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Integrative Computational Framework, Dyscovr, Links Mutated Driver

Genes to Expression Dysregulation Across 19 Cancer Types
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SUMMARY: Though somatic mutations play a critical role in driving cancer initiation and
progression, the systems-level functional impacts of these mutations—particularly, how they alter
expression across the genome and give rise to cancer hallmarks—are not yet well-understood,
even for well-studied cancer driver genes. To address this, we designed an integrative machine
learning model, Dyscovr, that leverages mutation, gene expression, copy number alteration
(CNA), methylation, and clinical data to uncover putative relationships between nonsynonymous
mutations in key cancer driver genes and transcriptional changes across the genome. We applied
Dyscovr pan-cancer and within 19 individual cancer types, finding both broadly relevant and
cancer type-specific links between driver genes and putative targets, including a subset we further
identify as exhibiting negative genetic relationships. Our work newly implicates—and validates in
cell lines—KBTBD2 and mutant PIK3CA as putative synthetic lethals in breast cancer, suggesting

a novel combinatorial treatment approach.
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HIGHLIGHTS:
e Integrative framework Dyscovr links mutations within cancer drivers to downstream
expression changes
e Dyscovr uncovers known and novel targets of cancer-driver genes
e Dyscovr reveals clinically important negative genetic interaction pairings

e Web platform to explore uncovered driver gene-target relationships

eTOC BLURB: An integrative computational framework, Dyscovr, links mutated cancer driver
genes to expression changes in putative target genes within and across 19 TCGA cancer types.

Dyscovr’s results include experimentally verifiable synthetic lethal driver-target pairings.

INTRODUCTION

The personalized medicine approach to cancer treatment has largely focused on targeting
an individual's altered cancer driver genes. This approach has shown significant promise,
particularly with the emergence of drugs targeting specific driver genes'. However, not all patients
with a targetable alteration respond to the corresponding therapy. For many who do, their tumors
eventually develop resistance, often by reactivating the driving pathway. Understanding the
effects of driver gene mutations on the transcription of downstream genes throughout the genome
would expedite the identification of genes that could be co-targeted along with the driver gene,
ultimately improving the likelihood of durable success of these personalized treatments. However,
given the intricate nature of each patient's cancer—characterized by unique molecular and
environmental contexts—this remains a challenging task.

Much prior work in cancer regulatory genomics has centered on uncovering the set of
regulators that determine the expression of a gene?® or identifying cancer genes by determining

whether they have a large impact on the gene expression of their known targets or interactions®-
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15 or whether they are proximal in networks to dysregulated genes!®!’. These approaches typically
rely on a priori knowledge of global regulatory interactions, such as from protein-protein
interaction (PPI) networks or transcription factor (TF)-target databases, to inform downstream
linear or more complex models. Using networks as a prior can be useful in reducing multiple
testing burden, but means that these models cannot uncover the impact of frequent gene-level
somatic alterations on the expression of all dysregulated genes in the tumor genome. Another
class of methods aims to determine how somatic alterations in cancer change the activity of
regulators such as TFs!22; in some cases, these methods also use inferred TF activity to make
predictions about subsequent gene expression changes??. These approaches, however, do not
attempt to link somatic alterations directly to quantitative expression changes in individual target
genes, instead tending to focus on changes in regulatory activity and expression more broadly.
This inability to predict precise changes in the expression of single genes across the cancer
genome—particularly for indirect targets involved in druggable downstream cancer pathways—
limits our understanding of the global transcriptional impact of somatic mutations and our ability
to discover clinically actionable synthetic lethal pairings (i.e., gene pairs whose co-targeting leads
to cell death).

Here, we introduce an interpretable computational framework that uncovers links between
nonsynonymous somatic mutations in cancer driver genes and changes in expression in
individual genes across the genome. This framework, Dyscovr (named for its ability to “discover”
mutational links to transcriptional DY Sregulation in cancer), is conceptually similar to approaches
for identifying expression quantitative trait loci®®, but is focused on gene-gene associations,
aggregates somatic mutations at different sites within a gene, considers the effects of multiple
mutated genes in the same model, and integrates numerous other factors that are critical for the
cancer context.

To hone in on gene-gene links with the most clinical potential, we developed a subsequent

approach to identify which of Dyscovr’s hits are the most likely to exhibit synthetic lethality with
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driver genes. This model takes advantage of cancer cell line data from the Cancer Dependency
Map (DepMap)?* to discover cases where mutant tumor suppressors or inhibition of mutant
oncogenes synergistically interact with knockout of a putative target gene to inhibit cell growth.
Among our uncovered links, we investigate PIK3CA mutations and their predicted downregulatory
effect on KBTBD2, which we put forth as a cancer-relevant positive regulator of the PI3SK-AKT
pathway and insulin signaling. Further, we demonstrate experimentally that targeting KBTBD2
enhances the efficacy of PI3K inhibitors in breast cancer cell lines.

Overall, we find that Dyscovr is a powerful tool for relating cancer driver mutations to target
gene dysregulation across the cancer genome. Dyscovr is available open source
(github.com/Singh-Lab/Dyscovr), and all of Dyscovr’'s predictions are easily browsable and

downloadable via a user-friendly web interface (dyscovr.princeton.edu).

RESULTS

Overview of Dyscovr Framework

Briefly, Dyscovr integrates matched mutation, CNA, methylation, and expression data
from primary tumor samples from The Cancer Genome Atlas (TCGA) (Fig. 1A) to disentangle the
effects of each of these molecular phenotypes on transcription (Methods I). We first identify the
set S of cancer driver genes?® that frequently (25%) possess nonsynonymous mutations in the
given patient cohort (Fig. 1B). For each candidate gene in the human genome, we apply the
Dyscovr linear regression framework to simultaneously estimate the effect of the nonsynonymous
mutation status of each driver gene d in S on that gene’s expression. In each regression, we also
include other factors that may influence gene expression, including the CNA and methylation
status of each driver; the target gene’s mutation, CNA, and methylation status; and sample-level
covariates (e.g., patient age, gender, treatment status, tumor subtype, estimated fraction of

infiltrating immune cells, genotypic variation, etc.) (Fig. 1C).
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For each regression performed, Dyscovr extracts the fit coefficients for the
nonsynonymous mutation status of each driver gene d, performs per-driver multiple hypothesis
testing correction, and outputs a ranked set of driver mutation-target expression correlations with
associated g-values, estimated magnitudes, and directionalities. We apply this framework both
pan-cancer and within each of the 19 TCGA cancer types with at least 75 samples possessing all
required data types, and use g < 0.2 as our significance threshold. Because g-values tend to be
smaller with an increased number of tumor samples considered, we report results for the pan-

cancer analysis using a q < 0.01 threshold.

Dyscovr Prioritizes Cancer-Related Genes and Known Functional Interactors.

Across primary samples spanning 32 cancer types in the TCGA, four annotated cancer
driver genes?® are mutated at greater than 5% frequency overall and in at least two cancer types:
TP53, PIK3CA, KRAS, and IDH1 (Table S1). We first used Dyscovr to uncover pan-cancer
correlations between nonsynonymous mutations in these four driver genes and the expression of
16,447 putative target genes with sufficient data and variability across patient samples (see
Methods IV.A). For each of TP53, PIK3CA, KRAS, and IDH1, our models identified hundreds to
thousands of downstream target genes, or ‘hits’, whose expression is significantly correlated to
their nonsynonymous mutation status. TP53, the most highly mutated gene across TCGA
samples, accounts for the largest number of hits at a q < 0.01 significance threshold. In contrast,
when TTN—a gene mutated at greater than 5% frequency in 22 of these 32 cancers due to its long
length—is included in the model, it has only three hits at q < 0.01 (Fig. 2A, Fig. S1A). Additionally,
when randomizing data, no driver gene has significant hits (g < 0.2), suggesting that Dyscovr’s
hits reflect genuine biological signal (Fig. S1B).

