Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(1,3-Dithiol-2-ylidene)-1,3-dithiole-4carbaldehyde

Matthias Zeller ${ }^{\mathbf{a}}$ and Vladimir A. Azov ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Youngstown State University, One University Plaza, Youngstown, OH 44555-3663, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Bremen, Leobener Strasse, NW 2C, D-28359 Bremen, Germany
Correspondence e-mail: vazov@uni-bremen.de
Received 13 June 2013; accepted 20 June 2013
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.024 ; w R$ factor $=0.057$; data-to-parameter ratio $=25.1$.

The structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{OS}_{4}$, at 100 K has orthorhombic symmetry. In the crystal, tetrathiafulvalene molecules form π-stacks along the a axis, with a stacking distance of 3.4736 (6) A. Along the b axis, parallel stacks are interconnected with each other through a network of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and short $\mathrm{S} \cdots \mathrm{S}$ contacts [3.4813 (7) Å]. Additional short S . . S contacts [3.4980 (9) Å] join parallel stacks along the c axis.

Related literature

For tetrathiafulvalene derivatives and their applications, see: Yamada \& Sugimoto (2004); Segura \& Martín (2001). For a review on synthetic chemistry of tetrathiafulvalenes, see: Fabre (2004). For a previous synthesis of the title compound, see: Garín et al. (1994). For reviews on 'weak' non-classical hydrogen bonding, see: Steiner (2002); Desiraju (2005). For reviews on halogen-halogen contacts, see: Metrangolo et al. (2008).

Experimental

$$
\begin{array}{ll}
\text { Crystal data } & \\
\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{OS}_{4} & V=870.99(13) \AA^{3} \\
M_{r}=232.34 & Z=4 \\
\text { Orthorhombic, } P 2_{1} 2_{1} 2_{1} & \text { Mo } K \alpha \text { radiation } \\
a=3.8466(3) \AA & \mu=1.03 \mathrm{~mm}^{-1} \\
b=7.4052(7) \AA & T=100 \mathrm{~K} \\
c=30.577(3) \AA & 0.50 \times 0.21 \times 0.13 \mathrm{~mm}
\end{array}
$$

Data collection

Bruker SMART APEX CCD diffractometer

Absorption correction: multi-scan (SADABS in APEX2; Bruker,
2012)
$T_{\text {min }}=0.675, T_{\text {max }}=0.746$
6998 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.057$
$S=1.13$
2734 reflections
109 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.45 \mathrm{e}_{\AA^{-3}}$

2734 independent reflections 2663 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

$$
\Delta \rho_{\min }=-0.25 \mathrm{e}^{\AA^{-3}}
$$

Absolute structure: Flack x determined using 985 quotients [(I+)-$(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons \& Flack, 2004), 1024 Friedel pairs

Flack parameter: 0.01 (4)

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.38	$3.228(3)$	149
$\mathrm{C} 3-\mathrm{H} 3 \cdots 1^{\mathrm{i}}$	0.95	2.69	$3.445(3)$	137

Symmetry code: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013) and SHELXLE (Hübschle et al., 2011); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

The authors are grateful to Dr C. Vande Velde (Karel de Grote University College, Antwerp, Belgium) for helpful discussions. The X-ray diffractometer (MZ) was funded by NSF grant No. 0087210, Ohio Board of Regents grant CAP491 and Youngstown State University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2488).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.
Fabre, J. M. (2004). Chem. Rev. 104, 5133-5150.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Garín, J., Orduna, J., Uriel, S., Moore, A. J., Bryce, M. R., Wegener, S., Yufit, D. S. \& Howard, A. K. (1994). Synthesis, pp. 489-493.

