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About 2% of human genetic polymorphisms have been hypothesized to arise via multinucleotide mutations (MNMs),
complex events that generate SNPs at multiple sites in a single generation. MNMs have the potential to accelerate the pace
at which single genes evolve and to confound studies of demography and selection that assume all SNPs arise in-
dependently. In this paper, we examine clustered mutations that are segregating in a set of 1092 human genomes,
demonstrating that the signature of MNM becomes enriched as large numbers of individuals are sampled. We estimate the
percentage of linked SNP pairs that were generated by simultaneous mutation as a function of the distance between
affected sites and show that MNMs exhibit a high percentage of transversions relative to transitions, findings that are
reproducible in data from multiple sequencing platforms and cannot be attributed to sequencing error. Among tandem
mutations that occur simultaneously at adjacent sites, we find an especially skewed distribution of ancestral and derived
alleles, with GC!AA, GA! TT, and their reverse complements making up 27% of the total. These mutations have been
previously shown to dominate the spectrum of the error-prone polymerase Pol z, suggesting that low-fidelity DNA
replication by Pol z is at least partly responsible for the MNMs that are segregating in the human population. We develop
statistical estimates of MNM prevalence that can be used to correct phylogenetic and population genetic inferences for the
presence of complex mutations.

[Supplemental material is available for this article.]

One of the core challenges in evolutionary biology is to explain the

distribution of mutations in time and space and harness this

knowledge to make inferences about the past. When two DNA

sequences have numerous differences that are spaced closely to-

gether, they are inferred to have been diverging for a relatively long

time, the two lineages accumulating mutations at a steady rate

since they diverged from their last common ancestor. In contrast,

when two sequences have few differences that are spaced far apart,

they are inferred to have diverged from a common ancestor rela-

tively recently. This logic is the basis of a widely used class of

methods that infer detailed demographic histories from the spac-

ing between SNPs in a sample of whole-genome sequence data

(Hobolth et al. 2007; Li and Durbin 2011; Harris and Nielsen 2013;

Sheehan et al. 2013).

To improve the accuracy of population genetic inference from

the spacing between SNPs, it will be important to assess the validity

of standard assumptions about the mutational process. One such

assumption is that mutations occur independently conditional on

the genealogical history of the data; however, there are numerous

lines of evidence that 1%–5% of SNPs in diverse eukaryotic organ-

isms are produced by multinucleotide mutation events (MNMs)

that create two or more SNPs simultaneously. If simultaneously

generated mutations are regarded as independent during pop-

ulation genetic analysis, the ages of the clustered variants will be

overestimated. This could be important not only for the in-

ference of demographic histories but also for other endeavors

such as the detection of long-term balancing selection. Closely

spaced SNPs with ancient times to common ancestry can provide

evidence that genetic diversity has been maintained by natural

selection (Charlesworth 2006; S�egurel et al. 2012; Leffler et al.

2013), and simultaneous mutations have the potential to distort

or mimic these signals.

One line of evidence for MNM comes from de novo muta-

tions that occur in populations of laboratory organisms including

Drosophila melanogaster (Keightley et al. 2009; Schrider et al. 2013),

Arabidopsis thaliana (Ossowski et al. 2010), Caenorhabditis elegans

(Denver et al. 2004, 2009), and Saccharomyces cerevisiae (Lynch

et al. 2008), as well as de novo mutations detected by looking at

human parent-child-trios (Schrider et al. 2011). The human de

novomutation rate per base per generation is somewhere between

1.03 10�8 and 2.53 10�8 (The 1000Genomes Project Consortium

2010); assuming that mutations occur independently, it should be

exceedingly rare to find twomutations within 100 kb of each other.

Contrary to this expectation, trios show consistent evidence of

mutations occurring in pairs ranging from 2 bp to tens of kb apart.