Our results also suggest Dyscovr prioritizes each driver's known targets or functional
partners: for TP53, PIK3CA, KRAS, and IDH1, each gene’s hits were significantly enriched in

either the driver's transcriptional targets from DoRothEA?®, if a TF (i.e. TP53), or in the
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transcriptional targets of downstream TFs that have been shown the literature to be intermediaries
in enacting their effects (i.e. PIK3CA, KRAS, and IDH1) (Fig. 2B, Table S2). TP53 also has
exceptionally well-classified downstream targets from a variety of other sources, and we find that
the hits Dyscovr identifies for TP53 are significantly enriched for curated TP53 targets?’ (Fig. 2C)
as well as for targets identified in the TF-target databases TRRUST?® and hTFtarget?® (Table S3).
TP53’'s hits are also significantly enriched in genes from KEGG’'s P53 Signaling Pathway
(hsa04115)*°, Reactome’s Transcriptional Regulation by TP53 Pathway (R-HSA-3700989) (Fig.
2C) and TP53 Regulates Metabolic Genes Pathway (R-CFA-5628897)% (Table S3). Taken
together, these strong enrichments across a variety of sources suggest that Dyscovr is effectively
capturing transcriptional changes in downstream genes, including both direct transcriptional
targets and pathway targets that may lie further downstream of the mutational event.

In the case of TP53, IDH1, and PIK3CA, each driver genes’ hits are also statistically
enriched in known cancer-related genes, such as those from the Cancer Gene Census (CGC)*
(Fig. 2D, Table 1), highlighting Dyscovr’s ability to prioritize genes with cancer-relevant roles. This
is further supported by gene set enrichment analysis: we find that our driver genes’ targets are
also statistically enriched in cancer-related pathways from Gene Ontology (GO)33 and KEGG?°
(Fig. S1C; Table S4). For TP53, for example, KEGG pathways include cell cycle (q = 7.84E-09),
transcriptional misregulation in cancer (g = 1.82E-03), and p53 signaling pathway (g = 2.19E-03),
as well as various metabolic pathways (Table S4).

Though an advantage of Dyscovr is its ability to estimate transcriptional changes in
putative targets individually, we find that many of the targets that Dyscovr prioritizes also interact
with one another. When each driver gene’s top hits are overlaid on the STRING functional protein-
protein interaction network34, subclusters of dysregulated processes emerge. In the case of
TP53'’s top hits, a cluster of interconnected, cell cycle-related genes linked directly to TP53 or to
one another are visible (Fig. 2E). Similar clusters can be observed for the other drivers, such as

upregulated MAPK signaling in the case of KRAS and downregulated CaMK kinase cascade
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signaling in the case of IDH1 (Fig. S2) suggesting that Dyscovr’s results can be used to visualize
how driver mutations disrupt broad functional networks.

When top hits for each of these drivers are examined individually, known genetic partners
are apparent (Fig. 2F). These include TP53 and MDM2, which form an autoregulatory feedback
loop*®, and KRAS mutation and upregulation of DUSP4/6 and ETV4/5, which are members of the
ERK/MAP cascade downstream of KRAS®*. Another example is PIK3CA mutation and
upregulation of PIK3R3, a regulatory subunit of the Pl 3-kinase (PI3K) of which PIK3CA is also a
member. Dyscovr also identifies novel genetic relationships with partners outside of the drivers’
immediate pathways, such as PIK3CA mutation and upregulation of sphingolipid metabolism
genes SGPL1 and SPTLC2. This class of genes has sparked recent interest due to its relevance
to cancer diagnosis and prognosis, as well as its potential to provide new antitumor targets®’.
These links, which are available for browsing on the Dyscovr website, present intriguing,

previously unstudied therapeutic opportunities.

Dyscovr Uncovers Driver Mutation-Target Expression Correlations for 19 Individual TCGA
Cancer Types.

To discover nonsynonymous driver mutation-target gene expression correlations in a
cancer-specific context, we next applied Dyscovr individually to the 19 TCGA cancer types with
at least 75 samples possessing all data types. Each TCGA cancer type has its own unique set of
cancer driver genes?® mutated in at least 5% of samples (Fig. S3A); as such, the landscape of
mutated driver-dysregulated target pairs identified varies by cancer type (Fig. 3A). While the
absolute number of significant hits at a fixed g-value threshold is in part dependent upon the
number of available samples, all 19 cancer types possess at least 10 significant hits ata g < 0.2
threshold, a substantial number given the large multiple testing burden.

On the whole, Dyscovr finds that transcriptional effects of driver mutations display

similarity across cancer types, as the pairwise Spearman’s rank correlations of mutational
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coefficients fit by Dyscovr across all putative targets are largely positive (Fig. S3B). These results
align with the hypothesis that mutations in cancer driver genes tend to affect similar downstream
genes and processes across tissues. We find that there is still a great deal of tissue specificity,
however, as Dyscovr's results more strongly replicate when the same tissue type is being
compared. In the case of breast cancer, Dyscovr’s hits for TCGA-BRCA and external dataset
METABRIC?®2 display high Spearman’s rank correlations for the two most frequently mutated
drivers TP53 and PIK3CA (Fig. 3B, Fig. S3C).

We were patrticularly interested in genetic targets that are commonly dysregulated by a
mutated driver across multiple cancer types, as these mechanisms might be broadly targetable
(Fig. 3C). We identify some shared target genes with known mechanisms-of-action relating to
mutations in the given driver—e.g. activating PIK3CA mutations have been shown to result in
upregulation of glypican (GPC) family members, such as GPC4, and consequent tumorigenesis
in gliomas®**-though many other correlations have not been previously described. The link we
identify between PIK3CA mutations in breast cancer, cervical cancer, and low-grade glioma and
overexpression of FYCO1, for example, is not well explored, despite the fact that FYCOL1 has

been shown to have important roles in migration and invasion of tumor cells*.

Cell Viability Analysis Using DepMap Data Highlights Dyscovr Hits Displaying Putative
Negative Genetic Interactions.

To further narrow Dyscovr’s set of hits to those with the most clinical potential, we honed
in on targets that exhibit putative negative genetic interactions such as synthetic lethality (SL) with
nonsynonymous mutations in the corresponding driver genes. SL refers to cases where
inactivation of one gene renders the other essential®!. In this vein, we sought cases where loss of
activity of a cancer driver gene is correlated with greater dependence of the cell upon a given
target gene (i.e. decreased cell viability when the target is inhibited), which would suggest

potential synergy. Loss of driver activity can occur either when expression of that driver is low, or
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when a nonsynonymous mutation disrupts tumor suppressor gene function. Conversely, high
driver activity can occur when expression of that driver is high, or when a nonsynonymous
mutation hyperactivates oncogene function. Because we expect nonsynonymous mutations to
impact the activity of tumor suppressors and oncogenes in different ways, we treated them
separately in our analysis, looking to identify cases that showed positive correlation between
oncogene mutation status and cell viability upon target knockout and a negative correlation
between tumor suppressor mutation status and cell viability upon target knockout (Fig. 4A).