Hübschle, C. B., Sheldrick, G. M. \& Dittrich, B. (2011). J. Appl. Cryst. 44, 12811284.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. \& Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.
Parsons, S. \& Flack, H. (2004). Acta Cryst. A60, s61.
Segura, J. L. \& Martín, N. (2001). Angew. Chem. Int. Ed. 40, 1372-1409.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2013). SHELXL2013. University of Göttingen, Germany.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yamada, J. \& Sugimoto, T. (2004). In TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalenes. Berlin, Heidelberg, New York: Springer-Verlag.

supplementary materials

Acta Cryst. (2013). E69, o1157 [doi:10.1107/S160053681301711X]

2-(1,3-Dithiol-2-ylidene)-1,3-dithiole-4-carbaldehyde

Matthias Zeller and Vladimir A. Azov

Comment

The title compound, commonly known as 4-formyltetrathiafulvalene, was prepared from tetrathiafulvalene (TTF) and can serve as an intermediate for the synthesis of 4-(hydroxymethyl)tetrathiafulvalene by reduction with NaBH_{4}, of conjugated TTF derivatives by means of Wittig reaction (Garín et al., 1994), of TTF imines by reaction with amines, and of other functional tetrathiafulvalenes (Yamada \& Sugimoto, 2004; Fabre, 2004).

The molecular structure of the title compound with atom numbering scheme is shown in Fig. 1. Bond lengths and angles may be considered normal. The molecular framework excluding the carbonyl group is essentially planar, with a maximum deviation of fitted atoms from the least-square plane, defined by the heavy atoms of the TTF backbone, of 0.042 (2) \AA for C6. Atoms of the carbonyl group show more substantial out of plane deviation of 0.128 (2) \AA for C 1 and of 0.2393 (19) Å for O1, respectively.
Details of the packing interactions are given in the Tables. Molecules of the 4-formyltetrathiafulvalene form π-stacks along the a axis with a distance of 3.4736 (6) \AA between the least-square planes defined by the $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$, and S 4 atoms (Figs. $1 \& 2$). Parallel π-stacks are interconnected with each other along the b axis by $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$ (symmetry code: (i) $-x, y+1 / 2,-z+1 / 2$) short contacts, which can be classified as non-classical hydrogen bonds.
Additionally, two $\mathrm{S} \cdots \mathrm{S}$ short contacts, which may be similar in nature to halogen bonds (Metrangolo et al., 2008), are observed in the crystal structure. The shorter $\mathrm{S} 2 \cdots \mathrm{~S} 4^{\mathrm{iv}}(3.4813$ (7) \AA) contacts (symmetry code: (iv) $x, 1+y, z$) are observed along the b axis. The longer ($3.4980(9) \AA$) S $3 \cdots$ S3ii/iii contacts (symmetry codes: (ii) $-1 / 2+x, 1 / 2-y,-z$; (iii) $1 / 2$ $+x, 1 / 2-y,-z$) bind parallel π-stacks with each other along the c axis.

Experimental

The title compound was prepared as described by Garín et al. (1994) by treatment of monolithio-TTF with N-methyl- N phenylformamide in $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}$. The product was obtained as a deep red microcrystalline solid. Crystals suitable for X-ray diffraction were grown by slow evaporation of a solution in benzene/cyclohexane. Mp: 382-383 K; Lit: 382-383 K (Garín et al., 1994). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.33(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 9.48$ (s, 1 H).

Refinement

Hydrogen atoms were included at calculated positions using a riding model with aromatic and formyl $\mathrm{C}-\mathrm{H}=0.95$. The $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 \times U_{\text {eq }}(\mathrm{C})$ of the parent C atom.

Computing details

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: APEX2 (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013
(Sheldrick, 2013) and SHELXLE (Hübschle et al., 2011); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012)
and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Figure 1

ORTEP-3 plot of the title molecule with the atom numbering scheme. Displacement ellipsoids are represented at 50% probability levels. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

Crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as solid black lines, short $\mathrm{S} 3 \cdots \mathrm{~S} 3$ contacts are shown as solid blue lines, and short $\mathrm{S} 2 \cdots \mathrm{~S} 4$ contacts are represented as dotted blue lines.

Figure 3
Crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as solid black lines, short S3 \cdots S3 contacts are shown as solid blue lines.