In yeast, there is additional evidence that MNMs are created

by the activity of DNA polymerase zeta (Pol z), an error-prone

translesion polymerase that extends DNA synthesis past mis-

matches and damage-induced lesions (Sakamoto et al. 2007; Stone

et al. 2012). Pol z is also responsible for MNMs that occur during

somatic hypermutation of the variable regions of mouse immu-

noglobulins (Daly et al. 2012; Saribasak et al. 2012). These results

were established by knocking out Pol z in mutant yeast strains and

adult mouse cells, but it has not been possible to knock out Pol z in
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live mice without destroying their embryonic viability (Bemark

et al. 2000; Esposito et al. 2000; Wittschieben et al. 2000). For this

reason, there is no direct experimental evidence that Pol z creates

heritable MNMs in higher eukaryotes.

Clusters of de novo mutations are not the only line of evi-

dence for heritable MNMs in eukaryotes. Additional evidence can

be found in patterns of linkage disequilibrium (LD) between older

SNPs that segregate in natural populations. Schrider and colleagues

and Terekhanova and colleagues examined pairs of nearby SNPs in

phasedhumanhaplotypedata and found that the twoderived alleles

occurred more frequently on the same haplotype than on different

haplotypes (Schrider et al. 2011; Terekhanova et al. 2013).When two

mutations occur independently, their derived alleles should occuron

the same haplotype only 50% of the time; in contrast, MNM should

always produce mutation pairs with the two derived alleles on the

same haplotype. Using a different counting argument, Hodgkinson

and Eyre-Walker also concluded that many SNP pairs occurring at

adjacent sites were generated by a simultaneous mutational mech-

anism (Hodgkinson and Eyre-Walker 2010). They noted that adja-

cent linked SNPs outnumber SNPs 2 bp apart by a factor of two,

when the two types of pairs should have equal frequency under the

assumption of independent mutation.

To gather more data about the MNM process, it would be

impractical to rely on de novo mutations and essential to harness

LD information. Although it is easiest to classify a pair of SNPs as an

MNMwhen the mutations are observed de novo, eukaryotes have

low enough mutation rates that fewer than 1 MNM per genome is

expected to occur each generation on average. Motivated by this,

we use an LD-based approach to identify signatures ofMNM in the

1000 Genomes Phase I data, a public repository of 1092 phased

human genomes (The 1000 Genomes Project Consortium 2012).

This repository is 100-fold larger than the data sets previously

scrutinized for evidence of MNM, and its size confers new power

to characterize the MNM spectrum.

In agreement with earlier studies of MNM, we find that pat-

terns of LD between close-together SNPs are incompatible with

mutational independence. However, the patterns are consistent

with a simple mixture of independent mutations and MNMs. We

leverage the size of the 1000 Genomes data set to make several

novel discoveries about MNMs. First, they are enriched for trans-

versions, with a transition:transversion ratio of 1:1 in contrast to

the 2:1 genome-wide average. Second, we find that linked muta-

tions in humans are enriched for the same allelic types recorded by

Stone and colleagues in lines of yeast that have nucleotide excision

repair (NER) deficiencies and thus rely heavily on Pol z for trans-

lesion synthesis (Stone et al. 2012). These frequent MNMs include

the dinucleotide mutations GA ! TT and GC ! AA, as well as

mutations at nonadjacent sites that produce homogeneous AA/TT

derived allele pairs. Such patterns are unlikely to result from errors

in the DNA sequencing process and instead suggest that normal

humanPol z activity generates at least someof the sameMNMs that

are produced by Pol z in NER-deficient yeast (Stone et al. 2012).

Results
Simultaneousmutations can be observed directly when they occur

de novo in offspring that have been sequenced along with their

parents. In addition, many more MNMs can be inferred from

linkage in data from unrelated individuals. Schrider and coworkers

previously invoked simultaneous mutations to explain LD patterns

in a phased diploid genome, observing that SNPs <10 bp apart were

disproportionately likely to have their derived alleles lie on the

same haplotype (Schrider et al. 2011). In the spirit of this ap-

proach, we looked at the prevalence of neighboring SNPs in the

1000 Genomes Phase I data that occur in perfect LD, meaning

that the two derived alleles occur in the exact same subset of the

2184 sequenced haplotypes.We hereafter define a pair of close LD

SNPs to be a pair occurring <100 bp apart in perfect LD. A few

MNMs will be missed because of recombination between the mu-

tated sites, but we estimate that fewer than 0.5% of all MNMs

spanning <100 bp will be disrupted in this way (see Section S4 of

the Supplemental Material).