We tested for these genetic interactions using CRISPRi knockdown, somatic mutation,
and gene expression cell line data from the DepMap database?. We developed a regression
framework to relate driver gene nonsynonymous mutation status and expression to cell viability
of a given target upon CRISPRI knockdown, accounting for disease type (Fig. 4B, Methods VIII),
and applied it to hits identified for each of our TCGA pan-cancer driver genes with sufficient
mutational diversity in CCLE cell lines (TP53, PIK3CA, and KRAS). By identifying cases where
driver activity—captured by both a driver's expression and its mutation status—is linked to the
essentiality of a given target gene, we can systematically identify cases where inhibition of the
target in combination with a mutant tumor suppressor or inhibition of a mutant oncogene is likely
to have a disproportionately negative effect on cell growth.

For each driver, we applied this method to the set of target genes from Dyscovr that were
found to be significant both pan-cancer and within at least one individual cancer type (q < 0.2).
Using this pipeline, we identify a much smaller set of driver-target pairs which exhibit putative SL
relationships (Fig. 4C, Table S5). As is the case for Dyscovr’s full set of hits, identified putative
SLs are enriched for cancer-related GO pathways such as DNA damage checkpoint signaling,
regulation of cell death and apoptotic process, and cell cycle checkpoint signaling (Fig. 4D).
Though gold standard experimental sets of SL genes are scarce, KRAS has a set of 23 genes
from the SynLethDB 2.0 database* that are confident SL partners from experimental sources

(confidence >0.7) and intersect the genes tested in our analysis. We see enriched overlap of
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these genes with those identified as significant KRAS SL partners by our pipeline, albeit not at
the level of statistical significance (hypergeometric p = 9.72E-02).

Closer examination of the putative SL candidates reveals both known pairings from the
literature as well as novel pairings. These include genes involved in top enriched GO pathways
(Fig. 4E), as well as candidates involved in an assortment of other cancer-related processes, such
as DNA damage response, cellular metabolism, and angiogenesis (Table S5). The top hit for
KRAS, for example, is fibroblast growth factor receptor (FGFR) adaptor protein FRS2; FGFR1,
which signals via FRS2, has been found to mediate adaptive drug response in KRAS-mutant lung
cancers, leading to success of a combinatorial treatment approach*®. Notably, Dyscovr identified
this link between mutant KRAS and downregulation of FRS2 in lung cancer (q = 0.13), but not in
colon, pancreatic, or uterine: this is in close alignment with previous evidence that this
combinatorial treatment strategy is effective only in KRAS-mutant lung cancers and not other
KRAS-mutant cancer types**. Other of KRAS’s top predicted SLs have also been linked to KRAS
mutations in a cancer context, such as ARFGEF2% and NPAS2, while others such as CDCP1
and SKP2 have not been previously associated with KRAS mutation, but have been associated
with tumorigenesis*’°,

In the case of TP53, we identify examples of cases where TP53-mutant tumors are more
sensitive to knockdown of a given target gene. USP28, the top hit, is an oncogene that regulates
a variety of tumorigenic processes in cancers like squamous cell carcinoma, including cellular
proliferation, DNA damage repair, and apoptosis. Overexpression of USP28 has been associated
with poorer outcomes, leading to the development of therapeutics targeting this gene®°. However,
USP28 has also been put forth as a candidate tumor suppressor, as its deubiquitinating functions
play a role in stabilizing tumor suppressor TP53 in vivo®. Our analysis aligns with this dual
functionality, suggesting that targeting USP28 is most effective in contexts where TP53 function
has already been disrupted via nonsynonymous mutation and USP28’s tumor suppressive

functions are therefore no longer important. Several others of TP53’s top SL hits have bodies of

10
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evidence directly supporting a SL relationship, including oncogene CHEK?25! (which has also been
shown to modulate resistance to epirubicin in tandem with TP53 in breast cancer®?); LBR (which
has been shown to promote cellular proliferation in the absence of TP53°%, and is also a member
of the increasingly well-studied class of lamin B-related diseases®!); ACO1/IRP1 (a key modulator
of iron homeostasis that is involved in a well-characterized iron-TP53 feedback loop in
cancer®%%); and CUL9 (a tumor suppressor that promotes TP53-dependent apoptosis®’ and
regulates cell proliferation, senescence, apoptosis and genome integrity via TP53°"). Many of
TP53’s other top hits have been reported in the cancer literature, though without a mechanistic
relationship to TP53 mutations, such as NCDN®%8, PSME4°°%0 FAM189B5!, CKAP2L%263 GHR®,
and MYO9B®°.

Many of mutant PIK3CA'’s top SL candidates have been shown to act via or downstream
of the PI3K-AKT signaling pathway, such as TM4SF1, which regulates breast cancer cell
migration and apoptosis®®, SLC7A2, which mediates recruitment of myeloid-derived suppressor
cells and tumor immunosuppression®’, and TCF7L2, a WNT pathway effector shown to mediate
colorectal cancer cell migration and invasion®® (though WNT signaling dysregulation has been
implicated in other PIK3CA-mutant cancer types as well®®). Other identified hits are involved in
insulin signaling and regulation, which activates PI3K-AKT signaling; these include well-described
PIK3CA-interactors IRS2 and IGF1R", which are also candidate oncogenes in a variety of cancer

types’t-s.

Dyscovr Pipeline Reveals Clinically Actionable SL Pairs. To demonstrate Dyscovr’s ability to
identify candidate SL pairs, we focused on an under-studied member of a cullin3-RING E3
ubiquitin ligase complex, kelch repeat and BTB domain-containing protein 2 (KBTBDZ2). Kelch
repeat and BTB domain-containing proteins are adaptors which provide substrate specificity to
the E3 ligase complex’7®. Physiologically, KBTBD2 has been shown to regulate insulin signaling

in adipocytes by controlling stability of PI3K regulatory subunit, p85a’”:"8. The function of KBTBD2

11
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in cancer remains unexplored, though it was identified as a significant negative genetic interactor
with mutant PIK3CA (q = 6.2E-02) and was predicted by Dyscovr to be downregulated in relation
to PIK3CA mutation pan-cancer (q = 6.5E-04) and in breast cancer (q = 4.8E-02), suggesting a
cancer-relevant role. In addition, KBTBD2 followed a similar pattern as several other putative
positive regulators of PI3K signaling such as IGF1R, IRS2 and FURIN that were also
downregulated in PIK3CA-mutant tumors, likely the result of increased pathway output and hence
negative feedback (Fig. 5A). Further implicating KBTBD2 as a positive regulator of PI3K signaling
in human cancer, co-dependency analysis showed that cells with a high dependence on KBTBD2
were most likely to be sensitive to a variety of IGF1R inhibitors (Fig. 5B). Highlighting KBTBD2 as
a potential oncogene, we observed a significant reduction in survival rates across tumors in which
KBTBD2 was highly expressed, both pan-cancer (Fig. 5C) and in breast cancer (Fig. 5D).