2-(1,3-Dithiol-2-ylidene)-1,3-dithiole-4-carbaldehyde

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{OS}_{4}$
$M_{r}=232.34$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=3.8466$ (3) A
$b=7.4052$ (7) \AA
$c=30.577$ (3) \AA
$V=870.99(13) \AA^{3}$
$Z=4$
$F(000)=472$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine focus sealed tube ω and φ scans
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2012)
$T_{\min }=0.675, T_{\max }=0.746$
6998 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.057$
$S=1.13$
2734 reflections
109 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$D_{\mathrm{x}}=1.772 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 383 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4789 reflections
$\theta=2.8-31.4^{\circ}$
$\mu=1.03 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, red
$0.50 \times 0.21 \times 0.13 \mathrm{~mm}$

2734 independent reflections
2663 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=31.9^{\circ}, \theta_{\text {min }}=1.3^{\circ}$
$h=-5 \rightarrow 5$
$k=-10 \rightarrow 10$
$l=-42 \rightarrow 44$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0237 P)^{2}+0.4121 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.25$ e \AA^{-3}
Absolute structure: Flack x determined using
985 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons \&
Flack, 2004), 1024 Friedel pairs.
Flack parameter: 0.01 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.1960(6)$	$0.3626(3)$	$0.24133(7)$	$0.0229(4)$
H1	0.0987	0.4745	0.2504	0.027^{*}
C2	$0.3148(6)$	$0.3446(3)$	$0.19636(7)$	$0.0178(4)$
C3	$0.3234(6)$	$0.4823(3)$	$0.16743(7)$	$0.0188(4)$
H3	0.2417	0.5992	0.1751	0.023^{*}
C4	$0.5823(5)$	$0.2086(3)$	$0.12667(7)$	$0.0154(4)$
C5	$0.7332(5)$	$0.1004(3)$	$0.09665(7)$	$0.0154(4)$
C6	$0.9971(6)$	$-0.1700(3)$	$0.05523(7)$	$0.0213(4)$
H6	1.0784	-0.2866	0.0473	0.026^{*}
C7	$1.0078(7)$	$-0.0331(3)$	$0.02682(7)$	$0.0213(4)$
H7	1.0959	-0.0492	-0.0019	0.026^{*}
O1	$0.2158(5)$	$0.2405(2)$	$0.26790(5)$	$0.0275(4)$
S1	$0.47171(14)$	$0.13395(6)$	$0.17941(2)$	$0.01732(10)$
S2	$0.48840(15)$	$0.43791(6)$	$0.11609(2)$	$0.01750(10)$
S3	$0.85438(14)$	$0.17653(7)$	$0.04434(2)$	$0.01774(11)$
S4	$0.82962(14)$	$-0.12822(7)$	$0.10718(2)$	$0.01786(11)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0258(11)$	$0.0227(9)$	$0.0202(10)$	$0.0009(9)$	$-0.0027(8)$	$-0.0048(8)$
C2	$0.0168(9)$	$0.0174(9)$	$0.0190(9)$	$0.0009(8)$	$-0.0026(7)$	$-0.0033(7)$
C3	$0.0204(10)$	$0.0154(8)$	$0.0206(10)$	$0.0022(8)$	$-0.0014(9)$	$-0.0033(7)$
C4	$0.0151(9)$	$0.0134(8)$	$0.0177(9)$	$-0.0006(6)$	$-0.0023(7)$	$0.0024(6)$
C5	$0.0150(9)$	$0.0132(8)$	$0.0180(9)$	$-0.0011(6)$	$-0.0020(7)$	$0.0027(7)$
C6	$0.0193(9)$	$0.0186(9)$	$0.0260(10)$	$0.0023(9)$	$-0.0008(9)$	$-0.0069(7)$
C7	$0.0201(10)$	$0.0217(9)$	$0.0221(10)$	$0.0006(9)$	$0.0005(9)$	$-0.0056(7)$
O1	$0.0359(10)$	$0.0274(8)$	$0.0192(7)$	$-0.0016(8)$	$-0.0012(7)$	$-0.0002(6)$
S1	$0.0208(2)$	$0.01368(19)$	$0.0175(2)$	$0.00034(19)$	$0.00125(19)$	$0.00193(17)$
S2	$0.0205(2)$	$0.01230(18)$	$0.0197(2)$	$0.00120(19)$	$-0.0006(2)$	$0.00242(16)$
S3	$0.0183(2)$	$0.0181(2)$	$0.0169(2)$	$0.00035(19)$	$0.00033(19)$	$0.00149(17)$
S4	$0.0192(2)$	$0.01267(19)$	$0.0217(2)$	$0.00182(19)$	$-0.00120(19)$	$0.00094(17)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{O} 1$	$1.218(3)$	$\mathrm{C} 4-\mathrm{S} 2$	$1.7661(19)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.455(3)$	$\mathrm{C} 5-\mathrm{S} 3$	$1.759(2)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	$\mathrm{C} 5-\mathrm{S} 4$	$1.763(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.350(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.336(3)$
$\mathrm{C} 2-\mathrm{S} 1$	$1.751(2)$	$\mathrm{C} 6-\mathrm{S} 4$	$1.742(2)$
$\mathrm{C} 3-\mathrm{S} 2$	$1.725(2)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500

