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SUMMARY: Though somatic mutations play a critical role in driving cancer initiation and 

progression, the systems-level functional impacts of these mutations—particularly, how they alter 

expression across the genome and give rise to cancer hallmarks—are not yet well-understood, 

even for well-studied cancer driver genes. To address this, we designed an integrative machine 

learning model, Dyscovr, that leverages mutation, gene expression, copy number alteration 

(CNA), methylation, and clinical data to uncover putative relationships between nonsynonymous 

mutations in key cancer driver genes and transcriptional changes across the genome. We applied 

Dyscovr pan-cancer and within 19 individual cancer types, finding both broadly relevant and 

cancer type-specific links between driver genes and putative targets, including a subset we further 

identify as exhibiting negative genetic relationships. Our work newly implicates–and validates in 

cell lines–KBTBD2 and mutant PIK3CA as putative synthetic lethals in breast cancer, suggesting 

a novel combinatorial treatment approach. 
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HIGHLIGHTS: 

● Integrative framework Dyscovr links mutations within cancer drivers to downstream 

expression changes 

● Dyscovr uncovers known and novel targets of cancer-driver genes 

● Dyscovr reveals clinically important negative genetic interaction pairings  

● Web platform to explore uncovered driver gene-target relationships  

 

eTOC BLURB: An integrative computational framework, Dyscovr, links mutated cancer driver 

genes to expression changes in putative target genes within and across 19 TCGA cancer types. 

Dyscovr’s results include experimentally verifiable synthetic lethal driver-target pairings. 

 

INTRODUCTION 

 The personalized medicine approach to cancer treatment has largely focused on targeting 

an individual's altered cancer driver genes. This approach has shown significant promise, 

particularly with the emergence of drugs targeting specific driver genes1. However, not all patients 

with a targetable alteration respond to the corresponding therapy. For many who do, their tumors 

eventually develop resistance, often by reactivating the driving pathway. Understanding the 

effects of driver gene mutations on the transcription of downstream genes throughout the genome 

would expedite the identification of genes that could be co-targeted along with the driver gene, 

ultimately improving the likelihood of durable success of these personalized treatments. However, 

given the intricate nature of each patient's cancer–characterized by unique molecular and 

environmental contexts–this remains a challenging task. 

 Much prior work in cancer regulatory genomics has centered on uncovering the set of 

regulators that determine the expression of a gene2–8 or identifying cancer genes by determining 

whether they have a large impact on the gene expression of their known targets or interactions9–
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15 or whether they are proximal in networks to dysregulated genes16,17. These approaches typically 

rely on a priori knowledge of global regulatory interactions, such as from protein-protein 

interaction (PPI) networks or transcription factor (TF)-target databases, to inform downstream 

linear or more complex models. Using networks as a prior can be useful in reducing multiple 

testing burden, but means that these models cannot uncover the impact of frequent gene-level 

somatic alterations on the expression of all dysregulated genes in the tumor genome. Another 

class of methods aims to determine how somatic alterations in cancer change the activity of 

regulators such as TFs18–22; in some cases, these methods also use inferred TF activity to make 

predictions about subsequent gene expression changes22. These approaches, however, do not 

attempt to link somatic alterations directly to quantitative expression changes in individual target 

genes, instead tending to focus on changes in regulatory activity and expression more broadly. 

This inability to predict precise changes in the expression of single genes across the cancer 

genome–particularly for indirect targets involved in druggable downstream cancer pathways–

limits our understanding of the global transcriptional impact of somatic mutations and our ability 

to discover clinically actionable synthetic lethal pairings (i.e., gene pairs whose co-targeting leads 

to cell death).  

 Here, we introduce an interpretable computational framework that uncovers links between 

nonsynonymous somatic mutations in cancer driver genes and changes in expression in 

individual genes across the genome. This framework, Dyscovr (named for its ability to “discover” 

mutational links to transcriptional DYSregulation in cancer), is conceptually similar to approaches 

for identifying expression quantitative trait loci23, but is focused on gene-gene associations, 

aggregates somatic mutations at different sites within a gene, considers the effects of multiple 

mutated genes in the same model, and integrates numerous other factors that are critical for the 

cancer context.  

 To hone in on gene-gene links with the most clinical potential, we developed a subsequent 

approach to identify which of Dyscovr’s hits are the most likely to exhibit synthetic lethality with 
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driver genes. This model takes advantage of cancer cell line data from the Cancer Dependency 

Map (DepMap)24 to discover cases where mutant tumor suppressors or inhibition of mutant 

oncogenes synergistically interact with knockout of a putative target gene to inhibit cell growth. 

Among our uncovered links, we investigate PIK3CA mutations and their predicted downregulatory 

effect on KBTBD2, which we put forth as a cancer-relevant positive regulator of the PI3K-AKT 

pathway and insulin signaling. Further, we demonstrate experimentally that targeting KBTBD2 

enhances the efficacy of PI3K inhibitors in breast cancer cell lines.  

 Overall, we find that Dyscovr is a powerful tool for relating cancer driver mutations to target 

gene dysregulation across the cancer genome. Dyscovr is available open source 

(github.com/Singh-Lab/Dyscovr), and all of Dyscovr’s predictions are easily browsable and 

downloadable via a user-friendly web interface (dyscovr.princeton.edu).  

 

RESULTS 

Overview of Dyscovr Framework 

 Briefly, Dyscovr integrates matched mutation, CNA, methylation, and expression data 

from primary tumor samples from The Cancer Genome Atlas (TCGA) (Fig. 1A) to disentangle the 

effects of each of these molecular phenotypes on transcription (Methods I). We first identify the 

set S of cancer driver genes25 that frequently (≥5%) possess nonsynonymous mutations in the 

given patient cohort (Fig. 1B). For each candidate gene in the human genome, we apply the 

Dyscovr linear regression framework to simultaneously estimate the effect of the nonsynonymous 

mutation status of each driver gene d in S on that gene’s expression. In each regression, we also 

include other factors that may influence gene expression, including the CNA and methylation 

status of each driver; the target gene’s mutation, CNA, and methylation status; and sample-level 

covariates (e.g., patient age, gender, treatment status, tumor subtype, estimated fraction of 

infiltrating immune cells, genotypic variation, etc.)  (Fig. 1C). 
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 For each regression performed, Dyscovr extracts the fit coefficients for the 

nonsynonymous mutation status of each driver gene d, performs per-driver multiple hypothesis 

testing correction, and outputs a ranked set of driver mutation-target expression correlations with 

associated q-values, estimated magnitudes, and directionalities. We apply this framework both 

pan-cancer and within each of the 19 TCGA cancer types with at least 75 samples possessing all 

required data types, and use q < 0.2 as our significance threshold.  Because q-values tend to be 

smaller with an increased number of tumor samples considered, we report results for the pan-

cancer analysis using a q < 0.01 threshold.     

 

Dyscovr Prioritizes Cancer-Related Genes and Known Functional Interactors.  

 Across primary samples spanning 32 cancer types in the TCGA, four annotated cancer 

driver genes25 are mutated at greater than 5% frequency overall and in at least two cancer types: 

TP53, PIK3CA, KRAS, and IDH1 (Table S1). We first used Dyscovr to uncover pan-cancer 

correlations between nonsynonymous mutations in these four driver genes and the expression of 

16,447 putative target genes with sufficient data and variability across patient samples (see 

Methods IV.A). For each of TP53, PIK3CA, KRAS, and IDH1, our models identified hundreds to 

thousands of downstream target genes, or ‘hits’, whose expression is significantly correlated to 

their nonsynonymous mutation status. TP53, the most highly mutated gene across TCGA 

samples, accounts for the largest number of hits at a q < 0.01 significance threshold. In contrast, 

when TTN–a gene mutated at greater than 5% frequency in 22 of these 32 cancers due to its long 

length–is included in the model, it has only three hits at q < 0.01 (Fig. 2A, Fig. S1A). Additionally, 

when randomizing data, no driver gene has significant hits (q < 0.2), suggesting that Dyscovr’s 

hits reflect genuine biological signal (Fig. S1B).  

Our results also suggest Dyscovr prioritizes each driver’s known targets or functional 

partners: for TP53, PIK3CA, KRAS, and IDH1, each gene’s hits were significantly enriched in 

either the driver’s transcriptional targets from DoRothEA26, if a TF (i.e. TP53), or in the 
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transcriptional targets of downstream TFs that have been shown the literature to be intermediaries 

in enacting their effects (i.e. PIK3CA, KRAS, and IDH1) (Fig. 2B, Table S2). TP53 also has 

exceptionally well-classified downstream targets from a variety of other sources, and we find that 

the hits Dyscovr identifies for TP53 are significantly enriched for curated TP53 targets27 (Fig. 2C) 

as well as for targets identified in the TF-target databases TRRUST28 and hTFtarget29 (Table S3). 

TP53’s hits are also significantly enriched in genes from KEGG’s P53 Signaling Pathway 

(hsa04115)30, Reactome’s Transcriptional Regulation by TP53 Pathway (R-HSA-3700989) (Fig. 

2C) and TP53 Regulates Metabolic Genes Pathway (R-CFA-5628897)31 (Table S3). Taken 

together, these strong enrichments across a variety of sources suggest that Dyscovr is effectively 

capturing transcriptional changes in downstream genes, including both direct transcriptional 

targets and pathway targets that may lie further downstream of the mutational event.  

In the case of TP53, IDH1, and PIK3CA, each driver genes’ hits are also statistically 

enriched in known cancer-related genes, such as those from the Cancer Gene Census (CGC)32 

(Fig. 2D, Table 1), highlighting Dyscovr’s ability to prioritize genes with cancer-relevant roles. This 

is further supported by gene set enrichment analysis: we find that our driver genes’ targets are 

also statistically enriched in cancer-related pathways from Gene Ontology (GO)33 and KEGG30 

(Fig. S1C; Table S4). For TP53, for example, KEGG pathways include cell cycle (q = 7.84E-09), 

transcriptional misregulation in cancer (q = 1.82E-03), and p53 signaling pathway (q = 2.19E-03), 

as well as various metabolic pathways (Table S4).  

Though an advantage of Dyscovr is its ability to estimate transcriptional changes in 

putative targets individually, we find that many of the targets that Dyscovr prioritizes also interact 

with one another. When each driver gene’s top hits are overlaid on the STRING functional protein-

protein interaction network34, subclusters of dysregulated processes emerge. In the case of 

TP53’s top hits, a cluster of interconnected, cell cycle-related genes linked directly to TP53 or to 

one another are visible (Fig. 2E). Similar clusters can be observed for the other drivers, such as 

upregulated MAPK signaling in the case of KRAS and downregulated CaMK kinase cascade 
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signaling in the case of IDH1 (Fig. S2) suggesting that Dyscovr’s results can be used to visualize 

how driver mutations disrupt broad functional networks.  

When top hits for each of these drivers are examined individually, known genetic partners 

are apparent (Fig. 2F). These include TP53 and MDM2, which form an autoregulatory feedback 

loop35, and KRAS mutation and upregulation of DUSP4/6 and ETV4/5, which are members of the 

ERK/MAP cascade downstream of KRAS36. Another example is PIK3CA mutation and 

upregulation of PIK3R3, a regulatory subunit of the PI 3-kinase (PI3K) of which PIK3CA is also a 

member. Dyscovr also identifies novel genetic relationships with partners outside of the drivers’ 

immediate pathways, such as PIK3CA mutation and upregulation of sphingolipid metabolism 

genes SGPL1 and SPTLC2. This class of genes has sparked recent interest due to its relevance 

to cancer diagnosis and prognosis, as well as its potential to provide new antitumor targets37. 

These links, which are available for browsing on the Dyscovr website, present intriguing, 

previously unstudied therapeutic opportunities.  

 

Dyscovr Uncovers Driver Mutation-Target Expression Correlations for 19 Individual TCGA 

Cancer Types.  

 To discover nonsynonymous driver mutation-target gene expression correlations in a 

cancer-specific context, we next applied Dyscovr individually to the 19 TCGA cancer types with 

at least 75 samples possessing all data types. Each TCGA cancer type has its own unique set of 

cancer driver genes25 mutated in at least 5% of samples (Fig. S3A); as such, the landscape of 

mutated driver-dysregulated target pairs identified varies by cancer type (Fig. 3A). While the 

absolute number of significant hits at a fixed q-value threshold is in part dependent upon the 

number of available samples, all 19 cancer types possess at least 10 significant hits at a q < 0.2 

threshold, a substantial number given the large multiple testing burden.  

On the whole, Dyscovr finds that transcriptional effects of driver mutations display 

similarity across cancer types, as the pairwise Spearman’s rank correlations of mutational 
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coefficients fit by Dyscovr across all putative targets are largely positive (Fig. S3B). These results 

align with the hypothesis that mutations in cancer driver genes tend to affect similar downstream 

genes and processes across tissues. We find that there is still a great deal of tissue specificity, 

however, as Dyscovr’s results more strongly replicate when the same tissue type is being 

compared. In the case of breast cancer, Dyscovr’s hits for TCGA-BRCA and external dataset 

METABRIC38 display high Spearman’s rank correlations for the two most frequently mutated 

drivers TP53 and PIK3CA (Fig. 3B, Fig. S3C).  