To interrogate the function of KBTBD?2 in vitro, we used SiRNA to ablate its expression in
the ER+, PI3K mutant cell line, MCF7. Knockdown of KBTBD2 alone resulted in a 75-85%
reduction in cell growth (Fig. 5E, Fig. S4A). Interestingly, knockdown of KBTBD2 at baseline did
not alter signaling through the PI3K pathway as analyzed by canonical substrates (Fig. S4B),
though we did notice a slight increase in p85a expression—a regulatory subunit of PI3K involved
in modulating insulin sensitivity—following ablation of KBTBD2. Strikingly, KBTBD2 knockdown
significantly enhanced the effects of a clinically employed PI3K inhibitor, alpelisib’®—with 1uM
alpelisib blocking growth by approximately 25%, and the addition of KBTBD2 ablation converting
this effect into cytotoxic cell death (Fig. 5F). This effect was even more pronounced with 10uM
alpelisib. To examine the effects on pathway output, we knocked down KBTBD2 in MCF7 cells
followed by treatment with alpelisib for time t. We analyzed phosphorylation of PI3K effector AKT,
as well as the downstream output of mMTOR complex | (mMTORC1), which is regulated by PI3K
signaling and is a frequently activated and therapeutically targeted oncogene across many cancer
types®. As expected, suppression of mMTORC1 substrate phosphorylation correlates with

response to PI3K inhibitors’®. When KBTBD2 was knocked down, we observed a deeper inhibition
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of mMTORC1 targets, pS6 and p4EBP1. Cyclin D1, also under mTORC1 control®!, was also better
suppressed when KBTBD2 expression was ablated (Fig. 5G). We also tested a mutant-selective
PI3K alpha inhibitor, RLY-26088%. In this case, KBTBD2 knockdown was more effective at
blocking growth than the drug at any concentration. Additionally, the combination of RLY-2608
with KBTBD2 knockdown produced only a minor additive effect on growth inhibition. Interestingly,
in terms of pathway inhibition, knockdown of KBTBD2 enhanced the inhibitory effects of RLY-
2608, with pS6, p4EBP1, and cyclin D1 all more deeply suppressed than in the control sSiRNA
cells (Fig. S4C). Taken together, these results demonstrate that KBTBD2 inhibition holds exciting
potential to enhance the effects of PIK3CA inhibitors in PIK3CA-mutant breast cancers,
warranting further investigation. This example suggests that the Dyscovr platform can not only
predict driver mutation-expression pairs, but also identify a subset of such predictions as clinically

informative or even pharmacologically actionable.

DISCUSSION

We have introduced an integrative framework to link nonsynonymous mutations in cancer
driver genes to transcriptional dysregulation in target genes across the genome. Our method that
uses this framework, Dyscovr, draws on a wide array of data types, including CNA and
methylation data and clinical features, to determine the unique contributions of each feature to
transcriptional dysregulation in cancer. When applied to over 6,000 primary tumor samples from
the TCGA, both in a pan-cancer context and within 19 individual TCGA cancer types, Dyscovr
reveals thousands of novel correlations with potential clinical relevance. These correlations are
highly interpretable, can be replicated across patient cohorts, and are enriched in cancer-relevant
genes and pathways. When assessed using gold standard sets of known targets for widely
mutated cancer driver gene TP53, Dyscovr successfully prioritizes these targets. All Dyscovr’s

correlations for the TCGA are downloadable and searchable by gene and cancer type through its
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website (dyscovr.princeton.edu). Altogether, Dyscovr’s integrative approach sheds new light on
ways that a patient's driver mutational landscape influences downstream processes with a
specificity that lends itself to experimental and clinical applications.

For decades, scientists have conducted expression quantitative trait loci (eQTL) analyses
to relate cancer mutations to gene expression changes®. While valuable, traditional eQTL
analyses are not directly applicable to the task at hand, as they do not traditionally account for
target-level sources of expression variability that are common in cancer, such as CNAs,
methylation changes and mutations, or other features of tumors such as immune cell infiltration.
In our models, cancer subtype, target CNA status, target methylation status, and level of immune
cell infiltration are the strongest determinants of a target gene’s expression (Fig. S5A), suggesting
that attempts to relate mutation status to target gene expression without accounting for these
factors may lead to erroneous conclusions. This is particularly problematic given the increasingly
important role that patients’ driver mutations play in dictating their consequent treatment plan, as
targeted sequencing panels become routine in the clinic®. An advantage of our framework is that
it produces fit coefficients with meaningful magnitudes and directionalities, as well as significance
measures. This enables meaningful ranking and thresholding of results that is often unachievable
with modern black box machine learning methods (which have also been shown to underperform
simple linear models on similar tasks®®). This interpretability allows clinicians to decipher the role
that driver mutations play in downstream tumorigenic processes, independent of other mutations,
molecular alterations, and patient background.

In this work, we also show how commonly mutated drivers may be jointly targeted with
previously understudied genes to increase the effectiveness of driver-targeted therapies, with the
putative SLs identified by Dyscovr serving as potentially clinically useful synergistic genetic
targets. This is demonstrated by Dyscovr’s prioritization of known SL pairings (e.g. KRAS and
FRS2%), enrichment among putative SL genes in cancer-related processes, and the experimental

validation of a previously unstudied relationship between mutated PIK3CA and KBTBD2
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expression. In PIK3CA-mutant breast cancer cell lines, joint inhibition of PIK3CA and KBTBD2
resulted in more suppressed cell growth than PIK3CA inhibition or KBTBD2 knockout alone (Fig.
5). We anticipate that many of Dyscovr’s other, untested correlations may hold similar therapeutic
value.

There are several possibilities for future expansions of the Dyscovr framework. For one,
we restricted Dyscovr to cancer driver genes mutated at sufficiently high frequencies across
available samples, which poses challenges for small cohorts or highly mutationally diverse cancer
types. As multiomic sequencing continues to rapidly advance and more tumors are sequenced,
we can apply Dyscovr to larger patient cohorts and uncover relationships for less frequently
mutated driver genes. Ideally, these cohorts will also have greater representation of patients from
across all ethnic backgrounds, as our current work with the TCGA is limited by the
overrepresentation of patients from European backgrounds, a well-described problem in the field
of cancer genomics®. We also look forward to the possibility that additional sources of
transcriptional dysregulation in cancer (i.e. chromatin accessibility) may be measured at-scale
and included in Dyscovr’s framework. Similarly, as proteomic sequencing increases in availability
and scope, we see exciting possibilities for harnessing Dyscovr to relate driver mutations directly
to changes in protein levels—an application with clear relevance to cancer therapies that act on
protein targets. Finally, the swift rise of single-cell sequencing and the concerted push to
sequence multiomic data from single cells portends the compelling possibility of using a
framework such as Dyscovr to study these regulatory mechanisms within tumor cellular
subpopulations.

Ultimately, Dyscovr provides a powerful, integrative approach to study the molecular
mechanisms of cancer cells. As cancer treatment becomes increasingly personalized and
informed by genomic science, we anticipate that Dyscovr will prove a valuable tool to tease apart

the ways that driver mutations reshape cellular processes.
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METHODS

Star Methods Key Resources Table

Reagent or Resource Source Identifier

Deposited Data

Annotated simple nucleotide | The Cancer http://cancergenome.nih.gov/
variation (SNV) data, gene- Genome Atlas
level somatic copy number (TCGA)

variation (CNV) data, RNA-
seq transcriptomic profiling
data, 450K DNA methylation
data, biospecimen and

clinical data
Tumor purity estimates Aran et al., 2015 https://doi.org/10.1038/ncomms9971
Genotypic principal Carrot-Zhang et https://doi.org/10.1016/j.ccell.2020.04.01
components (PCs), al., 2020 2
computed using Washington
University method Supplemental materials:
https://gdc.cancer.gov/about-
data/publications/CCG-AIM-2020
File name:
“WashU_PCA _ethnicity_assigned.tsv”
Mutation data, copy number | Molecular https://doi.org/10.1038/nature10983
alteration (CNA) data, mMRNA | Taxonomy of
expression microarray data, Breast Cancer https://www.cbioportal.org/study/summa
promoter methylation (RRBS) | International ry?id=brca_metabric
data, clinical data Consortium
(METABRIC)
Mutation data, RNA-seq gene | The Broad Institute | https://depmap.org/portal/
expression data, drug Cancer
sensitivity data (PRISM Dependency Map
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repurposing primary screen), | (DepMap)