Excess nearby SNPs in LD

We counted 35,620 pairs of close LD SNPs in the 1000 Genomes

Phase I data with both sites passing genotype quality control and

with a consistent ancestral state identifiable fromahuman/chimp/

orang/macaque reference alignment (see Methods). Simultaneous

mutations should always create SNPs in perfect LD, but we also

expect some independent mutations to create SNPs in perfect LD,

and we quantified this expectation by simulating data under a

Poisson process model of independent mutation and recombi-

nation implemented in Hudson’s coalescent simulator ms (Hudson

2002). We simulated a total of 4.8 3 108 bp from an alignment of

2184 haplotypes under a realistic human demographic model

(Harris andNielsen 2013) and recovered 36,991 close LD SNP pairs.

For comparison, we also simulated 1.8 3 108 bp of data under the

standard neutral coalescentwith constant effective population size

N = 10,000, recovering 36,202 close LD SNP pairs.

As shown in Figure 1, the distribution of distances between

close LD SNPs was quite different in the simulated versus real data,

with the real data containing about fivefoldmore adjacent SNPs in

LD and a decaying excess of SNPs separated by up to 20 bp in LD. In

contrast, the simulations under different demographic models

produced similar distributions of close LD SNPs.

Under the coalescent with independent mutation, the abun-

dance of SNP pairs L bp apart in LD should decline approximately

Figure 1. Nearby SNPs in LD: 1000 Genomes Phase I data vs. simulation
under mutational independence. When we simulated 2184 haplotypes
under a realistic demographic model, we observed ;37,000 SNP pairs in
LD separated by <100 bp in a sample of total length 4.8 3 108 bp. Their
spacing was distributed almost uniformly between 1 and 100 bp. We ob-
served much less uniformity in the distribution of distances between SNP
pairs in LD in the 1000Genomes data, with an extreme excess of SNPs in LD
at 1–2 bp and a less extreme excess of SNPs at distances up to 20 bp apart.
(Note that the axes are logarithmically scaled, making exponential curves
appear concave downward.)
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exponentially with L for small values of L (see Supplemental Ma-

terial Section S1), and we find this to hold for the simulated data in

Figure 1. In contrast, the optimal least-squares exponential fit is

a poor approximation to the abundance distribution of close LD

SNP pairs in the 1000Genomes data, whichwe denote byNLD(L). A

possible explanation is that close LD SNPs are produced by a mix-

ture of two processes, a point-mutation process that is accurately

modeled by the coalescent and an MNM process that is not.

Close LD SNPs have unusual transition/transversion
frequencies

To our knowledge, no previouswork has addressedwhetherMNMs

have the same transition:transversion ratio as ordinary mutations.

However, there is abundant evidence that different DNA poly-

merases produce mutations with different frequencies of ances-

tral and derived alleles. To investigate this question, wemeasured

the fractions of linked SNP pairs at distance L that are composed

of transitions, transversions, andmixed pairs (one transition plus

one transversion). We denote these fractions f LD
ts ðLÞ, f LD

tv ðLÞ, and
f LD
m ðLÞ. We also measured the analogous fractions f non�LD

ts ðLÞ,
f non�LD
tv ðLÞ, and f non�LD

m ðLÞ of transitions, transversions, andmixed

pairs among SNPs not found in perfect LD.

In human genetic variation data, transitions are approxi-

mately twice as common as transversions (Kimura 1980). If the two

mutation types of a SNP pair were chosen independently, we

would therefore expect that fts = 0.662 = 0.44, ftv = 0.332 = 0.11, and

fm = 2 3 0.66 3 0.33 = 0.45. These predictions are very close to

f non�LD
ts ðLÞ, f non�LD

tv ðLÞ, and f non�LD
m ðLÞ for L between 2 and 100

(Fig. 2). For L = 1, f non�LD
ts ðLÞ is larger than expected because of the

elevated transition rate at both positions of CpG sites.