We were particularly interested in genetic targets that are commonly dysregulated by a 

mutated driver across multiple cancer types, as these mechanisms might be broadly targetable 

(Fig. 3C). We identify some shared target genes with known mechanisms-of-action relating to 

mutations in the given driver–e.g. activating PIK3CA mutations have been shown to result in 

upregulation of glypican (GPC) family members, such as GPC4, and consequent tumorigenesis 

in gliomas39–though many other correlations have not been previously described. The link we 

identify between PIK3CA mutations in breast cancer, cervical cancer, and low-grade glioma and 

overexpression of FYCO1, for example, is not well explored, despite the fact that FYCO1 has 

been shown to have important roles in migration and invasion of tumor cells40.  

 

Cell Viability Analysis Using DepMap Data Highlights Dyscovr Hits Displaying Putative 

Negative Genetic Interactions.  

To further narrow Dyscovr’s set of hits to those with the most clinical potential, we honed 

in on targets that exhibit putative negative genetic interactions such as synthetic lethality (SL) with 

nonsynonymous mutations in the corresponding driver genes. SL refers to cases where 

inactivation of one gene renders the other essential41. In this vein, we sought cases where loss of 

activity of a cancer driver gene is correlated with greater dependence of the cell upon a given 

target gene (i.e. decreased cell viability when the target is inhibited), which would suggest 

potential synergy. Loss of driver activity can occur either when expression of that driver is low, or 
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when a nonsynonymous mutation disrupts tumor suppressor gene function. Conversely, high 

driver activity can occur when expression of that driver is high, or when a nonsynonymous 

mutation hyperactivates oncogene function. Because we expect nonsynonymous mutations to 

impact the activity of tumor suppressors and oncogenes in different ways, we treated them 

separately in our analysis, looking to identify cases that showed positive correlation between 

oncogene mutation status and cell viability upon target knockout and a negative correlation 

between tumor suppressor mutation status and cell viability upon target knockout (Fig. 4A).  

We tested for these genetic interactions using CRISPRi knockdown, somatic mutation, 

and gene expression cell line data from the DepMap database24. We developed a regression 

framework to relate driver gene nonsynonymous mutation status and expression to cell viability 

of a given target upon CRISPRi knockdown, accounting for disease type (Fig. 4B, Methods VIII), 

and applied it to hits identified for each of our TCGA pan-cancer driver genes with sufficient 

mutational diversity in CCLE cell lines (TP53, PIK3CA, and KRAS). By identifying cases where 

driver activity–captured by both a driver’s expression and its mutation status–is linked to the 

essentiality of a given target gene, we can systematically identify cases where inhibition of the 

target in combination with a mutant tumor suppressor or inhibition of a mutant oncogene is likely 

to have a disproportionately negative effect on cell growth. 

For each driver, we applied this method to the set of target genes from Dyscovr that were 

found to be significant both pan-cancer and within at least one individual cancer type (q < 0.2). 

Using this pipeline, we identify a much smaller set of driver-target pairs which exhibit putative SL 

relationships (Fig. 4C, Table S5). As is the case for Dyscovr’s full set of hits, identified putative 

SLs are enriched for cancer-related GO pathways such as DNA damage checkpoint signaling, 

regulation of cell death and apoptotic process, and cell cycle checkpoint signaling (Fig. 4D). 

Though gold standard experimental sets of SL genes are scarce, KRAS has a set of 23 genes 

from the SynLethDB 2.0 database42 that are confident SL partners from experimental sources 

(confidence >0.7) and intersect the genes tested in our analysis. We see enriched overlap of 
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these genes with those identified as significant KRAS SL partners by our pipeline, albeit not at 

the level of statistical significance (hypergeometric p = 9.72E-02). 

Closer examination of the putative SL candidates reveals both known pairings from the 

literature as well as novel pairings. These include genes involved in top enriched GO pathways 

(Fig. 4E), as well as candidates involved in an assortment of other cancer-related processes, such 

as DNA damage response, cellular metabolism, and angiogenesis (Table S5). The top hit for 

KRAS, for example, is fibroblast growth factor receptor (FGFR) adaptor protein FRS2; FGFR1, 

which signals via FRS2, has been found to mediate adaptive drug response in KRAS-mutant lung 

cancers, leading to success of a combinatorial treatment approach43. Notably, Dyscovr identified 

this link between mutant KRAS and downregulation of FRS2 in lung cancer (q = 0.13), but not in 

colon, pancreatic, or uterine: this is in close alignment with previous evidence that this 

combinatorial treatment strategy is effective only in KRAS-mutant lung cancers and not other 

KRAS-mutant cancer types44. Other of KRAS’s top predicted SLs have also been linked to KRAS 

mutations in a cancer context, such as ARFGEF245 and NPAS246, while others such as CDCP1 

and SKP2 have not been previously associated with KRAS mutation, but have been associated 

with tumorigenesis47–49.  

In the case of TP53, we identify examples of cases where TP53-mutant tumors are more 

sensitive to knockdown of a given target gene. USP28, the top hit, is an oncogene that regulates 

a variety of tumorigenic processes in cancers like squamous cell carcinoma, including cellular 

proliferation, DNA damage repair, and apoptosis. Overexpression of USP28 has been associated 

with poorer outcomes, leading to the development of therapeutics targeting this gene50. However, 

USP28 has also been put forth as a candidate tumor suppressor, as its deubiquitinating functions 

play a role in stabilizing tumor suppressor TP53 in vivo50. Our analysis aligns with this dual 

functionality, suggesting that targeting USP28 is most effective in contexts where TP53 function 

has already been disrupted via nonsynonymous mutation and USP28’s tumor suppressive 

functions are therefore no longer important. Several others of TP53’s top SL hits have bodies of 
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evidence directly supporting a SL relationship, including oncogene CHEK251 (which has also been 

shown to modulate resistance to epirubicin in tandem with TP53 in breast cancer52); LBR (which 

has been shown to promote cellular proliferation in the absence of TP5353, and is also a member 

of the increasingly well-studied class of lamin B-related diseases54); ACO1/IRP1 (a key modulator 

of iron homeostasis that is involved in a well-characterized iron-TP53 feedback loop in 

cancer55,56); and CUL9 (a tumor suppressor that promotes TP53-dependent apoptosis57 and 

regulates cell proliferation, senescence, apoptosis and genome integrity via TP5357). Many of 

TP53’s other top hits have been reported in the cancer literature, though without a mechanistic 

relationship to TP53 mutations, such as NCDN58, PSME459,60, FAM189B61, CKAP2L62,63, GHR64, 

and MYO9B65.  

Many of mutant PIK3CA’s top SL candidates have been shown to act via or downstream 

of the PI3K-AKT signaling pathway, such as TM4SF1, which regulates breast cancer cell 

migration and apoptosis66, SLC7A2, which mediates recruitment of myeloid-derived suppressor 

cells and tumor immunosuppression67, and TCF7L2, a WNT pathway effector shown to mediate 

colorectal cancer cell migration and invasion68 (though WNT signaling dysregulation has been 

implicated in other PIK3CA-mutant cancer types as well69). Other identified hits are involved in 

insulin signaling and regulation, which activates PI3K-AKT signaling; these include well-described 

PIK3CA-interactors IRS2 and IGF1R70, which are also candidate oncogenes in a variety of cancer 

types71–75.  

 

Dyscovr Pipeline Reveals Clinically Actionable SL Pairs. To demonstrate Dyscovr’s ability to 

identify candidate SL pairs, we focused on an under-studied member of a cullin3-RING E3 

ubiquitin ligase complex, kelch repeat and BTB domain-containing protein 2 (KBTBD2). Kelch 

repeat and BTB domain-containing proteins are adaptors which provide substrate specificity to 

the E3 ligase complex75,76. Physiologically, KBTBD2 has been shown to regulate insulin signaling 

in adipocytes by controlling stability of PI3K regulatory subunit, p85α77,78. The function of KBTBD2 
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in cancer remains unexplored, though it was identified as a significant negative genetic interactor 

with mutant PIK3CA (q = 6.2E-02) and was predicted by Dyscovr to be downregulated in relation 

to PIK3CA mutation pan-cancer (q = 6.5E-04) and in breast cancer (q = 4.8E-02), suggesting a 

cancer-relevant role. In addition, KBTBD2 followed a similar pattern as several other putative 

positive regulators of PI3K signaling such as IGF1R, IRS2 and FURIN that were also 

downregulated in PIK3CA-mutant tumors, likely the result of increased pathway output and hence 

negative feedback (Fig. 5A). Further implicating KBTBD2 as a positive regulator of PI3K signaling 

in human cancer, co-dependency analysis showed that cells with a high dependence on KBTBD2 

were most likely to be sensitive to a variety of IGF1R inhibitors (Fig. 5B). Highlighting KBTBD2 as 

a potential oncogene, we observed a significant reduction in survival rates across tumors in which 

KBTBD2 was highly expressed, both pan-cancer (Fig. 5C) and in breast cancer (Fig. 5D).  

To interrogate the function of KBTBD2 in vitro, we used siRNA to ablate its expression in 

the ER+, PI3K mutant cell line, MCF7. Knockdown of KBTBD2 alone resulted in a 75-85% 

reduction in cell growth (Fig. 5E, Fig. S4A). Interestingly, knockdown of KBTBD2 at baseline did 

not alter signaling through the PI3K pathway as analyzed by canonical substrates (Fig. S4B), 

though we did notice a slight increase in p85α expression–a regulatory subunit of PI3K involved 

in modulating insulin sensitivity–following ablation of KBTBD2. Strikingly, KBTBD2 knockdown 

significantly enhanced the effects of a clinically employed PI3K inhibitor, alpelisib79—with 1µM 

alpelisib blocking growth by approximately 25%, and the addition of KBTBD2 ablation converting 

this effect into cytotoxic cell death (Fig. 5F). This effect was even more pronounced with 10µM 

alpelisib. To examine the effects on pathway output, we knocked down KBTBD2 in MCF7 cells 

followed by treatment with alpelisib for time t. We analyzed phosphorylation of PI3K effector AKT, 

as well as the downstream output of mTOR complex I (mTORC1), which is regulated by PI3K 

signaling and is a frequently activated and therapeutically targeted oncogene across many cancer 

types80. As expected, suppression of mTORC1 substrate phosphorylation correlates with 

response to PI3K inhibitors78. When KBTBD2 was knocked down, we observed a deeper inhibition 
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of mTORC1 targets, pS6 and p4EBP1. Cyclin D1, also under mTORC1 control81, was also better 

suppressed when KBTBD2 expression was ablated (Fig. 5G). We also tested a mutant-selective 

PI3K alpha inhibitor, RLY-260882. In this case, KBTBD2 knockdown was more effective at 

blocking growth than the drug at any concentration. Additionally, the combination of RLY-2608 

with KBTBD2 knockdown produced only a minor additive effect on growth inhibition. Interestingly, 

in terms of pathway inhibition, knockdown of KBTBD2 enhanced the inhibitory effects of RLY-

2608, with pS6, p4EBP1, and cyclin D1 all more deeply suppressed than in the control siRNA 

cells (Fig. S4C). Taken together, these results demonstrate that KBTBD2 inhibition holds exciting 

potential to enhance the effects of PIK3CA inhibitors in PIK3CA-mutant breast cancers, 

warranting further investigation. This example suggests that the Dyscovr platform can not only 

predict driver mutation-expression pairs, but also identify a subset of such predictions as clinically 

informative or even pharmacologically actionable. 

 

DISCUSSION 

 We have introduced an integrative framework to link nonsynonymous mutations in cancer 

driver genes to transcriptional dysregulation in target genes across the genome. Our method that 

uses this framework, Dyscovr, draws on a wide array of data types, including CNA and 

methylation data and clinical features, to determine the unique contributions of each feature to 

transcriptional dysregulation in cancer. When applied to over 6,000 primary tumor samples from 

the TCGA, both in a pan-cancer context and within 19 individual TCGA cancer types, Dyscovr 

reveals thousands of novel correlations with potential clinical relevance. These correlations are 

highly interpretable, can be replicated across patient cohorts, and are enriched in cancer-relevant 

genes and pathways. When assessed using gold standard sets of known targets for widely 

mutated cancer driver gene TP53, Dyscovr successfully prioritizes these targets. All Dyscovr’s 

correlations for the TCGA are downloadable and searchable by gene and cancer type through its 
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website (dyscovr.princeton.edu). Altogether, Dyscovr’s integrative approach sheds new light on 

ways that a patient’s driver mutational landscape influences downstream processes with a 

specificity that lends itself to experimental and clinical applications.  