CRISPR gene dependency

data (22Q4+Score, Chronos)

Protein-protein interaction STRING https://string-db.org/

networks (confidence > 0.4)

Consortium, 2023

Drug-target gene
associations

DrugBank v.5.1.10

https://go.drugbank.com/releases/latest

UniProtkB

The UniProt
Consortium, 2019

https://www.uniprot.org/uniprot/

Vogelstein cancer driver
genes

Vogelstein et al.,
2013, Tables S2A,
S2B, S3A-S3C,
and S4

https://doi.org/10.1126/science.1235122

Cancer Gene Census (CGC)
cancer driver genes

Futreal et al., 2004

https://cancer.sanger.ac.uk/census

Curated TP53 target genes

Fischer et al.,
2017, Table 1

https://doi.org/10.1038/onc.2016.502

Reactome pathways

Jassal et al., 2020

https://reactome.org

KEGG: Kyoto Encyclopedia
of Genes and Genomes

Kanehisa
Laboratories

https://www.genome.jp/kegg/

TRRUST: Transcriptional
Regulatory Relationships
Unraveled by Sentence-

based Text mining, v2

Han et al. 2018

https://www.grnpedia.org/trrust/

https://doi.org/10.1093/nar/gkx1013

hTFtarget, TF-target

Zhang et al., 2020

http://bioinfo.life.hust.edu.cn/hTFtarget

regulations

https://doi.org/10.1016/j.gpb.2019.09.00

6
DoRothEA Garcia-Alonso et https://saezlab.github.io/dorothea/

al., 2019

https://doi.org/10.1093/bioadv/vbac016
IntAct Molecular Interaction del Toro et al., https://www.ebi.ac.uk/intact/home
Database v. 1.0.4 2022

https://doi.org/10.1093/nar/gkab1006

BioGRID v. 4.4.233 (The
Biological General Repository
for Interaction Datasets)

Oughtred et al.,
2021

https://thebiogrid.org/

https://doi.org/10.1002/pro.3978
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Software and Algorithms

Dyscovr

This paper

https://github.com/Singh-Lab/Dyscovr

Gene ID Conversion

biomaRt package for R
(version 2.48.3)

Durinck et al.
2009

https://bioconductor.org/packages/bioma
Rt/

org.Hs.eg.db package for R
(version 3.13.0)

Carlson, 2019

https://bioconductor.org/packages/org.H
s.eg.db/

Gene Set Enrichment Analysis

DOSE package for R (version
3.18.3)

Yu et al., 2015

https://bioconductor.org/packages/DOS
E/

ReactomePA package for R
(version 1.36.0)

Yu and He, 2016

https://github.com/YuLab-
SMU/ReactomePA

clusterProfiler package for R | Wu et al., 2021 https://bioconductor.org/packages/cluste
(version 4.0.5) rProfiler/

enrichplot package for R Yu et al., 2021 https://yulab-smu.top/biomedical-
(version 1.12.3) knowledge-mining-book/

GoSemSim package for R Yu et al., 2020 https://bioconductor.org/packages/releas

e/bioc/html/GOSemSim.html

Data Accession (Speci

fic Datasets)

TCGADbiolinks package for R
(version 2.20.1)

Colaprico et al.,
2016

https://github.com/BioinformaticsFMRP/
TCGADbiolinks

maftools package for R
(version 2.8.5)

Mayakonda et al.,

2018

https://github.com/PoisonAlien/maftools

TRONCO package for R

Caravagna et al.,
2023

https://bioconductor.org/packages/TRO
NCO

GenomicRanges package for
R

Lawrence et al.,
2013

https://bioconductor.org/packages/releas
e/bioc/html/GenomicRanges.html

immunedeconv package for
R (version 1.30.16)

Sturm et al., 2019

https://icbi-lab.github.io/immunedeconv/

STRINGdb package for R

Szklarczyk et al.,
2021

https://www.bioconductor.org/packages/
release/bioc/html/STRINGdb.html
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https://www.cell.com/cell-systems/fulltext/S2405-4712(20)30029-6#bib72
https://www.cell.com/cell-systems/fulltext/S2405-4712(20)30029-6#bib72
https://doi.org/10.1016/j.xinn.2021.100141
http://bioinformatics.oxfordjournals.org/content/31/4/608
https://doi.org/10.1007/978-1-0716-0301-7_11
https://academic.oup.com/nar/article/44/8/e71/2465925
https://academic.oup.com/nar/article/44/8/e71/2465925
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.18129/B9.bioc.TRONCO
https://doi.org/10.18129/B9.bioc.TRONCO
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003118
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003118
https://academic.oup.com/bioinformatics/article/35/14/i436/5529146
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dorothea package for R

Garcia-Alonso et
al., 2019

https://bioconductor.org/packages/releas
e/data/experiment/html/dorothea.html

Data Manipulation

data.table package for R
(version 1.14.8)

Dowle et al. 2023

https://CRAN.R-
project.org/package=data.table

broom package for R (version
1.0.5)

Dobinson et al.,
2023

https://CRAN.R-
project.org/package=broom

rlang package for R (version
1.1.1)

Henry et al., 2023

https://CRAN.R-
project.org/package=rlang

tidyverse package for R Wickham et al., https://doi.org/10.21105/joss.01686
2023

reshape2 package for R Wickham et al., http://lwww.jstatsoft.org/v21/i12/
2007

rlist package for R (version
0.4.6.2)

Rem et al., 2021

https://CRAN.R-
project.org/package=rlist

abind package for R (version
1.4-5)

Plate et al., 2016

https://CRAN.R-
project.org/package=abind

fastmatch package for R
(version 1.1-3)

Urbanek, 2021

https://CRAN.R-
project.org/package=fastmatch

pandas package for Python

The Pandas
Development
Team, 2020

https://doi.org/10.5281/zenodo.3509134

Statistical Analyses

edgeR package for R
(version 3.34.1)

Robinson et al.,
2010

https://bioconductor.org/packages/edge
R/

speedglm package for R
(version 0.3-5)

Enea, 2023

https://CRAN.R-
project.org/package=speedglm

KSgeneral package for R

Dimitrova, et al.,
2020

https://doi.org/10.18637/jss.v095.i10

dgrng package for R (version
0.3.1)

Stubner et al.,
2023

https://CRAN.R-
project.org/package=dqgrng

gvalue package for R
(version 2.24.0)

Storey et al., 2021

http://github.com/jdstorey/qvalue

matrixStats package for R

Bengtsson, 2023

https://CRAN.R-
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https://doi.org/10.1101/gr.240663.118
https://doi.org/10.1101/gr.240663.118
https://www.cell.com/cell-systems/fulltext/S2405-4712(20)30029-6#bib56
https://www.cell.com/cell-systems/fulltext/S2405-4712(20)30029-6#bib56
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(version 1.0.0)

project.org/package=matrixStats

Hmisc package for R (version
5.1-1)

Harrell Jr, 2023

https://CRAN.R-
project.org/package=Hmisc

caret package for R

Kuhn, 2008

https://doi.org/10.18637/jss.v028.i05

olsrr package for R (version
0.5.3)

Hebbali, 2020

https://CRAN.R-
project.org/package=olsrr

wCorr package for R (version
1.9.8)

Bailey et al., 2023

https://CRAN.R-
project.org/package=wCorr

EmpiricalBrownsMethod
package for R (version 1.9)

Poole, 2023

https://bioconductor.org/packages/Empir
icalBrownsMethod

survminer package for R
(version 0.4.9)