Amongmutations in perfect LD, we found that f LD
ts ðLÞ, f LD

tv ðLÞ,
and f LD

m ðLÞ deviate dramatically from the expectation ofmutational

independence, adding support to the idea that many such SNPs are

produced by a nonstandard mutational process. The frequency of

transversion pairs declineswith L; we found that 36.7% of SNP pairs

in LD at adjacent sites consisted of two transversions, compared to

11.1% of SNP pairs in LD at a distance of 100 bp and 10.7% of SNP

pairs not in LD. These numbers are not just incompatible with

a transition:transversion ratio of 2:1 but are also incompatible with

two neighboring SNP types being assigned independently. If the

SNP types were assigned independently, it should hold thatffiffiffiffiffiffiffiffiffiffiffi
ftsðLÞ

p
+

ffiffiffiffiffiffiffiffiffiffiffiffi
ftvðLÞ

p
=1, an assumption that is violated for small

values of L. We also found excess close LD transversions in human

data sequenced by Complete Genomics (Supplemental Fig. S1),

suggesting that this pattern is not an artifact of the Illumina se-

quencing platform or the 1000 Genomes SNP-calling pipeline.

Estimating the fraction of perfect LD SNPs that are MNMs

Schrider et al. (2011) previously estimated the abundance of MNMs

using the following analysis of a phased diploid genome: For dis-

tances L ranging from1 to 20 bp, they countedheterozygous sites L

bp apart where the derived alleles lay on the same haplotype and

could potentially have arisen due to MNM. They compared this

quantity, S(L), to the numberD(L) of heterozygotes L bp apart with

the derived alleles on different haplotypes. If all mutations arise

independently, S(L) and D(L) are expected to be equal, leading

them to propose S(L)�D(L) as an estimate of the number ofMNMs

spanning L bp. We repeated this analysis on the 1000 Genomes

data, subsampling each possible pair H from among the 2184

phased haplotypes. For each L between 1 and 100 bp, we obtained

counts SHts ðLÞ, SHmðLÞ, and SHtvðLÞ of transitions, mixed pairs, and

transversionsLbp apartwhereonehaplotype carried the twoancestral

alleles and the other haplotype carried the two derived alleles. Simi-

larly, we obtained countsDH
ts ðLÞ,DH

mðLÞ, andDH
tvðLÞwhere the derived

alleles occurred on opposite haplotypes of H. Adding up these counts

over all haplotype pairs subsampled from the 1000Genomes data, we

obtainedglobal counts St(L) andDt(L) for eachpair type t. Thequantity

(Stv(L) � Dtv(L))/(S(L) � D(L)), a direct estimate of the fraction of

MNMs that are transversion pairs, is consistently slightly higher

than f tvLDðLÞ (Supplemental Fig. S2), as expected if close LD SNP

pairs are a mixture of MNMs and linked independent mutations.

Wewere able to use Sts(L)�Dts(L), Sm(L)�Dm(L), and Stv(L)�
Dtv(L) to estimate the abundance of MNMs relative to perfect LD