 For decades, scientists have conducted expression quantitative trait loci (eQTL) analyses 

to relate cancer mutations to gene expression changes83. While valuable, traditional eQTL 

analyses are not directly applicable to the task at hand, as they do not traditionally account for 

target-level sources of expression variability that are common in cancer, such as CNAs, 

methylation changes and mutations, or other features of tumors such as immune cell infiltration. 

In our models, cancer subtype, target CNA status, target methylation status, and level of immune 

cell infiltration are the strongest determinants of a target gene’s expression (Fig. S5A), suggesting 

that attempts to relate mutation status to target gene expression without accounting for these 

factors may lead to erroneous conclusions. This is particularly problematic given the increasingly 

important role that patients’ driver mutations play in dictating their consequent treatment plan, as 

targeted sequencing panels become routine in the clinic84. An advantage of our framework is that 

it produces fit coefficients with meaningful magnitudes and directionalities, as well as significance 

measures. This enables meaningful ranking and thresholding of results that is often unachievable 

with modern black box machine learning methods (which have also been shown to underperform 

simple linear models on similar tasks85). This interpretability allows clinicians to decipher the role 

that driver mutations play in downstream tumorigenic processes, independent of other mutations, 

molecular alterations, and patient background.  

 In this work, we also show how commonly mutated drivers may be jointly targeted with 

previously understudied genes to increase the effectiveness of driver-targeted therapies, with the 

putative SLs identified by Dyscovr serving as potentially clinically useful synergistic genetic 

targets. This is demonstrated by Dyscovr’s prioritization of known SL pairings (e.g. KRAS and 

FRS244), enrichment among putative SL genes in cancer-related processes, and the experimental 

validation of a previously unstudied relationship between mutated PIK3CA and KBTBD2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.20.624509doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.20.624509
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

expression. In PIK3CA-mutant breast cancer cell lines, joint inhibition of PIK3CA and KBTBD2 

resulted in more suppressed cell growth than PIK3CA inhibition or KBTBD2 knockout alone (Fig. 

5). We anticipate that many of Dyscovr’s other, untested correlations may hold similar therapeutic 

value. 

 There are several possibilities for future expansions of the Dyscovr framework. For one, 

we restricted Dyscovr to cancer driver genes mutated at sufficiently high frequencies across 

available samples, which poses challenges for small cohorts or highly mutationally diverse cancer 

types. As multiomic sequencing continues to rapidly advance and more tumors are sequenced, 

we can apply Dyscovr to larger patient cohorts and uncover relationships for less frequently 

mutated driver genes. Ideally, these cohorts will also have greater representation of patients from 

across all ethnic backgrounds, as our current work with the TCGA is limited by the 

overrepresentation of patients from European backgrounds, a well-described problem in the field 

of cancer genomics86. We also look forward to the possibility that additional sources of 

transcriptional dysregulation in cancer (i.e. chromatin accessibility) may be measured at-scale 

and included in Dyscovr’s framework. Similarly, as proteomic sequencing increases in availability 

and scope, we see exciting possibilities for harnessing Dyscovr to relate driver mutations directly 

to changes in protein levels—an application with clear relevance to cancer therapies that act on 

protein targets. Finally, the swift rise of single-cell sequencing and the concerted push to 

sequence multiomic data from single cells portends the compelling possibility of using a 

framework such as Dyscovr to study these regulatory mechanisms within tumor cellular 

subpopulations.  

 Ultimately, Dyscovr provides a powerful, integrative approach to study the molecular 

mechanisms of cancer cells. As cancer treatment becomes increasingly personalized and 

informed by genomic science, we anticipate that Dyscovr will prove a valuable tool to tease apart 

the ways that driver mutations reshape cellular processes.  
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METHODS 

Star Methods Key Resources Table 

Reagent or Resource Source Identifier 

Deposited Data 

Annotated simple nucleotide 
variation (SNV) data, gene-
level somatic copy number 
variation (CNV) data, RNA-
seq transcriptomic profiling 
data, 450K DNA methylation 
data, biospecimen and 
clinical data 

The Cancer 
Genome Atlas 
(TCGA) 

http://cancergenome.nih.gov/ 

Tumor purity estimates  Aran et al., 2015 https://doi.org/10.1038/ncomms9971 

Genotypic principal 
components (PCs), 
computed using Washington 
University method 

Carrot-Zhang et 
al., 2020 

https://doi.org/10.1016/j.ccell.2020.04.01
2 
 
Supplemental materials: 
https://gdc.cancer.gov/about-
data/publications/CCG-AIM-2020 
 
File name: 
“WashU_PCA_ethnicity_assigned.tsv” 

Mutation data, copy number 
alteration (CNA) data, mRNA 
expression microarray data, 
promoter methylation (RRBS) 
data, clinical data 

Molecular 
Taxonomy of 
Breast Cancer 
International 
Consortium 
(METABRIC) 

https://doi.org/10.1038/nature10983 
 
https://www.cbioportal.org/study/summa
ry?id=brca_metabric 

Mutation data, RNA-seq gene 
expression data, drug 
sensitivity data (PRISM 

The Broad Institute 
Cancer 
Dependency Map 

https://depmap.org/portal/ 
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repurposing primary screen), 
CRISPR gene dependency 
data (22Q4+Score, Chronos)  

(DepMap) 

Protein-protein interaction 
networks (confidence > 0.4) 

STRING 
Consortium, 2023 

https://string-db.org/ 

Drug-target gene 
associations 

DrugBank v.5.1.10 https://go.drugbank.com/releases/latest 

UniProtKB The UniProt 
Consortium, 2019 

https://www.uniprot.org/uniprot/ 

Vogelstein cancer driver 
genes 

Vogelstein et al., 
2013, Tables S2A, 
S2B, S3A–S3C, 
and S4 

https://doi.org/10.1126/science.1235122 

Cancer Gene Census (CGC) 
cancer driver genes 

Futreal et al., 2004 https://cancer.sanger.ac.uk/census 

Curated TP53 target genes Fischer et al., 
2017, Table 1 

https://doi.org/10.1038/onc.2016.502 

Reactome pathways Jassal et al., 2020 https://reactome.org 

KEGG: Kyoto Encyclopedia 
of Genes and Genomes 

Kanehisa 
Laboratories 

https://www.genome.jp/kegg/ 

TRRUST: Transcriptional 
Regulatory Relationships 
Unraveled by Sentence-
based Text mining, v2 

Han et al. 2018 https://www.grnpedia.org/trrust/ 
 
https://doi.org/10.1093/nar/gkx1013 

hTFtarget, TF-target 
regulations 

Zhang et al., 2020 http://bioinfo.life.hust.edu.cn/hTFtarget 
 
https://doi.org/10.1016/j.gpb.2019.09.00
6 

DoRothEA Garcia-Alonso et 
al., 2019 

https://saezlab.github.io/dorothea/ 
 
https://doi.org/10.1093/bioadv/vbac016 

IntAct Molecular Interaction 
Database v. 1.0.4 

del Toro et al., 
2022 

https://www.ebi.ac.uk/intact/home 
 
https://doi.org/10.1093/nar/gkab1006 

BioGRID v. 4.4.233 (The 
Biological General Repository 
for Interaction Datasets) 

Oughtred et al., 
2021 

https://thebiogrid.org/ 
 
https://doi.org/10.1002/pro.3978 
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Software and Algorithms 

Dyscovr This paper https://github.com/Singh-Lab/Dyscovr 

Gene ID Conversion 

biomaRt package for R 
(version 2.48.3)  

Durinck et al., 
2009 

https://bioconductor.org/packages/bioma
Rt/ 

org.Hs.eg.db package for R 
(version 3.13.0) 

Carlson, 2019 https://bioconductor.org/packages/org.H
s.eg.db/ 

Gene Set Enrichment Analysis 

DOSE package for R (version 
3.18.3) 

Yu et al., 2015 https://bioconductor.org/packages/DOS
E/ 

ReactomePA package for R 
(version 1.36.0) 

Yu and He, 2016
  

https://github.com/YuLab-
SMU/ReactomePA 

clusterProfiler package for R 
(version 4.0.5)  

Wu et al., 2021 https://bioconductor.org/packages/cluste
rProfiler/ 

enrichplot package for R 
(version 1.12.3)  

Yu et al., 2021 https://yulab-smu.top/biomedical-
knowledge-mining-book/ 

GoSemSim package for R Yu et al., 2020 https://bioconductor.org/packages/releas
e/bioc/html/GOSemSim.html 

Data Accession (Specific Datasets) 

TCGAbiolinks package for R 
(version 2.20.1) 

Colaprico et al., 
2016 

https://github.com/BioinformaticsFMRP/
TCGAbiolinks 

maftools package for R 
(version 2.8.5) 

Mayakonda et al., 
2018 

https://github.com/PoisonAlien/maftools 

TRONCO package for R Caravagna et al., 
2023 

https://bioconductor.org/packages/TRO
NCO 

GenomicRanges package for 
R 

Lawrence et al., 
2013 

https://bioconductor.org/packages/releas
e/bioc/html/GenomicRanges.html 

immunedeconv package for 
R (version 1.30.16) 

Sturm et al., 2019  https://icbi-lab.github.io/immunedeconv/ 

STRINGdb package for R Szklarczyk et al., 
2021 

https://www.bioconductor.org/packages/
release/bioc/html/STRINGdb.html 
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https://academic.oup.com/nar/article/44/8/e71/2465925
https://academic.oup.com/nar/article/44/8/e71/2465925
https://doi.org/10.1101/gr.239244.118
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https://doi.org/10.18129/B9.bioc.TRONCO
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dorothea package for R Garcia-Alonso et 
al., 2019 

https://bioconductor.org/packages/releas
e/data/experiment/html/dorothea.html 

Data Manipulation 

data.table package for R 
(version 1.14.8) 

Dowle et al. 2023 https://CRAN.R-
project.org/package=data.table 

broom package for R (version 
1.0.5) 

Dobinson et al., 
2023 

https://CRAN.R-
project.org/package=broom 

rlang package for R (version 
1.1.1) 

Henry et al., 2023 https://CRAN.R-
project.org/package=rlang 

tidyverse package for R  Wickham et al., 
2023 

https://doi.org/10.21105/joss.01686 

reshape2 package for R  Wickham et al., 
2007 

http://www.jstatsoft.org/v21/i12/ 

rlist package for R (version 
0.4.6.2) 

Rem et al., 2021 https://CRAN.R-
project.org/package=rlist 

abind package for R (version 
1.4-5) 

Plate et al., 2016 https://CRAN.R-
project.org/package=abind 

fastmatch package for R 
(version 1.1-3) 

Urbanek, 2021 https://CRAN.R-
project.org/package=fastmatch 

pandas package for Python The Pandas 
Development 
Team, 2020 

https://doi.org/10.5281/zenodo.3509134 

Statistical Analyses 

edgeR package for R 
(version 3.34.1) 

Robinson et al., 
2010  

https://bioconductor.org/packages/edge
R/ 

speedglm package for R 
(version 0.3-5) 

Enea, 2023 https://CRAN.R-
project.org/package=speedglm 

KSgeneral package for R  Dimitrova, et al., 
2020 

https://doi.org/10.18637/jss.v095.i10 

dqrng package for R (version 
0.3.1) 

Stubner et al., 
2023 

https://CRAN.R-
project.org/package=dqrng 

qvalue package for R 
(version 2.24.0) 

Storey et al., 2021 http://github.com/jdstorey/qvalue 

matrixStats package for R Bengtsson, 2023 https://CRAN.R-
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(version 1.0.0) project.org/package=matrixStats 

Hmisc package for R (version 
5.1-1) 

Harrell Jr, 2023 https://CRAN.R-
project.org/package=Hmisc 

caret package for R  Kuhn, 2008 https://doi.org/10.18637/jss.v028.i05 

olsrr package for R (version 
0.5.3) 

Hebbali, 2020 https://CRAN.R-
project.org/package=olsrr 

wCorr package for R (version 
1.9.8) 

Bailey et al., 2023 https://CRAN.R-
project.org/package=wCorr 

EmpiricalBrownsMethod 
package for R (version 1.9) 

Poole, 2023 https://bioconductor.org/packages/Empir
icalBrownsMethod 

survminer package for R 
(version 0.4.9) 

Kassambara et al., 
2021  

https://CRAN.R-
project.org/package=survminer 

survival package for R 
(version 3.5-5) 

Therneau, 2023 https://CRAN.R-
project.org/package=survival 

scikit-learn package for 
Python 

Pedregosa et al., 
2011 

https://api.semanticscholar.org/CorpusI
D:10659969 

numpy package for Python Harris et al., 2020 https://doi.org/10.1038/s41586-020-
2649-2 

Benchmarking and Parallelization 

tictoc package for R (version 
1.2) 

Izrailev, 2023 https://CRAN.R-
project.org/package=tictoc 

snow package for R (version 
0.4-4) 

Tierney, 2021 https://CRAN.R-
project.org/package=snow 

foreach package for R 
(version 1.5.2) 

Microsoft, 2022 https://CRAN.R-
project.org/package=foreach 

doParallel package for R 
(version 1.0.17) 