C3-H3	0.9500	C7-S3	1.745 (2)
C4-C5	1.349 (3)	C7-H7	0.9500
C4-S1	1.757 (2)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.9 (2)	C4-C5-S4	122.44 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	118.6	S3-C5-S4	114.71 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.6	C7-C6-S4	118.03 (16)
C3-C2-C1	123.9 (2)	C7-C6-H6	121.0
C3-C2-S1	118.05 (16)	S4-C6-H6	121.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	118.02 (16)	C6-C7-S3	117.70 (17)
C2-C3-S2	117.48 (16)	C6-C7-H7	121.1
C2-C3-H3	121.3	S3-C7-H7	121.1
$\mathrm{S} 2-\mathrm{C} 3-\mathrm{H} 3$	121.3	C2-S1-C4	94.30 (10)
C5-C4-S1	122.80 (15)	C3-S2-C4	95.26 (10)
C5-C4-S2	122.29 (15)	C7-S3-C5	94.82 (10)
S1-C4-S2	114.90 (11)	C6-S4-C5	94.69 (10)
C4-C5-S3	122.85 (15)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-174.0 (2)	C5-C4-S1-C2	178.23 (18)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	3.4 (3)	S2-C4-S1-C2	-0.66 (13)
C1-C2-C3-S2	177.51 (17)	C2-C3-S2-C4	-0.5 (2)
S1-C2-C3-S2	0.1 (3)	C5-C4-S2-C3	-178.19 (18)
S1-C4-C5-S3	-178.29 (12)	S1-C4-S2-C3	0.71 (13)
S2-C4-C5-S3	0.5 (3)	C6-C7-S3-C5	-1.6 (2)
S1-C4-C5-S4	0.8 (3)	C4-C5-S3-C7	-178.51 (18)
S2-C4-C5-S4	179.63 (12)	S4-C5-S3-C7	2.32 (14)
S4-C6-C7-S3	0.3 (3)	C7-C6-S4-C5	1.2 (2)
C3-C2-S1-C4	0.3 (2)	C4-C5-S4-C6	178.61 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 4$	-177.22 (18)	S3-C5-S4-C6	-2.21 (14)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.38	$3.228(3)$	149
$\mathrm{C} 3 — \mathrm{H} 3 \cdots 1^{\mathrm{i}}$	0.95	2.69	$3.445(3)$	137

Symmetry code: (i) $-x, y+1 / 2,-z+1 / 2$.

Sulfur-sulfur short contacts (\AA) of the title compound

System $S \cdots S$	$S \cdots S$	Symmetry code
S3 $\cdots 3^{i i}$	$3.4980(9)$	(ii) $-1 / 2+x, 1 / 2-y,-z$
S3 $\cdots 3^{i i i}$	$3.4980(9)$	(iii) $1 / 2+x, 1 / 2-y,-z$
S2 $\cdots 4^{\text {iv }}$	$3.4813(7)$	(iv) $x, 1+y, z$

