons differed between groups [One-way Analysis of Variance (ANOVA), F = 13.5, df = 2.8, p = 0.003] and was lower in the retroAAV group [Tukey’s Honest
Significant Difference (HSD) post hoc, FR vs. retroAAV, p = 0.015; HiRet vs. retroAAV, p = 0.034]. (B) When normalized to the number of tissue sections counted, the
number of labeled neurons differed between groups (One-way ANOVA, F = 8.6, df = 2.8, p = 0.01) and was significantly lower in the retroAAV group (Tukey’s HSD
post hoc, FR vs. retroAAV, p = 0.006; HiRet vs. retroAAV p = 0.005). Panels (A,B) are Tukey style box plots. Bold center line shows median, upper hinge shows 75th
percentile, lower hinge shows 25th percentile, whiskers represent 1.5 times the interquartile range. Individual data points shown for clarity (p < 0.05*, ANOVA and
Tukey’s HSD post hoc t-tests).

labeling with a lower molecular weight dextran amine can further
improve signal as these dextran amines are more efficiently
trafficked (Jiang et al., 1993).

Specificity of Labeling Is Influenced by
Tracing Methods
To evaluate differences in specificity of tracing and to determine
whether tracing methods preferentially labeled a subset of
ipsilateral LAPNs the laminar distribution of the labeled cells was
assessed by comparing the percentage of labeled neurons in each
lamina (Figure 3). For the absolute number of labeled neurons
by animal and lamina see Supplementary Table 1. In lamina 6–
7, a greater percentage of neurons was found in the retroAAV
group. The retroAAV group also had significantly fewer neurons
labeled in lamina 9. In lamina 10, the percentage of neurons was
significantly higher in the HiRet group compared to the other
groups. These differences in laminar distribution indicate that
tracing methods can impact the specificity of labeling either by
preferentially targeting a subset of the neuronal population of
interest or by random chance.

Validation of MATLAB Application
To validate the MATLAB application for quantifying labeled
neurons in the spinal cord, the correlation between the number
of cells counted manually and by the MATLAB application was
assessed. Cell counts using either method were highly correlated

with one another (Figure 4A), indicating that the MATLAB
application is as accurate as manual counting.

As previously noted, the prominence and detail of labeled
neurons differed between FR labeled and virally labeled neurons,
with viral labeled neurons being brighter. The poor cellular filling
of FR labeled LAPNs may make it difficult for the MATLAB
application to detect these neurons. To evaluate potential errors
of the MATLAB application in identifying chemically versus
virally labeled neurons, absolute differences in the number
of neurons counted using each method were calculated and
compared between the groups (mean difference scores ± SD; FR:
10.75 ± 4.67, HiRet: 10.50 ± 5.20, retroAAV: 5.75 ± 2.87). These
differences were not significant between groups and are visualized
animal-by-animal in Figure 4B. Taken together, these results
show that the MATLAB application is as accurate as manual
counting for quantifying labeled propriospinal neurons and that
the application reliably identifies both virally- and chemically-
labeled neurons.

DISCUSSION

Efficiency of Labeling Methods
Traditional tracers, such as CTB, Fluoro-Gold, and various
dextran amines have been extensively characterized in
multiple species for tract-tracing throughout the CNS
(Lanciego and Wouterlood, 2011; Nassi et al., 2015). However,
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FIGURE 3 | Specificity of labeling is impacted by the tracing method used.
Percentages of labeled neurons in Rexed spinal lamina differed between
lamina and groups. The retroAAV group had a significantly higher percentage
of labeled neurons in lamina 6–7 [Multivariate Analysis of Variance (MANOVA),
F = 6.6, df = 2.9, p = 0.017; Tukey’s HSD post hoc, retroAAV vs. FR,
p = 0.037; retroAAV vs. HiRet, p = 0.024] and a significantly lower percentage
of labeled neurons in lamina 9 (MANOVA, F = 7.7, df = 2.9, p = 0.01; Tukey’s
HSD post hoc, retroAAV vs. FR, p = 0.014; retroAAV vs. HiRet, p = 0.028).
The HiRet group had a significantly higher percentage of labeled neurons in
lamina 10 (MANOVA, F = 7.7, df = 2.9, p = 0.01; Tukey’s HSD post hoc,
retroAAV vs. FR, p = 0.014; retroAAV vs. HiRet, p = 0.028). Tukey style box
plot. Bold center line shows median, upper hinge shows 75th percentile,
lower hinge shows 25th percentile, whiskers represent 1.5 times the
interquartile range. Individual data points are shown for clarity. Data points
falling outside of whiskers are outlying points that are <or> 1.5 times the
interquartile range (p < 0.05*, p < 0.01**, MANOVA and Tukey’s HSD
post hoc t-tests). Mean percentage ± standard deviation for each lamina and
group (FR, HiRet, and retroAAV): lamina 5 (14.6 ± 10.2, 5.9 ± 4.8, 7.9 ± 3.4),
lamina 6–7 (44.4 ± 3.4, 42.8 ± 8.6, 62.1 ± 11.1), lamina 8 (33.9 ± 13.1,
36.6 ± 6.6, 30.0 ± 11.1), lamina 9 (5.8 ± 3.6, 5.1 ± 1.6, 0.0 ± 0.0), and
lamina 10 (1.2 ± 2.4, 9.7 ± 4.8, 0.0 ± 0.0).