Corporation et al., 
2022 

https://CRAN.R-
project.org/package=doParallel 

Data Visualization 

igraph package for R (version 
1.5.0.1) 

Csardi et al., 2006 https://CRAN.R-
project.org/package=igraph 

gplots package for R (version 
3.1.3) 

Warnes et al., 
2022  

https://CRAN.R-
project.org/package=gplots 

VennDiagram package for R Chen, 2022 https://CRAN.R-
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(version 1.7.3) project.org/package=VennDiagram 

RColorBrewer package for R 
(version 1.1-3) 

Neuwirth, 2022 https://CRAN.R-
project.org/package=RColorBrewer 

ggrepel package for R 
(version 0.9.4) 

Slowikowski, 2023 https://CRAN.R-
project.org/package=ggrepel 

ggsci package for R (version 
3.0.0) 

Xiao, 2023 https://CRAN.R-
project.org/package=ggsci 

ggraph package for R 
(version 2.1.0) 

Pedersen, 2022 https://CRAN.R-
project.org/package=ggraph 

tidygraph package for R 
(version 1.2.3) 

Pedersen, 2022 https://CRAN.R-
project.org/package=tidygraph 

UpSetR package for R 
(version 1.4.0) 

Gehlenborg, 2019 https://CRAN.R-
project.org/package=UpSetR 

pheatmap package for R 
(version 1.0.12) 

Kolde, 2019 https://CRAN.R-
project.org/package=pheatmap 

cowplot package for R 
(version 1.1.1) 

Wilke, 2020 https://CRAN.R-
project.org/package=cowplot 

Miscellaneous 

argparse package for R Davis, 2023 https://CRAN.R-
project.org/package=argparse 

 

Quantification and Statistical Analysis 

All statistical analyses were performed within the R platform for statistical computing. All 

analysis scripts and scripts to recreate each figure are made available at GitHub (DOIs are 

listed in the key resources table). Quantification methods and statistical analyses for the omics 

datasets are described in the respective sections of the STAR Methods. Unless otherwise 

stated, relevant statistical parameters are reported in the legend of each figure. 

 

I. A Framework to Estimate Regression Coefficients for the Nonsynonymous Mutation Status of 

Driver Genes. We introduce a linear regression framework to estimate relationships between the 
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mutation status of driver genes and the expression of each putative target gene, t, across a set 

of cancer samples. In particular, for each putative target gene t, we consider the following model: 

𝐸𝑡  ~ ∑ (𝛼𝑑𝑈𝑑 + 𝛽𝑑𝐶𝑑 + 𝛾𝑑𝑌𝑑)𝑑 ∈ 𝑆 + 𝛿𝑈𝑡 + 𝜁𝐶𝑡 + 𝜂𝑌𝑡 + ∑ 𝜃𝑖𝑋𝑖
𝐾
𝑖=1 + 𝜀𝑡  

where S is the set of frequently mutated driver genes considered (Table S1, Methods IV.E), 𝐸𝑡 is 

a continuous value representing the expression of putative target gene t (Methods IV.A), 𝑈𝑑 is a 

binary variable indicating whether driver gene d possesses a nonsynonymous mutation (Methods 

IV.B), 𝐶𝑑 is a continuous value representing the normalized copy number status of d (Methods 

IV.C), and 𝑌𝑑 is a continuous value representing the methylation status of d (Methods IV.D). 

Similarly, 𝑈𝑡 is a binary variable indicating whether the putative target gene t possesses a 

nonsynonymous mutation, 𝐶𝑡 is a continuous value representing the normalized copy number 

status of t, and 𝑌𝑡 is a continuous value representing the methylation status of t. In addition to 

these core features, we also have a number of additional covariates that correspond to various 

other clinical and molecular features that may have nontrivial effects on 𝐸𝑡, with the number K of 

such covariates dependent upon the characteristics of the set of samples being examined 

(Methods IV.F). These covariates include the cancer type and subtype, age, gender, genotypic 

background, prior malignancies, prior treatment, nonsynonymous tumor mutational burden 

(TMB), tumor purity, and fraction of infiltrating immune cells. The coefficients fit from the data are 

the 𝛼𝑑, 𝛽𝑑 , 𝛾𝑑 and {𝜃1, 𝜃2, . . . , 𝜃𝐾}, as well as  𝛿, 𝜁 , and 𝜂.  

 

II. Applying Regression Framework to Samples from the TCGA, Pan-Cancer and Within 19 

Individual Cancer Types. We apply the multiple linear regression model from Methods I to all 

putative target genes t in the human genome (Methods IV.A), with one model per t. We do this 

both across all TCGA samples, or “pan-cancer”, as well as within the 19 individual cancer types 

possessing ≥75 samples (Table S1). For both the pan-cancer analysis and the per-cancer 

analyses, each model includes 𝑈𝑑 , 𝐶𝑑 , and 𝑌𝑑 features for all driver genes d as annotated by 
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Vogelstein et al.25  that have nonsynonymous mutations in at least 5% of available samples and 

at least 5 total samples; see Table S1 for the set of drivers tested in each case. In the pan-cancer 

case, drivers must be mutated in at least 5 samples, as well as at least 5% of all samples both 

pan-cancer and within at least 2 individual cancer types (to ensure signal is not driven by a single 

cancer type). This 5% threshold was chosen in an effort to balance statistical power with including 

as many potentially interesting driver genes as possible. All multiple regression models were run 

using the R package speedglm’s speedlm function87, which fit coefficients and provided 

associated p-values for all terms, including the 𝑈𝑑 mutational terms of interest. For each driver 

gene, we performed multiple hypothesis correction across the set of coefficients corresponding 

to its mutational term to convert p-values across the targets to q-values, using the qvalue function 

from the qvalue package in R with default parameters88. We deemed pairings between a 

nonsynonymous mutation in driver gene d and the expression of putative target gene t significant 

if the corresponding q-value was less than a threshold value of 0.2; given the increased statistical 

power in the pan-cancer setting, in the main body of the paper, we report pairings that are 

significant using a threshold of 0.01 for pan-cancer analyses and 0.2 for per-cancer analyses.  

 

III. Addressing Multicollinearity. In certain cases, we expect the nonsynonymous mutation status 

of driver gene d, represented as 𝑈𝑑 , to result in correlations with other variables in our framework 

(e.g., mutations within IDH1 promote hypermethylation89, and thus IDH1 mutation status in some 

cancers may be correlated with the methylation status of genes). Linear regression models 

assume independence between variables, and in such cases will not be able to disentangle the 

contributions of the mutation within the driver gene from other variables it is correlated with. As 

such, prior to running the regression, our framework checks for multicollinearity.  

First, we check that cancer subtype covariates (Methods IV.F.h) are not correlated with 

the mutation status of any driver genes present in the given regression model. If they are, this 

would indicate that these subtypes were at least partially defined by driver mutation status. To 
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address this, we generate a Spearman correlation coefficient matrix and associated p-value 

matrix using the R package Hmisc, and check, for each cancer subtype variable, if it is correlated 

with any 𝑈𝑑 variable with Spearman correlation >0.7 and p-value <1E-05. If this correlation meets 

both of these exclusion criteria, the subtype variable is removed from the regression model. We 

use Spearman correlation for subtype variables, rather than other commonly used measures of 

multicollinearity such as the variance inflation factor (VIF)90, because subtypes are encoded as 

bucketed, binary variables (Methods IV.F.h), and thus the corresponding variables are correlated 

with each other and will have high variance inflation factors (VIFs), even if they are not correlated 

with the mutation status of the driver gene. Across targets, we find that the vast majority of 

variables removed using this procedure pan-cancer (~99.9%) correspond to subtypes that are 

defined by IDH1-mutation status in LGG, particularly the IDH1mut-non-codel subtype.  

Following this, we check other variables in the model for multicollinearity using the VIF.  

We use the R package caret’s vif function to calculate a VIF measure for all non-bucketed 

variables in the regression, since as described above, bucketed variables (Methods IV.F.f-i) by 

design are collinear with one another and have high VIF scores. For the remainder of these 

variables, we eliminate any non-driver mutation ( 𝑈𝑑) variables whose VIF score exceeds a 

threshold of 5, a generally conservative but widely accepted threshold that suggests moderate 

collinearity39. To ensure that our variables of interest,  𝑈𝑑, are not collinear with other variables in 

the model, we repeat this process iteratively until  𝑈𝑑 for all d in S are below the threshold VIF of 

5. In pan-cancer analyses, 13,917 genes (84.6%) had at least one variable removed, though 

13,384 of these genes (96.2% of the 13,917 cases, 81.3% of target genes overall) had only the 

IDH1mut-non-codel subtype variable removed. Aside from this, we find that the methylation status 

of the target gene is most commonly eliminated pan-cancer (for ~2.10% of tested genes), followed 

by gender (~1.51%). For all significant pairings, variables that were eliminated using either of the 

above techniques are reported in Table S6 and Fig. S5B. 
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IV. Data Acquisition and Processing. In the National Cancer Institute’s GDC data portal, there are 

6378 primary tumor samples that possess all data types of interest, including annotated somatic 

mutation data, transcriptomic profiling, copy number variation, methylation, and clinical data. We 

downloaded these files from the GDC data repository, with parameters provided in Table S7.  

A. Expression Data. Raw read count RNA-seq files from the TCGA were converted to counts 

per million (CPM) using edgeR’s cpm function91. Genes minimally expressed across all 

samples were eliminated using edgeR’s filterByExpr function with default parameters. 

These include requirements that all genes are required to have a minimum overall total 

count of at least 15 (min.total.count), and a minimum CPM of 10 in at least 10 samples 

(min.count). The remaining 19,052 genes’ counts were quantile normalized so that each 

of the 6378 samples has the same distribution of gene expression values using scikit 

learn’s quantile.transform function92, with an output distribution of ‘normal.’ Each gene t’s 

expression level in Dyscovr corresponds to a quantile-normalized gene expression value 

𝐸𝑡.  

B. Mutation Data. We imported the simple nucleotide variation (SNV) file, with mutations 

called using muse93, into R using maftools’ read.maf function94. We then subsetted this 

file to include only nonsynonymous mutations (as annotated by muse), including 

missense, nonsense, nonstop, and splice site mutations. We then used maftools’ 

mutCountMatrix function to compute the number of nonsynonymous mutations per gene 

and per sample. We excluded samples with excessively high mutation rates across all 

genes, referred to here as ‘hypermutators’, which we defined according to the analyses 

performed in Campbell et al.95. In this work, they used a linear regression approach across 

81,337 cancer patients to determine a reasonable threshold for hypermutation, which they 

recommend being ~10 mutations per Mb. Given that the human exome is ~36.8Mb, we 

selected 368 mutations as our threshold for hypermutation, such that any sample with 

greater than 368 total nonsynonymous mutations was discarded from the analysis. This 
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removed a total of 360 samples, leaving 6018 pan-cancer TCGA samples.  The mutation 

status of each gene t in each sample, 𝑈𝑡 , is 1 if the gene has a nonsynonymous mutation 

in that sample and 0 otherwise.  

C. Copy Number Alteration (CNA) Data. We obtained absolute CNA values for each gene in 

each sample, as computed by the ASCAT96 pipeline and made available by TCGA. In our 

model, for each gene in a given sample, we compute its normalized copy number value 

as the log2 of the absolute CNA value divided by the mean CNA value across genes in the 

sample. Pseudocounts of 1 were used to adjust both the gene-level and average copy 

number values. The normalized copy number gives us a value that accounts for large 

scale ploidy differences between tumor samples. In practice, to be robust to extreme 

outlier CNA events, we exclude the top 10% and bottom 10% of gene-level CNA values 

for each sample when calculating its mean CNA value.   

D. Methylation Data. We imported individual samples’ level 3 Liftover methylation Beta (β) 

files into R and removed ‘NA’ or empty values. These files have already been processed 

to include gene-level annotations. For any gene with more than one reported β value, we 

averaged these β values to produce a single β value per gene. Subsequently, we compiled 

the average β value for each gene in each sample and then converted β values to M-

values using the logit, or 𝑙𝑜𝑔2(𝛽 / 1 − 𝛽)). We represent methylation levels in our model 

using these M-values. We use the M-value rather than the Beta value to assess 

methylation due to its purported statistical rigor97 and improved model performance in 

early testing. 

E. Gene Set Data. Our list of driver genes consists of genes from Vogelstein et al. tables 

S2A, S2B, S3A, S3B, S3C and S425. 