Kassambara et al.,
2021

https://CRAN.R-
project.org/package=survminer

survival package for R
(version 3.5-5)

Therneau, 2023

https://CRAN.R-
project.org/package=survival

scikit-learn package for
Python

Pedregosa et al.,
2011

https://api.semanticscholar.org/Corpusl
D:10659969

numpy package for Python

Harris et al., 2020

https://doi.org/10.1038/s41586-020-
2649-2

Benchmarking and Parallelization

tictoc package for R (version
1.2)

Izrailev, 2023

https://CRAN.R-
project.org/package=tictoc

snow package for R (version
0.4-4)

Tierney, 2021

https://CRAN.R-
project.org/package=snow

foreach package for R
(version 1.5.2)

Microsoft, 2022

https://CRAN.R-
project.org/package=foreach

doParallel package for R
(version 1.0.17)

Corporation et al.,
2022

https://CRAN.R-
project.org/package=doParallel

Data Visualization

igraph package for R (version
1.5.0.1)

Csardi et al., 2006

https://CRAN.R-
project.org/package=igraph

gplots package for R (version | Warnes et al., https://CRAN.R-
3.1.3) 2022 project.org/package=gplots
VennDiagram package for R | Chen, 2022 https://CRAN.R-
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(version 1.7.3) project.org/package=VennDiagram

RColorBrewer package for R | Neuwirth, 2022 https://CRAN.R-

(version 1.1-3) project.org/package=RColorBrewer

ggrepel package for R Slowikowski, 2023 | https://CRAN.R-

(version 0.9.4) project.org/package=ggrepel

ggsci package for R (version | Xiao, 2023 https://CRAN.R-

3.0.0) project.org/package=ggsci

ggraph package for R Pedersen, 2022 https://CRAN.R-

(version 2.1.0) project.org/package=ggraph

tidygraph package for R Pedersen, 2022 https://CRAN.R-

(version 1.2.3) project.org/package=tidygraph

UpSetR package for R Gehlenborg, 2019 | https://CRAN.R-

(version 1.4.0) project.org/package=UpSetR

pheatmap package for R Kolde, 2019 https://CRAN.R-

(version 1.0.12) project.org/package=pheatmap

cowplot package for R Wilke, 2020 https://CRAN.R-

(version 1.1.1) project.org/package=cowplot
Miscellaneous

argparse package for R Davis, 2023 https://CRAN.R-

project.org/package=argparse

Quantification and Statistical Analysis

All statistical analyses were performed within the R platform for statistical computing. All
analysis scripts and scripts to recreate each figure are made available at GitHub (DOls are
listed in the key resources table). Quantification methods and statistical analyses for the omics
datasets are described in the respective sections of the STAR Methods. Unless otherwise

stated, relevant statistical parameters are reported in the legend of each figure.

I. A Framework to Estimate Regression Coefficients for the Nonsynonymous Mutation Status of

Driver Genes. We introduce a linear regression framework to estimate relationships between the
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mutation status of driver genes and the expression of each putative target gene, t, across a set
of cancer samples. In particular, for each putative target gene t, we consider the following model:
E; ~Yaes(@qUq + BaCq +va¥a) + Uy + {Cp + Y, + XL, 0:X; + &
where S is the set of frequently mutated driver genes considered (Table S1, Methods IV.E), E; is
a continuous value representing the expression of putative target gene t (Methods IV.A), U, is a
binary variable indicating whether driver gene d possesses a honsynonymous mutation (Methods
IV.B), C; is a continuous value representing the normalized copy number status of d (Methods
IV.C), and Y; is a continuous value representing the methylation status of d (Methods IV.D).
Similarly, U; is a binary variable indicating whether the putative target gene t possesses a
nonsynonymous mutation, C; is a continuous value representing the normalized copy number
status of t, and Y; is a continuous value representing the methylation status of t. In addition to
these core features, we also have a number of additional covariates that correspond to various
other clinical and molecular features that may have nontrivial effects on E;, with the number K of
such covariates dependent upon the characteristics of the set of samples being examined
(Methods IV.F). These covariates include the cancer type and subtype, age, gender, genotypic
background, prior malignancies, prior treatment, nonsynonymous tumor mutational burden
(TMB), tumor purity, and fraction of infiltrating immune cells. The coefficients fit from the data are

the ag, B4, vq and {64,0,,...,0¢}, aswell as 6, ¢, and n.

1. Applying Regression Framework to Samples from the TCGA, Pan-Cancer and Within 19

Individual Cancer Types. We apply the multiple linear regression model from Methods | to all

putative target genes t in the human genome (Methods 1V.A), with one model per t. We do this
both across all TCGA samples, or “pan-cancer”, as well as within the 19 individual cancer types
possessing =75 samples (Table S1). For both the pan-cancer analysis and the per-cancer

analyses, each model includes U, , C,; , and Y, features for all driver genes d as annotated by
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Vogelstein et al.?® that have nonsynonymous mutations in at least 5% of available samples and
at least 5 total samples; see Table S1 for the set of drivers tested in each case. In the pan-cancer
case, drivers must be mutated in at least 5 samples, as well as at least 5% of all samples both
pan-cancer and within at least 2 individual cancer types (to ensure signal is not driven by a single
cancer type). This 5% threshold was chosen in an effort to balance statistical power with including
as many potentially interesting driver genes as possible. All multiple regression models were run
using the R package speedglm’s speedim function®”, which fit coefficients and provided
associated p-values for all terms, including the U; mutational terms of interest. For each driver
gene, we performed multiple hypothesis correction across the set of coefficients corresponding
to its mutational term to convert p-values across the targets to g-values, using the gvalue function
from the gvalue package in R with default parameters®. We deemed pairings between a
nonsynonymous mutation in driver gene d and the expression of putative target gene t significant
if the corresponding g-value was less than a threshold value of 0.2; given the increased statistical
power in the pan-cancer setting, in the main body of the paper, we report pairings that are

significant using a threshold of 0.01 for pan-cancer analyses and 0.2 for per-cancer analyses.

Ill. Addressing Multicollinearity. In certain cases, we expect the nonsynonymous mutation status

of driver gene d, represented as Uy, to result in correlations with other variables in our framework
(e.g., mutations within IDH1 promote hypermethylation®, and thus IDH1 mutation status in some
cancers may be correlated with the methylation status of genes). Linear regression models
assume independence between variables, and in such cases will not be able to disentangle the
contributions of the mutation within the driver gene from other variables it is correlated with. As
such, prior to running the regression, our framework checks for multicollinearity.

First, we check that cancer subtype covariates (Methods IV.F.h) are not correlated with
the mutation status of any driver genes present in the given regression model. If they are, this

would indicate that these subtypes were at least partially defined by driver mutation status. To

24


https://doi.org/10.1101/2024.11.20.624509
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.20.6245009; this version posted November 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

address this, we generate a Spearman correlation coefficient matrix and associated p-value
matrix using the R package Hmisc, and check, for each cancer subtype variable, if it is correlated
with any U, variable with Spearman correlation >0.7 and p-value <1E-05. If this correlation meets
both of these exclusion criteria, the subtype variable is removed from the regression model. We
use Spearman correlation for subtype variables, rather than other commonly used measures of
multicollinearity such as the variance inflation factor (VIF)%, because subtypes are encoded as
bucketed, binary variables (Methods IV.F.h), and thus the corresponding variables are correlated
with each other and will have high variance inflation factors (VIFs), even if they are not correlated
with the mutation status of the driver gene. Across targets, we find that the vast majority of
variables removed using this procedure pan-cancer (~99.9%) correspond to subtypes that are
defined by IDH1-mutation status in LGG, particularly the IDH1mut-non-codel subtype.