each of these tracers comes with its own caveats. Dextran amines
may inadvertently label damaged fibers of passage (Glover
et al., 1986), Fluoro-Gold is neurotoxic (Naumann et al., 2000),
and Fluoro-Gold and CTB can label fibers of passage (Dado
et al., 1990; Chen and Aston-Jones, 1995). To circumvent these
potential limitations and gain a better understanding of viral
tropism in the spinal cord, we targeted left ipsilateral LAPNs
using target-defined projection labeling (Zeng, 2018). For cell
body transduction, AAV2 was chosen over other serotypes
as: (1) AAV2 has high neuronal tropism (Bartlett et al., 1998;
Burger et al., 2004; Srivastava, 2016), (2) AAV2 has minimal
volumetric spread at the injection site (Burger et al., 2004;
Aschauer et al., 2013), (3) unlike other serotypes, AAV2 has little
potential for retrograde transduction (Hollis et al., 2008; Klaw
et al., 2013; Salegio et al., 2013), and (4) AAV2 does not spread
transsynaptically like AAV1 and AAV9 (Zingg et al., 2017). These

AAV2 characteristics allow precise targeting of the neuronal
cell bodies at the injection site. For retrograde transduction and
Cre delivery, we utilized the retroAAV serotype developed by
Tervo et al. (2016) and the HiRet lentiviral vector developed by
Kato et al. (2011b). While we found similar numbers of labeled
neurons at L2–3 in the FR and HiRet groups, the retroAAV
group showed a 76% decrease in the number of labeled neurons.
This is somewhat surprising, as Cre activity is catalytic (Santoro
and Schultz, 2002; Gibb et al., 2010). Thus, little Cre expression
is needed for FLEx-switch recombination, subsequent transgene
expression, and neuronal labeling. One potential explanation
for these findings is poor infectivity of LAPN axon terminals.
The retroAAV serotype was developed via directed evolution
for optimal retrograde transduction of mouse corticopontine
neurons (Tervo et al., 2016), but its retrograde transduction of
rat LAPNs was modest. RetroAAV has also shown preferential
tropism for layer 5 of the cortex when compared to other viral
tracers (Sun et al., 2019). As the receptor/co-receptor for this
serotype are currently unknown, this modest labeling may
result from poor viral uptake at LAPN axon terminals due to
little expression of the requisite receptor and/or co-receptor for
internalization of retroAAV virions.

Previous studies have shown that changes to the AAV
capsid impact the rate of viral degradation and subsequent
transgene expression (Zhong et al., 2008a,b; Kay et al., 2013).
It is possible that a similar phenomenon is responsible for
the poor labeling in the retroAAV group here, as the VP1
region of the AAV2 capsid was altered to produce the retroAAV
(Tervo et al., 2016). These mutations may result in increased
phosphorylation of viral particles, subsequent ubiquitination,
and proteasomal degradation of retroAAV in propriospinal
neurons (Zhong et al., 2007, 2008a; Buning and Srivastava,
2019). Lastly, the poor labeling in the retroAAV group may
reflect a length-dependent issue, as rat LAPN axons are 6.2–
7.6 cm long (Waibl, 2013), approximately 10 times longer than
the mouse corticopontine axons (6–7 mm) the retroAAV was
developed to target (Oh et al., 2014; Tervo et al., 2016). This may
result in poor retrograde trafficking of endosomes containing
retroAAV virions. However, Weiss et al. (2020) recently showed
successful retrograde transduction of numerous cortical regions
in rhesus macaque following intra-caudate and intra-putamen
injections. Therefore, we do not believe the poor labeling by
retroAAV here is a length-dependent issue. Rather, that this is
due to poor uptake and infectivity of retroAAV at propriospinal
axon terminals, which may reflect little to no expression of the
receptor/co-receptor needed for the retroAAV serotype binding
at propriospinal axon terminals.