F. Clinical Data. Using data from the TCGA’s clinical supplement, we created a composite 

data table with patient-level features. Using data from TCGA’s biosample data 

supplement, a TCGA tumor purity file obtained from Aran et al.98, genotypic principal 
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components from Carrot-Zhang et al.99, and immune cell infiltration estimates from R’s 

immunedeconv package100 using the tool CIBERSORT Abs101, we created a data table 

with sample-level features. We then combined the patient- and sample-specific files such 

that all patient-specific data was applied to all samples from that patient, for use in the 

linear regression framework. Further information on each clinical feature is described in 

subsections below.  

a. Age. Normalized to take on a value approximately between 0 and 1 by dividing 

each patient’s age (given in years) by 100.  

b. Gender. Takes on a binary value of 1 for male and 0 for female patients. 

c. Prior malignancies. Takes on binary value, with 1 signifying that the patient had a 

prior malignancy and 0 signifying that there was no prior malignancy.  

d. Prior treatment. Encompasses two binary variables, as per the data available in 

the TCGA’s clinical supplement: prior radiation treatment, where 0 represents no 

prior radiation treatment and 1 represents prior radiation treatment, and prior 

pharmaceutical treatment, where 0 represents no prior pharmaceutical treatment 

and 1 represents prior pharmaceutical treatment.  

e. Genotypic Principal Components. Consists of three continuous covariates, each 

of which corresponds to the value of one of the first three genotypic principal 

components (PCs). These PCs are provided in the supplemental data table of 

Carrot-Zhang et al.99 (see Star Methods Key Resources Table) and were 

calculated using the Washington University approach. Briefly, this approach 

involves the conversion of Birdseed genotype files to individual VCF files, which 

are then merged (with only variants of MAF >15% retained) prior to PCA using 

PLINK 1.9.102 See Carrot-Zhang et al.99 for more detailed methods. 

f. Nonsynonymous Mutational Burden. Consists of three binary covariates, 

representing low, moderate, and high nonsynonymous tumor mutational burden 
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(TMB). For any given sample, one of these covariates will take on a value of 1 and 

the other two a value of 0, depending on the total number of nonsynonymous 

mutations their tumor possesses. Based on the distribution of TMB across TCGA 

samples, we defined low TMB as having <30 nonsynonymous mutations, 

moderate TMB as between 30 and 60 mutations, and high TMB as >60 mutations.  

g. Tumor Purity. Consists of three binary covariates, representing low, moderate, and 

high tumor purity. For any given sample, one of these covariates will take on a 

value of 1 and the other two a value of 0, depending on the magnitude of the tumor 

purity estimate for that sample. We define purity using the combined purity 

estimate (CPE) from Aran et al.98 when available, and for the samples without a 

provided CPE, we use the median of the available purity measures. Based on the 

distribution of CPE values across TCGA samples, we defined low tumor purity as 

having a CPE ≤ 0.5, moderate tumor purity as having a 0.5 < CPE ≤ 0.75, and high 

tumor purity as having a CPE > 0.75.  

h. Tumor Subtype. Consists of a binary covariate for each subtype in the given cancer 

type. For any given sample, one of these covariates will take on a value of 1 and 

all others a value of 0, depending on which subtype it is classified as. Because 

subtypes are defined differently for each cancer type, the column we used to define 

subtype in the TCGA clinical supplement is provided in Table S8. Each cancer type 

will have a different number of tumor subtype variables, as this is dependent on 

the number of unique subtypes present in the given column. Molecular subtypes 

were used whenever possible; when unavailable, histological or expression-based 

clustering subtypes were used. In the pan-cancer analyses, a binary covariate was 

created for each cancer type:subtype combination (e.g. Breast Cancer:Luminal A), 

across all cancer types. In this case, for any given sample, one of these 
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combination covariates will take on a value of 1 and all others 0, depending on its 

combined cancer type and subtype classification. 

i. Immune Cell Infiltration. In the case of immune cell infiltration (𝐹), we use the 

absolute immune cell fractions provided by the tool CIBERSORT Abs101, run using 

R’s immunedeconv package100. To get a single value representing the level of 

immune cell infiltration in the given sample, we add individual immune cell type 

fractions, e.g. predicted fractions of B cells, T cells, etc., into a total fraction of 

immune cells per sample. From there, we group this fraction into one of three 

buckets: low immune cell infiltration (total immune cell fraction ≤0.3), medium 

immune cell infiltration (total immune cell fraction >0.3 and ≤0.7), and high immune 

cell infiltration (total immune cell fraction >0.7), again defined by the distribution of 

total immune cell fractions across the samples.  

G. In all of the cases that involve two or more binary covariates, and in which only one of 

these covariates can take on a value of 1 (Methods IVFf-i), one fewer covariate is needed 

in the linear regression equation to represent all distinct possible classifications103. To limit 

multicollinearity, the final covariate for a given feature is removed (e.g. a dummy variable 

encoding, rather than a one-hot encoding). For example, in the case of nonsynonymous 

TMB, low TMB would be represented by a binary covariate taking on values of 1 and 0, 

moderate TMB would be represented by a binary covariate taking on values of 0 and 1, 

and high TMB would be represented by two binary covariates taking on values of 0 and 0.  

 

V. Computational Validation via Comparison of TCGA BRCA results to METABRIC. To test 

whether our models are capable of generating consistent and meaningful correlations between 

driver gene mutations and target gene expression across independent cohorts, we also applied 

the Dyscovr framework to data from the Molecular Taxonomy of Breast Cancer International 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.20.624509doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.20.624509
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

Consortium (METABRIC)38, a collection of 854 breast cancer patients of European ancestry with 

paired mutation, CNA, mRNA expression, methylation, and clinical data. Due to differences in 

available data types, we made the following modifications to our model and data processing.  

A. METABRIC: Estimating Regression Coefficient for Mutation Status of Driver Genes. To 

ensure comparability to TCGA-BRCA, linear regression models were constructed in the 

same fashion as described in Methods I. Due to limitations in available germline data for 

the METABRIC cohort, genotypic principal components are not included in these models.  

B. METABRIC: Data Acquisition and Processing. METABRIC primary tumor data files were 

downloaded from cBioPortal104. To keep processing pipelines as similar as possible to 

TCGA-BRCA, the same protocol was used for preprocessing mutation data, including 

generation of a mutation count, restriction to only nonsynonymous mutations, and removal 

of hypermutators (Methods IV.B). Mutations in METABRIC were called using MuTect and 

filtered according to the procedure given in Curtis et al.38. As with TCGA-BRCA, ASCAT96 

was used for CNA calling. The gene expression data available for the METABRIC cohort 

is Illumina HT-12 v3 microarray data, which requires distinct preprocessing procedures to 

TCGA-BRCA’s RNA-sequencing data. We filtered genes with greater than 50% missing 

values and with mean expression <5 or standard deviation <0.3 across samples, as in 

Liao et al.105, but otherwise used the provided quantile-normalized log2-intensity values 

as input to our models. The METABRIC methylation data is also distinct from TCGA-BRCA 

in that only promoter methylation bisulfite sequencing (RRBS) is available. Files were 

already processed using the gpatterns package such that each file contains a [0,1] gene-

level value of CpG methylation. Models were run using both these [0,1] CpG values, as 

well as the logit of these values, though models performed comparably and the [0,1] CpG 

values were ultimately used in figure creation. Due to differences in labeling and 

availability of clinical data types in METABRIC as compared to TCGA-BRCA, different 
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column names were often used; any features with notable differences are described 

below. 

a. Prior malignancies (Methods IV.F.c). The “RFS_STATUS” column was used.  

b. Prior treatment (Methods IV.F.d). The “RADIO_THERAPY” column was used to 

create a binary representation of prior radiation treatment, while the 

“CHEMOTHERAPY” and “HORMONE_THERAPY” columns were combined to 

create a binary representation of prior pharmaceutical treatment. In the latter case, 

the sample received a 1 if they had received either chemotherapy or hormone 

therapy, and 0 otherwise.  

c. Nonsynonymous tumor mutational burden (TMB) (Methods IV.F.f). For the 

nonsynonymous TMB, the log2 of the “TMB_NONSYNONYMOUS” column with a 

pseudocount of 1 was used, with 3 binary covariates for representing low (TMB ≤ 

2.5), moderate (2.5 < TMB ≤ 3.5) and high (TMB > 3.5) tumor mutational burden.  

d. Tumor purity (Methods IV.F.g). METABRIC’s clinical supplement provides a 

“CELLULARITY” column that is an estimate of tumor purity from the tool MCP-

counter106. The values this column can take include “Low”, “Moderate”, and “High”. 

As with TCGA-BRCA, we represented this in our model as three binary covariates, 

with a sample taking on a value of 1 in one of these covariates and a 0 in the two 

others.  

C. METABRIC: Comparison of Betas to TCGA-BRCA. For each driver gene mutated at ≥5% 

frequency in both TCGA-BRCA and METABRIC cohorts, which includes TP53 and 

PIK3CA, we computed the Spearman correlation between the fit coefficients for all target 

genes tested in both TCGA-BRCA and METABRIC (Fig. 3C, Fig. S3C).  

 

VII. Gene Set Enrichment Analysis.  
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 We compute enrichment in curated gene sets (Fig. 1B-D; Table S3) using a one-sided 

Kolomogorov-Smirnov (K-S) test with a uniform distribution (HA = greater). We use gene sets from 

the DoRothEA network26 (Fig. 2B), a curated set of TP53 targets from Fischer et al.27 (Table 1, 

Fig. 2C) and Reactome31 (Fig. 2C), and from the CGC32 (Fig. 2D). The DoRothEA network was 

accessed via the dorothea R package using the dorothea_hs function. Genes at all confidence 

levels were used. Additional gene sets used for TP53-specific gene set enrichment analysis were 

downloaded directly from TRRUST28, hTFtarget29, and KEGG30 websites (Table S3, STAR 

Methods). 

We compute pathway-level gene set enrichment analysis (Fig. 4D; Fig. S1C; Table S4) 

using the package ReactomePA107 in R, specifically using the gseGO, gseKEGG, and 

gseMKEGG functions applied to the -log(q-values) multiplied by the directionality of the 

associated mutation coefficient (1 for coefficient > 0, -1 for coefficient < 0) produced by Dyscovr. 

In cases with more than five significant GO pathways, functionally similar GO pathways33 were 

consolidated using the Wang et al. method108; pathways with a similarity metric greater than 0.7 

were merged, retaining the name of the more statistically significant pathway (Fig. S1C). Full sets 

of enriched GO pathways, without merging, can be found in Table S4.  

 

VIII. Narrowing of Experimental Candidates Using the Cancer Dependency Map (DepMap)24. We 

use a combination of CRISPRi gene dependency data, mutation data, and gene expression data 

from DepMap public v.23Q2 to narrow down putative candidates from Dyscovr with those that are 

potentially synthetic lethal with the corresponding driver gene. For a given cancer driver gene d, 

we first limit d’s hits to those that are statistically significant both pan-cancer (q < 0.2) and within 

at least one individual cancer type (q < 0.2). For each of these remaining targets t in set T, we 

use the following regression framework to relate the cell viability upon CRISPRi knockdown of t 

(𝑉𝑡) to the mutation status (𝑈𝑑) and expression (𝐸𝑑) of d across a set K of cancer types (𝑋𝑖)  (see 

Methods VIII.A.d): 
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𝑉𝑡 ~ 𝛼𝑈𝑑 + 𝛽𝐸𝑑 + ∑ 𝛾𝑖𝑋𝑖

𝐾

𝑖=1

+ 𝜀𝑡 

Overall, T regression models are fit for a given d. From here, we evaluate the significance of the 

combined effect of 𝑈𝑑 and 𝐸𝑑–what we refer to as the ‘activity’ of d–on 𝑉𝑡 using Empirical Brown’s 

method (specifically, the empiricalBrownsMethod function from the EmpiricalBrownsMethod R 

package). This method is an adaptation of Fisher's method109 that allows for interdependency of 

the terms. We use it with default parameters for the p-values associated with 𝛼 and 𝛽, obtaining 

a single p-value describing the effect of the driver d on 𝑉𝑡. We obtain multiple hypothesis corrected 

q-values from these p-values using the qvalue function from the qvalue package in R with default 

parameters88.  

 For each driver gene d, we next try to identify which of its predicted targets are most likely 

to be in synthetic lethality with it, as these relationships can be exploited in the clinical setting. For 

these target genes t, cell viability values upon knockout of t should be smaller when the driver 

gene is less active and larger when the driver gene is more active. In the case of an oncogene 

(KRAS and PIK3CA), we expect both a nonsynonymous mutation or high expression to result in 

cancer-promoting overactivity, and thus a promising synthetic lethal candidate would display a 

positive relationship between activity of d and cell viability upon knockout of t (𝛼 > 0, 𝛽 > 0).  For 

tumor suppressor genes (TP53), a driver nonsynonymous mutation results in its underactivity. In 

this case, we expect a negative relationship between the mutation status of d and cell viability 

upon knockout of t (𝛼 < 0, 𝛽 > 0) (Fig. 4A). We report the set of targets t for which the recombined 

q-value is less than 0.2 and the coefficients 𝛼 and 𝛽 from the pre-recombined analysis align with 

the above schema. 