Following this, we check other variables in the model for multicollinearity using the VIF.
We use the R package caret’s vif function to calculate a VIF measure for all non-bucketed
variables in the regression, since as described above, bucketed variables (Methods IV.F.f-i) by
design are collinear with one another and have high VIF scores. For the remainder of these
variables, we eliminate any non-driver mutation (U,) variables whose VIF score exceeds a
threshold of 5, a generally conservative but widely accepted threshold that suggests moderate
collinearity®. To ensure that our variables of interest, Uy, are not collinear with other variables in
the model, we repeat this process iteratively until U, for all d in S are below the threshold VIF of
5. In pan-cancer analyses, 13,917 genes (84.6%) had at least one variable removed, though
13,384 of these genes (96.2% of the 13,917 cases, 81.3% of target genes overall) had only the
IDH1mut-non-codel subtype variable removed. Aside from this, we find that the methylation status
of the target gene is most commonly eliminated pan-cancer (for ~2.10% of tested genes), followed
by gender (~1.51%). For all significant pairings, variables that were eliminated using either of the

above techniques are reported in Table S6 and Fig. S5B.
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IV. Data Acquisition and Processing. In the National Cancer Institute’s GDC data portal, there are

6378 primary tumor samples that possess all data types of interest, including annotated somatic
mutation data, transcriptomic profiling, copy number variation, methylation, and clinical data. We
downloaded these files from the GDC data repository, with parameters provided in Table S7.

A. Expression Data. Raw read count RNA-seq files from the TCGA were converted to counts

per million (CPM) using edgeR’s cpm function®’. Genes minimally expressed across all
samples were eliminated using edgeR’s filterByExpr function with default parameters.
These include requirements that all genes are required to have a minimum overall total
count of at least 15 (min.total.count), and a minimum CPM of 10 in at least 10 samples
(min.count). The remaining 19,052 genes’ counts were quantile normalized so that each
of the 6378 samples has the same distribution of gene expression values using scikit
learn’s quantile.transform function®?, with an output distribution of ‘normal.” Each gene t's
expression level in Dyscovr corresponds to a quantile-normalized gene expression value
E,.

B. Mutation Data. We imported the simple nucleotide variation (SNV) file, with mutations
called using muse®, into R using maftools’ read.maf function®®. We then subsetted this
file to include only nonsynonymous mutations (as annotated by muse), including
missense, nonsense, nonstop, and splice site mutations. We then used maftools’
mutCountMatrix function to compute the number of nonsynonymous mutations per gene
and per sample. We excluded samples with excessively high mutation rates across all
genes, referred to here as ‘hypermutators’, which we defined according to the analyses
performed in Campbell et al.®®. In this work, they used a linear regression approach across
81,337 cancer patients to determine a reasonable threshold for hypermutation, which they
recommend being ~10 mutations per Mb. Given that the human exome is ~36.8Mb, we
selected 368 mutations as our threshold for hypermutation, such that any sample with

greater than 368 total nonsynonymous mutations was discarded from the analysis. This
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removed a total of 360 samples, leaving 6018 pan-cancer TCGA samples. The mutation
status of each gene t in each sample, U, , is 1 if the gene has a nonsynonymous mutation
in that sample and 0 otherwise.

C. Copy Number Alteration (CNA) Data. We obtained absolute CNA values for each gene in

each sample, as computed by the ASCAT®® pipeline and made available by TCGA. In our
model, for each gene in a given sample, we compute its normalized copy number value
as the logz of the absolute CNA value divided by the mean CNA value across genes in the
sample. Pseudocounts of 1 were used to adjust both the gene-level and average copy
number values. The normalized copy number gives us a value that accounts for large
scale ploidy differences between tumor samples. In practice, to be robust to extreme
outlier CNA events, we exclude the top 10% and bottom 10% of gene-level CNA values
for each sample when calculating its mean CNA value.

D. Methylation Data. We imported individual samples’ level 3 Liftover methylation Beta (B)

files into R and removed ‘NA’ or empty values. These files have already been processed
to include gene-level annotations. For any gene with more than one reported {3 value, we
averaged these 3 values to produce a single  value per gene. Subsequently, we compiled
the average B value for each gene in each sample and then converted 3 values to M-
values using the logit, or log2(B8 /1 — B)). We represent methylation levels in our model
using these M-values. We use the M-value rather than the Beta value to assess
methylation due to its purported statistical rigor®” and improved model performance in
early testing.

E. Gene Set Data. Our list of driver genes consists of genes from Vogelstein et al. tables

S2A, S2B, S3A, S3B, S3C and S4%.
F. Clinical Data. Using data from the TCGA'’s clinical supplement, we created a composite
data table with patient-level features. Using data from TCGA’s biosample data

supplement, a TCGA tumor purity file obtained from Aran et al.®®, genotypic principal
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components from Carrot-Zhang et al.*®, and immune cell infiltration estimates from R’s
immunedeconv package!® using the tool CIBERSORT Abs!?!, we created a data table
with sample-level features. We then combined the patient- and sample-specific files such
that all patient-specific data was applied to all samples from that patient, for use in the
linear regression framework. Further information on each clinical feature is described in
subsections below.

a. Age. Normalized to take on a value approximately between 0 and 1 by dividing

each patient’s age (given in years) by 100.
b. Gender. Takes on a binary value of 1 for male and O for female patients.

c. Prior malignancies. Takes on binary value, with 1 signifying that the patient had a

prior malignancy and 0 signifying that there was no prior malignancy.

d. Prior treatment. Encompasses two binary variables, as per the data available in

the TCGA'’s clinical supplement: prior radiation treatment, where 0 represents no
prior radiation treatment and 1 represents prior radiation treatment, and prior
pharmaceutical treatment, where 0 represents no prior pharmaceutical treatment
and 1 represents prior pharmaceutical treatment.

e. Genotypic Principal Components. Consists of three continuous covariates, each

of which corresponds to the value of one of the first three genotypic principal
components (PCs). These PCs are provided in the supplemental data table of
Carrot-Zhang et al.®® (see Star Methods Key Resources Table) and were
calculated using the Washington University approach. Briefly, this approach
involves the conversion of Birdseed genotype files to individual VCF files, which
are then merged (with only variants of MAF >15% retained) prior to PCA using
PLINK 1.9.192 See Carrot-Zhang et al.*® for more detailed methods.

f. Nonsynonymous Mutational Burden. Consists of three binary covariates,

representing low, moderate, and high nonsynonymous tumor mutational burden
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(TMB). For any given sample, one of these covariates will take on a value of 1 and
the other two a value of 0, depending on the total number of nonsynonymous
mutations their tumor possesses. Based on the distribution of TMB across TCGA
samples, we defined low TMB as having <30 nonsynonymous mutations,
moderate TMB as between 30 and 60 mutations, and high TMB as >60 mutations.

g. Tumor Purity. Consists of three binary covariates, representing low, moderate, and
high tumor purity. For any given sample, one of these covariates will take on a
value of 1 and the other two a value of 0, depending on the magnitude of the tumor
purity estimate for that sample. We define purity using the combined purity
estimate (CPE) from Aran et al.®® when available, and for the samples without a
provided CPE, we use the median of the available purity measures. Based on the
distribution of CPE values across TCGA samples, we defined low tumor purity as
having a CPE < 0.5, moderate tumor purity as having a 0.5 < CPE <0.75, and high
tumor purity as having a CPE > 0.75.