Specificity of Labeling Methods
The current data corroborate previous findings that LAPNs
in the rat are positioned throughout the intermediate gray
matter of the lumbar spinal cord, with the majority residing in
laminae 6–8 (Dutton et al., 2006; Reed et al., 2009; Pocratsky
et al., 2020). This finding was consistent irrespective of the
tracing method utilized. We found a higher percentage of
labeled neurons in lamina 10 in the HiRet group. Previous
studies found that 12.6% of L2–3 LAPNs reside in lamina
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FIGURE 4 | The number of labeled neurons counted with the MATLAB program and manual counting are similar and correlated. (A) The number of neurons counted
is highly correlated between the MATLAB program and manual counting. Black line indicates line of best fit, gray outline indicates 95% confidence interval (Pearson
correlation: R = 0.99 and p = 3.8 × 10−9). (B) Animal-by-animal comparison of the number of labeled neurons in the lumbar spinal cord, the difference between
counting methods was similar between groups (one-way ANOVA, F = 1.7, df = 2.9, p = 0.247).

10 (Pocratsky et al., 2020), and that large number of LAPNs
are located in lamina 10 (Dutton et al., 2006). The higher
percentage seen in the HiRet group here likely reflects the
superior retrograde transduction efficiency of HiRet vectors and
its ability to efficiently infect LAPN axon terminals compared
to retroAAV. Additionally, in the retroAAV group, there was a
greater percentage of labeled neurons in lamina 6–7 and fewer in
lamina 9 compared to the other groups. These differences reflect
either preferential retrograde transduction–or lack thereof–of
LAPN sub-populations or are due to a small number of neurons
in any lamina resulting in a large percentage change in this group.
LAPNs are a heterogenous population of neurons that project
ipsi- and contra-laterally (Reed et al., 2006; Pocratsky et al., 2020),
have both excitatory and inhibitory neurotransmitter phenotypes
(Ruder et al., 2016; Pocratsky et al., 2020), and have varied
soma sizes (unpublished data). Future studies may evaluate
the neurotransmitter phenotype and soma size of neurons
labeled by these tracing methods to determine if differences
in the laminar distributions are due to preferential labeling
or random chance.

We previously used CTB to retrogradely label LAPNs and
found a significantly higher percentage of labeled LAPNs
in lamina 5 compared to target-defined projecting labeling
with a HiRet vector (Pocratsky et al., 2020). As CTB can
be taken up by fibers of passage (Chen and Aston-Jones,
1995), we attributed this difference to inadvertent labeling
of lumbar spinocerebellar neurons, a majority of which
reside in lumbar lamina 5 (Matsushita and Hosoya, 1979).
While we do not report the same finding with FR here,
it is important to note that the uptake of dextran amines–
such as FR–by damaged axons is more efficient than its
uptake by axon terminals (Glover et al., 1986). Thus, when

injecting dextran amines, the procedures should minimize
damage to the tissue that may occur from osmotic or
mechanical pressures.

Validation of MATLAB Application
Our MATLAB application has semi-automated the quantification
of spinal cord labeling, which reduces time, minimizes human
error, and allows for anatomical diagrams, such as spinal cord
Rexed laminae maps to be easily overlaid on tissue sections
for further anatomic characterization. The strong correlation
between manual cell counts and those from the MATLAB
application (Figure 4A), in conjunction with there being no
difference in the error between counting methods for all
labeling methods (Figure 4B), emphasizes the accuracy of the
MATLAB application for various tracing methods. The detection
and counting methods employed in the MATLAB application
are effective for small populations of labeled neurons whose
boundaries are well defined such as LAPNs, it may not be
as effective for larger neuronal populations with more densely
packed cells. To accurately detect densely packed cells more
advanced object-based detection methods such as edge detection
and watershed algorithms might be needed. The program also
only extracts either red or green color channels, and if multiple
channels are to be detected the images would have to be
analyzed twice with each color being counted separately. The
application is freely available5 and aims to provide a user-friendly
application that allows for easy navigation through large numbers
of images and the option to overlay anatomical diagrams for
further analysis.

5https://github.com/rachz18/CellCountingApplication.git
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Target-defined projection labeling utilizing HiRet vectors
showed improved retrograde transduction efficiency compared
to retroAAV in the population of propriospinal neurons studied
here. This provides the framework for more advanced mesoscale
connectomics. This target-defined dual viral approach might
also be adapted for exogenous gene expression for therapeutics
targeting an anatomically defined set of propriospinal neurons.
For these therapeutic approaches to be viable the immune
response reported when using lentiviral HiRet vectors must be
mitigated (Tanabe et al., 2019). Tanabe et al. (2019) found that
lentiviral NeuRet vectors which utilize the fusion E glycoprotein,
rather than the fusion B2 glycoprotein used in HiRet vectors,
produced no immune response in the primate brain. However,
others have reported poor retrograde transduction efficiency
of NeuRet vectors when targeting hindbrain and spinal
motoneurons (Hirano et al., 2013). Prior to use as a therapeutic
for targeting anatomically defined neuronal populations, the
retrograde transduction efficiency and immune response of
the vectors used should be evaluated. Collectively, the current
findings emphasize the need to empirically evaluate and optimize
the transduction efficiency of viral vectors and their respective
transport properties to target specific neuron population(s).
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