A. DepMap: Data Acquisition and Processing. CRISPRi dependency, mutation, gene 

expression, and cell line metadata for cancer cell lines were downloaded from the DepMap 

online portal (see STAR methods table). Models were run using the 693 cancer cell lines 

with all data types available and the set of 3 TCGA pan-cancer drivers (TP53, PIK3CA, 
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and KRAS) that have nonsynonymous mutations in at least 15 cell lines across cell lines 

in the set of cancer types in which that driver is recurrently mutated (Table S1). 

a. CRISPRi Dependency Data. Each target gene t’s dependency score upon genetic 

interference corresponds to the CRISPRi dependency value 𝑉𝑡. Dependency 

scores were processed using Chronos110 (see Table 1), which normalizes the 

dependency score by copy number, eliminating the need to include target gene 

CNA status as a regression term. Positive dependency values indicate high cell 

viability upon knockout, while negative dependency values indicate reduced cell 

viability upon knockout. 

b. Expression Data. log2(TPM + 1)-normalized RNA-seq files from DepMap were 

quantile normalized so that each of the cell lines has the same distribution of gene 

expression values using scikit learn’s quantile.transform function92, with an output 

distribution of ‘normal.’ Each driver gene d’s expression level corresponds to a 

quantile-normalized gene expression value 𝐸𝑑.  

c. Mutation Data. The DepMap mutation file was subsetted to include only 

nonsynonymous mutations, selecting for ‘VariantInfo’ column annotations that 

include ‘MISSENSE’, ‘NONSENSE’, ‘NONSTOP’, and ‘SPLICE_SITE’. The 

mutation status of each driver gene d in each sample, 𝑈𝑑 , is 1 if the driver gene 

has a nonsynonymous mutation in that sample and 0 otherwise.  

d. Cancer Type. Consists of a binary covariate for each cancer type. For any given 

cell line, one of these covariates will take on a value of 1 and all others a value of 

0, depending on which cancer type it is classified as in the cell line metadata 

supplement column ‘primary_disease’. Cell line data from a given cancer type is 

only considered if d is mutated in at least 5% of samples from that cancer type in 

the TCGA cohort (see Table S1).  
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B. Evaluation of Candidate Synthetic Lethals via Correlation to Drug Sensitivity. For putative 

synthetic lethal targets t of clinical interest (i.e. KBTBD2), we further used DepMap’s 

repository of drug sensitivity data to compute a Spearman’s correlation between the 

viability of the cell line on CRISPR interference of t (𝑉𝑡) and the sensitivity to each of 4659 

drugs. Associated p-values were corrected using the qvalue package in R with default 

parameters88. Significant correlation to sensitivity of drugs (q < 0.2) were used to infer 

potential mechanisms-of-action of t.  

 

IX. Survival Analysis for PIK3CA Mutation and KBTBD2 Expression. To evaluate whether the 

expression level of putative target gene KBTBD2 (𝐸𝐾) has an effect on patient survival (𝑆), taking 

into consideration the binary nonsynonymous mutation status of cancer driver gene PIK3CA (𝑈𝑃), 

we used the following Cox proportional hazards model: 

𝑆 ~ 𝛼𝐸𝐾 + 𝛽𝑈𝑃 + ∑ 𝛾𝑖𝑋𝑖

𝐾

𝑖=1

  

As in the main Dyscovr framework, we also have a number of additional covariates that 

correspond to various other clinical and molecular features that may have nontrivial effects on 𝑆, 

with the number K of such covariates dependent upon the characteristics of the set of samples 

being examined (i.e. pan-cancer or breast cancer, Methods IV.F). These covariates include the 

cancer type and subtype, age, gender, genotypic background, prior malignancies, prior treatment, 

nonsynonymous tumor mutational burden (TMB), tumor purity, and fraction of infiltrating immune 

cells. This model was fit using the coxph function in the survminer package in R version 0.4.9111 

with default parameters. Hazard ratio estimates were computed as 𝑒𝛼, where 𝛼 is the fit coefficient 

for the 𝐸𝐾 term (above).  

A. Data Acquisition and Representation. Survival, mutation, and gene expression data were 

obtained for all 785 pan-cancer patients (see Methods IV.A and IV.B for details about 

mutation and gene expression data acquisition and preprocessing) from the National 
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Cancer Institute’s GDC Data Portal with reported information about survival status and 

days until death or last follow-up (see Methods IX.A.a) and have high or low KBTBD2 

expression (see Methods IX.A.c).  

a. Survival Data. Survival data was extracted from the TCGA clinical supplement (see 

STAR Methods Table), including a) binary survival status (alive or dead), and b) 

time in days, defined as time until death if patient has died, or time until last follow-

up if patient is alive. Survival 𝑆 was represented as a Surv object from the 

survminer package for modeling. 

b. Mutation Data. The mutation status of PIK3CA in each patient, 𝑈𝑃, is 1 if PIK3CA 

has a nonsynonymous mutation in that patients’ sample and 0 otherwise.  

c. Expression Data. The quantile-normalized expression matrix was further z-score 

normalized per patient column, such that the resulting matrix took on a mean (𝜇) 

of ~0 and a standard deviation (𝜎) of ~1. This formulation allowed us to select 

patients whose normalized expression value for KBTBD2 is less than 𝜇 −  𝜎 

(which we define as having “low” expression) or is greater than 𝜇 +  𝜎 (which we 

define as having “high” expression). Patients who do not fall into either of these 

categories are excluded from further analysis. In the Cox proportional hazards 

model, the expression status of KBTBD2 in each patient, 𝐸𝐾, is 1 if the patient has 

“high” KBTBD2 expression and 0 if the patient has “low” KBTBD2 expression, as 

previously defined. 

B. Survival Visualization. Adjusted patient survival curves were visualized using the 

ggadjustedcurves function from the survminer package using the default ‘single’ (average 

for population) approach111. Briefly, this approach displays expected survival curves 

calculated based on the Cox model fit. 
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X. Cell Lines. MCF7 (HTB-22) was purchased from American Type Culture Collection (ATCC) 

and maintained in DMEM supplemented with 10% Fetal Bovine Serum (FBS) and 1% penicillin 

and streptomycin. 

 

XI. Immunoblotting. Cells were collected in ice cold PBS and lysed with RIPA lysis buffer (Pierce 

#89901) supplemented with Halt protease and phosphatase inhibitors (Pierce Chemical). Lysates 

were centrifuged at 20,000 × g for 5 minutes at 4°C. The supernatant was collected, and protein 

concentration was determined using the BCA kit (Pierce) per manufacturer’s instructions. Equal 

amounts of protein (20μg) in cell lysates were separated by SDS–PAGE, transferred to 

nitrocellulose membranes (GE healthcare), immunoblotted with specific primary and secondary 

antibodies and detected by chemiluminescence with the ECL detection reagents from Thermo 

Fisher or Millipore. 

 

XII. Antibodies. pAKT S473 (Cell Signaling Technology (CST) 4060), pS6 S235/S236 (CST 4858), 

p4EBP1 S65 (CST 9451), Cyclin D1 (CST 55506), p85 alpha (CST 4292), Beta Actin (CST 4967). 

Secondary Goat anti-Rabbit IgG (H+L) Secondary Antibody HRP (Thermo Fisher 65-6120). 

 

XIII. siRNA Knockdown. Cells were transfected for 48hr with Dharmacon SMARTpool 

nontargeting or siRNA designed against human KBTBD2. Transfection was aided by 

preincubation of siRNA with lipofectamine RNAiMAX (Thermo Fisher Scientific) and used 

according to the manufacturer’s instructions. 

 

XIV. mRNA extraction and RT-qPCR. mRNA was isolated using RNeasy kit (Qiagen) with 

Qiaschredder and eluted in 50uL. cDNA was synthesized using SuperScript First-Strand 

Synthesis System for RT-PCR kit (ThermoFisher #11904018). Synthesis was performed using 

random primers. Probes and primers were obtained from ThermoFisher as follows: KBTBD2 
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(Assay ID: Hs01556149_m1, FAM-MGB and GAPDH (Assay ID: Hs02786624_g1, VIC-MGB). 

qPCR was performed in 20uL reaction volumes with KBTBD2 assay together with GAPDH and 

amplified using iTaq universal probes supermix (Bio-Rad Laboratories, #1725134). Relative 

quantification was performed using (2–ΔΔCt). 

 

XV. Quantification of Cell Growth and Viability. MCF7 cells were seeded into 24-well plates at 

50,000 cells per well and transfected as indicated above. Cell growth was quantified using the 

sulforhodamine B assay. For each condition at least 3 replicates were measured. Growth at day 

0 was subtracted from all Day 4 values and growth was normalized to Veh. treated samples.  

 

Resource Availability 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Mona Singh (mona@cs.princeton.edu). 

 

Materials Availability 

This study did not generate new unique reagents.  

 

Data and Code Availability 

● This paper analyzes existing, publicly available data. These accession numbers for the 

datasets are listed in the key resources table.  

● All original code has been deposited at GitHub and is publicly available as of the date of 

publication. DOIs are listed in the key resources table. 

● Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request. 
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Additional Resources 

Dyscovr model results from TCGA patients are publicly searchable and downloadable at: 

dyscovr.princeton.edu. 

 

Supplemental Information 

Table S1: Vogelstein Drivers Mutated at ≥5% Frequency Per TCGA Cancer Type. 

Table S2: PIK3CA, KRAS, and IDH1 Pan-Cancer Enrichments in Effector TF Targets. 

Table S3: TP53 Pan-Cancer Enrichments in Gold-Standard Target Sets. 

Table S4: GO and KEGG per-Driver Pathway Enrichment, Unmerged. 

Table S5: Putative SL Pan-Cancer Targets for TP53, PIK3CA, KRAS. 

Table S6: Variables Removed Due to Multicollinearity, Pan-Cancer (q < 0.01).  

Table S7: Parameters for GDC Data Portal File Downloads. 

Table S8: Per-Cancer TCGA Subtype Information. 
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Figure 1. Methodological overview of Dyscovr pipeline. A. Dyscovr framework leverages 

matched somatic mutation, gene expression, methylation, and copy number alteration (CNA) data 

from primary patient tumors, such as those from the TCGA. B. Across all cancer types, and within 

individual cancer types, Dyscovr considers a set S of the most recurrently mutated cancer driver 

genes. Nonsynonymous mutations, including missense, nonsense, nonstop, and splice site 

mutations, are considered. C. Within each sample population, Dyscovr trains a linear regression 

model for each putative target gene t and tests for a relationship between the expression of t and 

the nonsynonymous mutation status of driver genes, while considering other driver- and target-

specific features such as CNA and methylation status along with various clinical features. The 

expression of gene t is correlated to the nonsynonymous mutation status of a driver gene d if the 

fit coefficient 𝛼𝑑  is significantly different from 0.   
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Figure 2. Dyscovr uncovers relationships between mutated pan-cancer drivers and target 

gene expression. A. The number of q < 0.01 hits obtained for TP53, PIK3CA, KRAS, and IDH1, 

the four cancer driver genes considered in pan-cancer modeling. Each hit corresponds to a 

putative relationship between a nonsynonymous mutation in that driver and an expression change 

in a given target gene. Dyscovr uncovered hundreds of significant hits at q < 0.01 for all recurrently 

mutated driver genes, while TTN (a recurrently mutated gene not annotated to be cancer-

relevant25,32) has three hits at this threshold. B. Bar chart showing the enrichment of effector TF 

targets from DoRothEA26, either TP53-specific targets for TP53 (N = 248) or pooled targets across 
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multiple, literature-supported effector TFs for PIK3CA (N = 1411), KRAS (N = 2246), and IDH1 

(N = 2519) (Table S2). The magnitude of bars is the -log10(p-value), with dotted line denoting p 

= 0.05. C. The cumulative fraction of curated TP53 targets (Fischer et al.27, blue) and TP53 

signaling pathway members (Reactome31 R-HSA-3700989, red) among an increasing fraction of 

q-value ranked TP53 hits from a model using nonsynonymous mutations (solid), or with silent 

mutations (dashed) shown as a control. Inlay (top right) shows the top 50 TP53 hits. D. Bar chart 

showing the enrichment (one-sided Kolmogorov-Smirnov (K-S) test) of known cancer genes from 

the Cancer Gene Census (CGC)32 in each driver gene’s q-value ranked targets. The magnitude 

of bars is the -log10(p-value), with dotted line denoting p = 0.05. E. Overlay of TP53 model results 

on the STRING functional network34, with TP53 shown in green. Top 100 TP53 hits at q < 0.01 

that are connected to TP53 either directly or by means of another hit with STRING confidence 

>0.4 are displayed, with color corresponding to direction of predicted regulation (upregulation in 

orange, downregulation in blue). F. Volcano plots of hits for each driver gene, with a selection of 

statistically significant hits labeled by name. The x-axis is the fit coefficient for the driver mutation 

status term, thresholded at [-1.5, 1.5] for visual clarity, with predicted significant upregulation in 

orange and downregulation in blue at q < 0.01 (dotted line). The y-axis is the -log10 of the q-value 

produced by Dyscovr for the driver mutation status term, with larger values having greater 

predicted significance.  
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Figure 3. Driver mutation-target gene expression relationships across individual TCGA 

cancer types. A. In each of 19 TCGA cancer types, Dyscovr was run for every putative target 

gene, with each model including variables for all driver genes mutated at ≥5% frequency across 

samples of that cancer type. Segments of the stacked bars represent the percentage of significant 

hits (q < 0.2) in a given cancer type (x-axis) that belong to a given driver gene. Segments of the 

stacked bars are labeled with the absolute number of dysregulated targets for that given driver in 

the given cancer type at q < 0.2. See Table S1 for full-length cancer type names. B. Bar chart of 

the Spearman’s rank correlation coefficient (y-axis) between the nonsynonymous mutation status 

coefficient from Dyscovr of the given driver (x-axis, PIK3CA in red, TP53 in blue) of all gene 

targets that are significant at q < 0.2 in two breast cancer datasets, TCGA-BRCA and METABRIC. 