h. Tumor Subtype. Consists of a binary covariate for each subtype in the given cancer

type. For any given sample, one of these covariates will take on a value of 1 and
all others a value of 0, depending on which subtype it is classified as. Because
subtypes are defined differently for each cancer type, the column we used to define
subtype in the TCGA clinical supplement is provided in Table S8. Each cancer type
will have a different number of tumor subtype variables, as this is dependent on
the number of unigue subtypes present in the given column. Molecular subtypes
were used whenever possible; when unavailable, histological or expression-based
clustering subtypes were used. In the pan-cancer analyses, a binary covariate was
created for each cancer type:subtype combination (e.g. Breast Cancer:Luminal A),

across all cancer types. In this case, for any given sample, one of these
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combination covariates will take on a value of 1 and all others 0, depending on its

combined cancer type and subtype classification.

i. Immune Cell Infiltration. In the case of immune cell infiltration (F), we use the

absolute immune cell fractions provided by the tool CIBERSORT Abs?°%, run using
R’s immunedeconv package!®. To get a single value representing the level of
immune cell infiltration in the given sample, we add individual immune cell type
fractions, e.g. predicted fractions of B cells, T cells, etc., into a total fraction of
immune cells per sample. From there, we group this fraction into one of three
buckets: low immune cell infiltration (total immune cell fraction <0.3), medium
immune cell infiltration (total immune cell fraction >0.3 and <0.7), and high immune
cell infiltration (total immune cell fraction >0.7), again defined by the distribution of
total immune cell fractions across the samples.

G. In all of the cases that involve two or more binary covariates, and in which only one of
these covariates can take on a value of 1 (Methods IVFf-i), one fewer covariate is needed
in the linear regression equation to represent all distinct possible classifications®. To limit
multicollinearity, the final covariate for a given feature is removed (e.g. a dummy variable
encoding, rather than a one-hot encoding). For example, in the case of nonsynonymous
TMB, low TMB would be represented by a binary covariate taking on values of 1 and 0,
moderate TMB would be represented by a binary covariate taking on values of 0 and 1,

and high TMB would be represented by two binary covariates taking on values of 0 and 0.

V. Computational Validation via Comparison of TCGA BRCA results to METABRIC. To test

whether our models are capable of generating consistent and meaningful correlations between
driver gene mutations and target gene expression across independent cohorts, we also applied

the Dyscovr framework to data from the Molecular Taxonomy of Breast Cancer International
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Consortium (METABRIC)38, a collection of 854 breast cancer patients of European ancestry with
paired mutation, CNA, mRNA expression, methylation, and clinical data. Due to differences in
available data types, we made the following modifications to our model and data processing.

A. METABRIC: Estimating Regression Coefficient for Mutation Status of Driver Genes. To

ensure comparability to TCGA-BRCA, linear regression models were constructed in the
same fashion as described in Methods I. Due to limitations in available germline data for
the METABRIC cohort, genotypic principal components are not included in these models.

B. METABRIC: Data Acquisition and Processing. METABRIC primary tumor data files were

downloaded from cBioPortal'®. To keep processing pipelines as similar as possible to
TCGA-BRCA, the same protocol was used for preprocessing mutation data, including
generation of a mutation count, restriction to only nonsynonymous mutations, and removal
of hypermutators (Methods 1V.B). Mutations in METABRIC were called using MuTect and
filtered according to the procedure given in Curtis et al.*8. As with TCGA-BRCA, ASCAT®®
was used for CNA calling. The gene expression data available for the METABRIC cohort
is lllumina HT-12 v3 microarray data, which requires distinct preprocessing procedures to
TCGA-BRCA’s RNA-sequencing data. We filtered genes with greater than 50% missing
values and with mean expression <5 or standard deviation <0.3 across samples, as in
Liao et al.1%, but otherwise used the provided quantile-normalized log2-intensity values
as input to our models. The METABRIC methylation data is also distinct from TCGA-BRCA
in that only promoter methylation bisulfite sequencing (RRBS) is available. Files were
already processed using the gpatterns package such that each file contains a [0,1] gene-
level value of CpG methylation. Models were run using both these [0,1] CpG values, as
well as the logit of these values, though models performed comparably and the [0,1] CpG
values were ultimately used in figure creation. Due to differences in labeling and

availability of clinical data types in METABRIC as compared to TCGA-BRCA, different
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column names were often used; any features with notable differences are described
below.

a. Prior malignancies (Methods IV.F.c). The “RFS_STATUS” column was used.

b. Prior treatment (Methods IV.F.d). The “RADIO_THERAPY” column was used to
create a binary representation of prior radiation treatment, while the
‘CHEMOTHERAPY” and “HORMONE_THERAPY” columns were combined to
create a binary representation of prior pharmaceutical treatment. In the latter case,
the sample received a 1 if they had received either chemotherapy or hormone
therapy, and O otherwise.

c. Nonsynonymous tumor mutational burden (TMB) (Methods IV.F.f). For the
nonsynonymous TMB, the log2 of the “TMB_NONSYNONYMOUS” column with a
pseudocount of 1 was used, with 3 binary covariates for representing low (TMB <
2.5), moderate (2.5 < TMB < 3.5) and high (TMB > 3.5) tumor mutational burden.

d. Tumor purity (Methods IV.F.g). METABRIC’s clinical supplement provides a
“CELLULARITY” column that is an estimate of tumor purity from the tool MCP-
counter®, The values this column can take include “Low”, “Moderate”, and “High”.
As with TCGA-BRCA, we represented this in our model as three binary covariates,
with a sample taking on a value of 1 in one of these covariates and a 0 in the two
others.

C. METABRIC: Comparison of Betas to TCGA-BRCA. For each driver gene mutated at 25%

frequency in both TCGA-BRCA and METABRIC cohorts, which includes TP53 and
PIK3CA, we computed the Spearman correlation between the fit coefficients for all target

genes tested in both TCGA-BRCA and METABRIC (Fig. 3C, Fig. S3C).

VIl. Gene Set Enrichment Analysis.

32


https://doi.org/10.1101/2024.11.20.624509
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.20.6245009; this version posted November 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We compute enrichment in curated gene sets (Fig. 1B-D; Table S3) using a one-sided
Kolomogorov-Smirnov (K-S) test with a uniform distribution (Ha = greater). We use gene sets from
the DoRothEA network? (Fig. 2B), a curated set of TP53 targets from Fischer et al.?’ (Table 1,
Fig. 2C) and Reactome®! (Fig. 2C), and from the CGC?? (Fig. 2D). The DoRothEA network was
accessed via the dorothea R package using the dorothea_hs function. Genes at all confidence
levels were used. Additional gene sets used for TP53-specific gene set enrichment analysis were
downloaded directly from TRRUST?, hTFtarget?®, and KEGG* websites (Table S3, STAR
Methods).

We compute pathway-level gene set enrichment analysis (Fig. 4D; Fig. S1C; Table S4)
using the package ReactomePA?’ in R, specifically using the gseGO, gseKEGG, and
gseMKEGG functions applied to the -log(g-values) multiplied by the directionality of the
associated mutation coefficient (1 for coefficient > 0, -1 for coefficient < 0) produced by Dyscovr.
In cases with more than five significant GO pathways, functionally similar GO pathways®® were
consolidated using the Wang et al. method°®; pathways with a similarity metric greater than 0.7
were merged, retaining the name of the more statistically significant pathway (Fig. S1C). Full sets

of enriched GO pathways, without merging, can be found in Table S4.

VIII. Narrowing of Experimental Candid