Pairwise Spearman’s rank coefficient values for significant target genes at q < 0.2 are 0.84 for 
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PIK3CA and 0.62 for TP53. C. UpSet plots for the five driver genes with the most overall hits, 

spread across at least 3 TCGA cancer types: TP53, PIK3CA, KRAS, CTNNB1, and FBXW7. Plots 

show the absolute number of hits at q < 0.2, capped at 1000 for visual clarity, in each of the up-

to-five cancer types with the largest number of hits for that driver (bottom left, yellow) as well as 

the hits that do and do not overlap between the various cancer types (blue). Significant hits (q < 

0.2) for a given driver that are common to the most shown cancer types are labeled and colored 

by direction of regulation (upregulation in orange, downregulation in blue, and variable direction 

in gray).  
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Figure 4. Cell viability analysis using DepMap data reveals Dyscovr targets that are 

putative synthetic lethals with nonsynonymous mutations in corresponding driver genes. 

A. Graphical overview of selecting for negative genetic interactions, which are clinically desirable. 

B. Schematic of cell viability analysis regression framework, which relates the nonsynonymous 

mutation status and expression of a putative driver gene d (accounting for primary disease type) 

to cell viability upon CRISPRi knockdown of putative target gene t from Dyscovr (see Methods 

VIII). To limit our pool of candidate genetic interactors to putative negative genetic interactors, we 

restrict by the directionality of the driver mutation (𝑈𝑑) and driver expression (𝐸𝑑) coefficients. In 

the case of oncogenes (i.e. PIK3CA, KRAS), we limit to cases where both 𝐸𝑑 > 0 and 𝑈𝑑 > 0, to 
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capture situations where application of a mutant oncogene inhibitor in combination with a target 

gene inhibitor would be predicted to result in synergistically reduced cell viability. Conversely, in 

the case of tumor suppressor genes (i.e. TP53), we limit to cases where both 𝐸𝑑 > 0 and 𝑈𝑑 < 0, 

to capture situations where application of a target gene inhibitor in tumors with mutant copies of 

the given tumor suppressor would be predicted to result in synergistically reduced cell viability. C. 

Schematic of using the Cancer Dependency Map (DepMap)24 data to refine Dyscovr’s hits to 

those that are most likely to be SL with nonsynonymous mutations in their corresponding driver. 

For pan-cancer driver genes with sufficient cell line data (TP53, PIK3CA, and KRAS), we report 

the number of significant hits from Dyscovr (q < 0.2) that are found both pan-cancer (“Pan”) and 

in at least one individual cancer type (“Per”) at top. In the middle, we report the number of 

significant targets from the cell viability analysis pipeline that were identified as genetic interactors 

with the associated driver, i.e. cell viability upon knockout of that target was found to be related 

to driver activity. At the bottom, we report the number of significant targets that we classified as 

negative genetic interactors with the associated driver (see part A). D. Top three significantly (q 

< 0.2) enriched GO pathways, ranked by -log10(p-value) as determined by GSEA (x-axis, 

Methods VII), among negative genetic interaction hits (q < 0.2) of TP53, PIK3CA, and KRAS. E. 

Visualization of a subset of significant negative genetic interaction hits (q < 0.2) for each of TP53, 

PIK3CA, and KRAS, annotated with pathways from GO pathway enrichment analysis. 
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Figure 5. Mutant PIK3CA and expression of KBTBD2 display synthetic lethality. A. 

Schematic of proposed mechanism-of-action of synthetic lethality between mutated PIK3CA and 

dysregulated expression of KBTBD2 kinase. Dyscovr identifies a correlation between PIK3CA 
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nonsynonymous mutation status and KBTBD2 downregulation, both pan-cancer (q = 6.53E-04) 

and in breast cancer (q = 4.80E-02). This pair is also identified as candidate synthetic lethal via 

cell viability analysis in DepMap cell lines (q = 6.17E-02, see Methods VIII). KBTBD2 has been 

previously identified as being a regulator of insulin signaling in mouse models via its regulation of 

p85α protein abundance, with low levels of KBTBD2 corresponding to suppressed PI3K-AKT 

signaling77. This proposed system lends itself to the hypothesis that inhibition of mutant PIK3CA 

would result in recovery of KBTBD2 expression; therefore, joint inhibition of mutant PIK3CA and 

KBTBD2 should result in synergistic effects on cell growth. B. The per-drug Spearman’s rank 

correlation between reported drug sensitivity score from DepMap (AUC) and cell viability upon 

CRISPR knockout of KBTBD2 (x-axis) against the significance, i.e. -log10(q-value), of that 

correlation. Correlations were computed for pan-cancer cell lines and each of 4659 drugs from 

DepMap. Drugs with statistically significant correlations to cell viability upon KBTBD2 knockout (q 

< 0.2) are colored, with positive correlations in red and negative correlations in blue. Labels with 

an asterisk (*) indicate drugs that target insulin like growth factor 1 receptor, IGF1R, suggesting 

that those cell lines most sensitive to KBTBD2 knockout also tend to be most sensitive to inhibitors 

of insulin signaling. C-D. Survival of pan-cancer (C) or breast cancer (D) TCGA patients 

significantly differs when stratified by “low” or “high” KBTBD2 expression (p = 2.26E-07 and 

hazard ratio of 2.61 pan-cancer, p = 4.51E-02 and hazard ratio of 2.99 in BRCA). Survival rate 

(y-axis) by time in days (x-axis) was calculated using a Cox proportional hazards model that 

accounts for the nonsynonymous mutation status of PIK3CA and other clinical and molecular 

confounders (see Methods IX). E. qPCR-based quantification of KBTBD2 mRNA expression in 

MCF7 cells treated for 48hr with an siRNA control or siRNA against KBTBD2. Data are presented 

as mean ± SD, and statistical significance is indicated (**p < 0.01). F. Relative cell growth in 

response to alpelisib treatment in siControl and siKBTBD2 treated cells. MCF7 cells were 

transfected with siControl or siKBTBD2 for 48hr. followed by alpelisib treatment at indicated doses 

for an additional 2 days. Cell growth was quantified by SRB staining. Data are presented as mean 
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± SD. G. Western blot analysis of PI3K signal transduction following alpelisib treatment and 

KBTBD2 knockdown. MCF7 cells were transfected with siControl or siKBTBD2 for 48Hr. followed 

by treatment with 1 µM alpelisib for time t (hrs). 
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Supplemental Figure 1. Pan-cancer quantitative validations and gene set enrichment 

analyses. A. The number of q < 0.2 hits obtained for TP53, PIK3CA, KRAS, and IDH1 pan-

cancer. Each hit corresponds to a putative relationship between a mutation in that driver and an 

expression change in a given target gene. Dyscovr uncovered thousands of significant hits at q < 

0.2 for all recurrently mutated driver genes, while TTN (a recurrently mutated non-Vogelstein25 or 

CGC32 gene) has 160 hits at this threshold. B. The distribution of p-values produced by Dyscovr 

for all driver mutation terms (e.g. all 𝑈𝑑  𝜖 𝑆, where S is the set of pan-cancer driver genes TP53, 

PIK3CA, KRAS, and IDH1) when applied pan-cancer to all putative human gene targets (pink). 

Overlaid is the distribution of p-values produced by Dyscovr when, for each putative human gene 

target, expression values (e.g. 𝐸𝑡  ) are randomized across all pan-cancer samples (blue). C. Bar 

charts of Gene Ontology (GO)33 gene set enrichment analysis (GSEA) results for each driver 

gene. Enriched up- and down-regulated pathways were generated using ReactomePA107. 

Pathways were restricted to those enriched with a q-value < 0.05, then ranked by -log10(q-value), 

with ties broken by the descending leading-edge percentage. The top eight pathways from this 

analysis are reported in each bar plot, with the size of the bar corresponding to the enrichment 

score.  
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Supplemental Figure 2. Overlay of per-driver, pan-cancer Hits (q < 0.01, Top 100) from 

Dyscovr on the STRING functional network34. A-C. Overlay of PIK3CA, KRAS, and IDH1 

(respectively) Dyscovr model results on the STRING functional protein-protein interaction 

network, with respective driver genes shown in green. Top 100 hits at q < 0.01 that are 

connected to that driver either directly or by means of another hit with STRING confidence >0.4 

are displayed, with color corresponding to direction of predicted regulation (upregulation in 

orange, downregulation in blue). Disconnected components of size 2 or smaller are removed 

from the visualization. 
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Supplemental Figure 3. Driver mutation-target gene expression relationships across 

individual TCGA cancer types. A. Cowplot of nonsynonymous mutation frequency for 

recurrently mutated (≥5%) driver genes, across TCGA cancer types. Each cancer driver gene, as 

annotated by Vogelstein25, mutated at ≥5% frequency in at least one of the 19 TCGA cancer types 

with ≥75 samples matching inclusion criteria (see Methods II) is shown (y-axis, left of vertical line). 

A dot is present if that driver gene is mutated in ≥5% of the samples for the given cancer type (x-

axis). Both the size and the color of the dot represent the nonsynonymous mutation frequency of 

that driver gene in that cancer type. Frequencies of these drivers in cancer types with fewer than 

75 samples are shown to the right of the vertical black line. B. Pairwise Spearman’s rank 

correlations of estimated mutation coefficients for TP53, PIK3CA, KRAS, CTNNB1, and FBXW7, 

across all putative target genes, for the set of cancer types in which that driver is frequently 

mutated (≥5% of samples) and has at least 15 significant hits for the given driver (q < 0.2). The 

average Spearman’s rank correlation for all drivers is greater than 0 (dashed line), indicating that 

driver mutational effects on genome-wide transcription share similarities between cancer types. 

C. Bar charts of the Spearman’s rank correlation coefficient between the nonsynonymous 

mutation status coefficient of the given driver (PIK3CA in red, TP53 in blue) across all target genes 

in TCGA-BRCA and METABRIC. Pairwise Spearman’s rank correlation coefficient values are 

0.47 for PIK3CA and 0.34 for TP53, both with p-values < 1E-200.  
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Supplemental Figure 4. Characterization of KBTBD2 in the context of mutant PI3K alpha 

inhibition. A. Relative cell growth in response to RLY-2608 treatment in siControl and 

siKBTBD2 treated cells. MCF7 cells were transfected with siControl or siKBTBD2 for 48hr. 

followed by RLY-2608 treatment at indicated doses for an additional 2 days. Cell growth was 

quantified by SRB staining. Data are presented as mean ± SD. B. Knockdown of KBTBD2 and 

western blot analysis of PI3K pathway components. MCF7 were transfected with control or 
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siRNA targeting KBTBD2 for 48Hr. C. Western blot analysis of PI3K signal transduction 

following RLY-2608 treatment and KBTBD2 knockdown. MCF7 cells were transfected with 

siControl or siKBTBD2 for 48Hr. followed by treatment with 1 µM RLY-2608 for time t (hrs). 

 

 

Supplemental Figure 5. Pan-cancer top significant Dyscovr covariates and covariates 

removed due to multicollinearity. A. When Dyscovr is applied pan-cancer across all putative 

gene targets, we aggregate all terms from these models together and rank them by q-value. 

Among the top 500 most significant terms from this ranking, we show the five most represented 

term categories (when counting bucketed variables together, see Methods IV.F) on the x-axis, 

with the frequency of each among the top 500 on the y-axis. Cancer type and subtype terms are 

most represented among the top 500 most significant terms, followed by the methylation status 

of the target gene, the CNA status of the target gene, fraction of immune cell infiltration, and TP53 

CNA status. B. Barplot (left) displays the absolute number of times a given non-cancer type/ 

subtype covariate was removed from the regression framework due to a multicollinearity violation 

when applied pan-cancer to all genes (16,447 total regressions performed). All covariates in 

barplot were tested for collinearity using the VIF metric and were removed if they had a VIF value 

that exceeded 5. ‘MethStat’ is an abbreviation for methylation status, while ‘CNAStat’ is an 
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abbreviation for CNA status. PC1-3 refer to the germline principal components. The table (right) 

displays the absolute number of times a given cancer type/ subtype covariate was removed from 

the regression framework when applied pan-cancer to all genes. All cancer type/ subtype 

covariates in the table were tested for collinearity using the Spearman correlation coefficient and 

were removed if they had a Spearman correlation coefficient >0.7 with a significance p<1E-05 

(see Methods III).  

 

TABLES 

Driver Gene 10 Most Significant Associated CGC5 Genes 

TP53 
MDM2, CDKN1A, DDB2, BUB1B, CDKN2A, FANCD2, STIL, 

CHEK2, XPC, KNSTRN 

PIK3CA 
PIK3R1, ETV4, AR, TET2, BAZ1A, IDH2, SBDS, VTI1A, SOX2, 

NOTCH2 

KRAS 
ETV4, ETV5, TCF7L2, CANT1, RHOA, SLC45A3, CREB3L1, 

ARHGAP26, CEBPA, PPP2R1A 

IDH1 
TCF12, FBXW7, PRKCB, ID3, GAS7, MAML2, CHIC2, PRDM2, 

HIF1A, TET2 

Table 1. Per-driver, pan-cancer enrichment in cancer genes from the Cancer Gene Census 

(CGC)32. Ten most statistically significant (ranked by q-value) CGC target genes for each driver 

gene are shown, with those genes that are upregulated in relation to driver gene mutation in 

orange and those that are downregulated in relation to driver gene mutation in blue.  
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Cancer Type 
Abbrev. 

Cancer Type Name Vogelstein Driver Genes at ≥5% 

Frequency 

Sample 
Size  

ACC Adrenocortical 
carcinoma 

CTNNB1, TP53 76 

BLCA Bladder Urothelial 
Carcinoma 

ARID1A, ARID2, ATM, CREBBP, 
EP300, ERBB2, ERCC2, FBXW7, 

FGFR3, KDM6A, NFE2L2, PIK3CA, 
RB1, STAG2, TP53, TSC1 

349 

BRCA Breast invasive 
carcinoma 

CDH1, PIK3CA, TP53 732 

CESC Cervical squamous cell 
carcinoma and 
endocervical 

adenocarcinoma 

EP300, FBXW7, PIK3CA, PTEN, 
TP53 

276 

CHOL Cholangiocarcinoma NA 33 

COAD Colon adenocarcinoma APC, FBXW7, KRAS, PIK3CA, 
SMAD4, TP53 

236 

DLBC Lymphoid Neoplasm 
Diffuse Large B-cell 

Lymphoma 

CARD11, MYD88, P2RY8, PIM1 36 

ESCA Esophageal carcinoma GNAS, NFE2L2, PIK3CA, SMAD4, 
SMARCA4, TP53 

158 

GBM Glioblastoma 
multiforme 

EGFR, PIK3CA, PTEN, TP53 58 

HNSC Head and Neck 
squamous cell 

carcinoma 

CASP8, CDKN2A, EP300, NOTCH1, 
NSD1, PIK3CA, TP53 

465 

KICH Kidney Chromophobe TP53 65 

KIRC Kidney renal clear cell 
carcinoma 

PBRM1, SETD2, VHL 141 

KIRP Kidney renal papillary 
cell carcinoma 

MET 224 

LAML Acute Myeloid 
Leukemia 

NA 6 

LGG Brain Lower Grade 
Glioma 

ATRX, CIC, EGFR, IDH1, PIK3CA, 
TP53 

518 

LIHC Liver hepatocellular 
carcinoma 

CTNNB1, TP53 359 
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Supplemental Table 1. The Vogelstein et al. cancer driver genes25 that are mutated in at 

least 5% of samples in each TCGA cancer type. The driver genes mutated in at least 5% of 

pan-cancer samples are shown in the bottommost row. 

 

LUAD Lung adenocarcinoma KRAS, STK11, TP53 361 

LUSC Lung squamous cell 
carcinoma 

CDKN2A, NF1, NFE2L2, PIK3CA, 
PTEN, TP53, ZNF521 

300 

MESO Mesothelioma BAP1, NF2, TP53 81 

OV Ovarian serous 
cystadenocarcinoma 

NA 7 

PAAD Pancreatic 
adenocarcinoma 

CDKN2A, KRAS, SMAD4, TP53 170 

PCPG Pheochromocytoma 
and Paraganglioma 

HRAS 167 

PRAD Prostate 
adenocarcinoma 

SPOP, TP53 419 

READ Rectum 
adenocarcinoma 

APC, KRAS, TP53 18 

SARC Sarcoma TP53 58 

STAD Stomach 
adenocarcinoma 

ARID1A, TP53 50 

TGCT Testicular Germ Cell 
Tumors 

KIT 29 

THCA Thyroid carcinoma BRAF, NRAS 396 

THYM Thymoma NA 23 

UCEC Uterine Corpus 
Endometrial 
Carcinoma 

ARID1A, CTNNB1, FBXW7, FGFR2, 
KRAS, PIK3CA, PPP2R1A, PTEN, 

SPOP, TP53 

295 

UCS Uterine 
Carcinosarcoma 

TP53 10 

UVM Uveal Melanoma GNA11, GNAQ 17 

PC Pan-Cancer TP53, PIK3CA, KRAS, IDH1 6135 
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Supplemental Table 2. Pan-cancer enrichment in transcriptional targets for effector TFs of 

PIK3CA, KRAS, and IDH1. For each pan-cancer driver gene that is not itself a TF, we curated 

TFs shown in the literature to be effectors of that driver and tested for enrichment of each of those 

Driver Gene Curated Effector TFs # of Targets 
KS One-Sided Enrichment 

Test, q-value 

PIK3CA112 

FOXO1/3/4/6 907 4.05E-03 

MYC 386 9.18E-02 

HIF1A 148 5.22E-02 

SREBF1/2 31 4.05E-03 

ATF4 16 7.67E-01 

NFR2/NFE2L2 11 8.19E-01 

KRAS113–115 

CREB1/3/5 1779 5.22E-02 

MYC 386 7.67E-01 

ETS1/2 154 5.22E-02 

FOXO1 43 6.25E-02 

ELK1 31 5.22E-02 

ETV1 29 4.36E-02 

AP1  
(absent from DoRothEA) 

N/A N/A 

IDH189 

SOX8 802 1.35E-01 

HEY1 422 3.77E-01 

JUN/JUNB/JUND 176 2.02E-01 

ATF3 50 4.05E-03 

NR2F2 18 8.19E-01 

MYCN 13 4.36E-02 
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TFs’ targets from DoRothEA26. The q-value from a multiple hypothesis corrected one-sided KS 

test for enrichment is shown for each effector TF, with q-values < 0.05 displayed in bold. 

 

TP53 Target List 
# of Genes 

in Set 
One-sided Kolmogorov- 

Smirnov (K-S) Test, p-value 

Curated Targets and Databases 

Curated, Fischer et al.27 116 7.48E-14 

DoRothEA26 248 7.68E-08 

TRRUST28 195 2.23E-10 

hTFtarget29 72 2.45E-02 

Gene Pathways 

KEGG Pathway30 “P53 Signaling Pathway”, 
hsa04115 

69 2.10E-07 

Reactome Pathway31 “Transcriptional 
Regulation by TP53”, R-HSA-3700989 

363 3.70E-08 

Reactome Pathway31 “TP53 Regulates 
Metabolic Genes”, R-CFA-5628897 

88 2.57E-03 

Known Cancer Genes 

CGC32 Cancer Genes 714 9.42E-05 

Vogelstein25 Cancer Genes 379 1.43E-03 

Supplemental Table 3. TP53 pan-cancer enrichments in known or inferred targets from 

curated datasets, TF-target databases, and driver-specific genetic pathways. Number of 

genes in each set and enrichments from a one-sided Kolmogorov-Smirnov (K-S) test are 

shown. 
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Data 
Category 

Data Type Experimental 
Strategy 

Workflow 
Type 

Data Format Platform 

Simple 
nucleotide 
variation 

Aggregated 
somatic 
mutation 

WXS MuSE 
Variant 

Aggregation 
and Masking 

maf N/A 

Copy number 
variation 

Gene level 
copy number 

Genotyping 
array 

ASCAT2 txt affymetrix 
snp 6.0  

Transcriptome 
profiling 

Gene 
expression 

quantification 

RNA-seq HTSeq -  
Counts 

txt N/A 

DNA 
methylation 

Methylation 
Beta value 

Methylation 
Array 

Liftover txt illumina 
human 

methylation 
450 

Biospecimen Biospecimen 
supplement 

N/A N/A bcr xml N/A 

Clinical Clinical 
supplement 

N/A N/A tsv N/A 

Supplemental Table 7. Parameters for GDC Data Portal file downloads. Each column 

represents a facet of the data that can be selected on the GDC Data Portal website when 

downloading files. For each Data Category (column 1), specific data facet selections used in these 

analyses are provided for replicability.  
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Cancer Type 
Abbrev. 

Cancer Type 
Name 

Column name in 
TCGAbiolinks clinical 

supplement 

Subtypes 

ACC Adrenocortical 
carcinoma 

COC COC1, COC2, COC3 

BLCA Bladder 
Urothelial 

Carcinoma 

mRNA cluster Luminal_infiltrated, 
Luminal_papillary, Luminal, 

Basal_squamous, Neuronal, ND 

BRCA Breast invasive 
carcinoma 

BRCA_Subtype_PAM50 LumA, LumB, Her2, Basal, Normal 

CESC Cervical 
squamous cell 
carcinoma and 
endocervical 

adenocarcinoma 

SAMP:CIMP_call CIMP-low, CIMP-intermediate, 
CIMP-high 

COAD Colon 
adenocarcinoma 

MSI_status MSI-H, MSI-L, MSS, Not Evaluable 

DLBC Lymphoid 
Neoplasm 

Diffuse Large B-
cell Lymphoma 

N/A N/A 

ESCA Esophageal 
carcinoma 

MSI status MSI-H, MSI-L, MSS, NA 

GBM Glioblastoma 
multiforme 

Original.Subtype Classical, G-CIMP, IDHmut-codel, 
IDHmut-non-codel, IDHwt, 

Mesenchymal, Neural, Proneural 

HNSC Head and Neck 
squamous cell 

carcinoma 

RNA Atypical, Basal, Classical, 
Mesenchymal 

KICH Kidney 
Chromophobe 

Histological.Subtype Kidney Chromophobe 

KIRC Kidney renal 
clear cell 

carcinoma 

N/A N/A 

KIRP Kidney renal 
papillary cell 
carcinoma 

tumor_type.KIRP.path. Type 1 Papillary RCC, Type 2 
Papillary RCC, Unclassified 

Papillary RCC 

LGG Brain Lower 
Grade Glioma 

Original.Subtype Classical, G-CIMP, IDHmut-codel, 
IDHmut-non-codel, IDHwt, 

Mesenchymal, Neural, Proneural  

LIHC Liver 
hepatocellular 

carcinoma 

iCluster clusters (k=3, 
Ronglai Shen) 

iCluster:1, iCluster:2, iCluster:3 

LUAD Lung 
adenocarcinoma 

iCluster.Group 1,2,3,4,5,6 

LUSC Lung squamous 
cell carcinoma 

Expression.Subtype basal, classical, primitive, 
secretory 
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MESO Mesothelioma N/A N/A 

PAAD Pancreatic 
adenocarcinoma 

Histological type by RHH Ductal adenocarcinoma, 
Adenosquamous, Other, Colloid 

(mucinous noncystic) 

PCPG Pheochromocyto
ma and 

Paraganglioma 

mRNA Subtype Clusters Kinase signaling, Wnt-altered, 
Pseudohypoxia, Cortical 

admixture, NA 

PRAD Prostate 
adenocarcinoma 

Subtype 1-ERG, 2-ETV1, 3-ETV1, 4-FLI1, 
5-SPOP, 6-FOXA1, 7-IDH1 8-other 

READ Rectum 
adenocarcinoma 

MSI_subtypes N/A 

THCA Thyroid 
carcinoma 

mRNA_Cluster_number 1,2,3,4,5,NA 

THYM Thymoma N/A N/A 

UCEC Uterine Corpus 
Endometrial 
Carcinoma 

msi Indeterminant, MSI-H, MSI-L, MSS 

UCS Uterine 
Carcinosarcoma 

histologic subtype Uterine Carcinosarcoma/ MMMT: 
Heterologous Type, Uterine 
Carcinosarcoma/ MMMT: 

Homologous Type, Uterine 
Carcinosarcoma/ Malignant Mixed 

Mullerian Tumor (MMMT): NOS 

UVM Uveal Melanoma mRNA Cluster No. 1,2,3,4 

 

Supplemental Table 8. Per-cancer TCGA subtype information. For each TCGA cancer type, 

displays the TCGAbiolinks clinical supplement column name that contains the cancer subtype 

information used in Dyscovr (column 2) and the range of subtype values found in that column 

(column 3). In all cases, molecular subtypes were used, if available. If not, histological subtypes 

were preferentially used, followed by expression-based subtypes, such as from mRNA clusters.  
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