SNPs. Our simulations indicate that fewer than 0.5% of MNMs

100 bp apart should be ultimately broken up by recombination

(Supplemental Table S2); guided by this, we assume thatMNMs are

a subset of perfect LD SNP pairs. Tomake this assumption robust to

phasing and genotyping error, we relax the definition of perfect LD

to include site pairs where, at most, 2% of samples carry a discor-

dant genotype (see Methods). For each linked SNP pair, we count

the number of subsampled haplotype pairs for which exactly one

lineage contains the two derived alleles. Adding up these counts

over all perfect LD SNPs, we obtain a count S(LD)(L) that is strictly

less than S(L). We estimate that m(L) = (S(L) � D(L))/S(LD)(L) is the

fraction of perfect LD SNP pairs created by MNM. Similarly,

mtvðLÞ= ðStvðLÞ �DtvðLÞÞ=SðLDÞ
tv ðLÞ is the fraction of perfect LD

transversions created by MNM. The results indicate that >90% of

SNPs in perfect LD at adjacent sites areMNMs (Fig. 3). At a distance

of 5 bp between sites, 60%of perfect LD transversions are predicted

to be MNMs, in contrast to 40% of perfect LD transitions and

mixed pairs. At 100 bp between sites, ;35% of perfect LD pairs

appear to be MNMs, a figure that is similar across transitions and

transversions. We calculate that MNMs spanning 1–100 bp ac-

count for 1.8% of new point mutations (see Methods). Section S5

Figure 2. The relationship between LD and the transition:transversion
ratio. In this figure, the solid black line plots the fraction of SNP pairs in LD
that consist of two transitions. The fraction increases quickly as a function
of the distance L between SNPs, asymptotically approaching the fraction
of SNP pairs not in LD that consist of two transitions (solid gray line). The
fraction of SNP pairs not in LD that consist of two transitions is nearly
constant as a function of L except for an excess of adjacent transition pairs
resulting from double mutation at CpG sites. Although transversion pairs
make up just over 10% of unlinked SNP pairs, they account for >40% of
adjacent SNPs in perfect LD and;20%of SNPs in LD at a distance of 10 bp
apart.
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(Supplemental Material) describes how to simulate data contain-

ing 1.8% MNMs with realistic spacings of 1–100 bp.

By construction,m(L) should accurately estimate the fraction

of MNMs among the close LD SNPs that are polymorphic in

a single diploid genome. This might be different from the absolute

fraction of 1000 Genomes close LD SNPs that are MNMs, because

these contain a higher proportion of rare alleles. However, m(L) is

the more relevant statistic to the prevalence of MNMs in smaller

data sets that many readers will be concerned with.

The 1000 Genomes data contains many SNP pairs that lie in

perfect LD at distances of >100 bp apart. Although their transition/

transversion ratios are close to the genome-wide average, values of

m(L) suggest that >25% of these are MNMs (Supplemental Table

S1). AlthoughMNMs spanning 10,000 bp appear to be rare events,

10-fold rarer than MNMs spanning only 100 bp, they appear only

about fourfold rarer than independent mutations occurring in

perfect LD at 10,000 bp, making it possible to infer their distribu-

tion in the genome with high precision.

The large sample size of the 1000 Genomes data not only

ensures that a huge number of raremutations can be observed, but

also ensures that independentmutations occur in perfect LDmuch

less often than in samples of fewer individuals. The reason for this

is illustrated in Figure 4: If twomutations occurred at different time

points on the genealogical tree of an entire population, sampling

more individuals increases the probability of sampling one who

carries the older mutation and not the younger one. To test this

prediction, we counted SNP pairs that appear to be in perfect LD in

smaller subsets of the 1000 Genomes data. As proved in Section S2

of the Supplemental Material, the genealogies of large samples are

dominated by shorter branches, on average, than the genealogies

of smaller samples, implying that the percentage of perfected LD

SNPs caused by MNM should be an increasing function of the

number of sampled lineages. This implies that the abundance of

transversions relative to transitions should also increase with the

number of sampled lineages.

In pairs of adjacent perfect LD SNPs, we find that the per-

centage of transversion pairs increases very quickly with the

number of lineages, making up 27% of the total when only two

haplotypes are sampled and nearly 40% of the total when all 2184

haplotypes are sampled (Fig. 5). This result is even more dramatic

for transitions at CpG sites, where the rate of nonsimultaneous

double mutations is elevated by deamination of methylated cy-

tosine to thymine. When we count the fraction of adjacent tran-

sitions in perfect LD that are of the type CG! TA as a function of

the number n of lineages sampled, it declines nearly 10-fold as n

increases from 2 to 2184 (see Supplemental Fig. S4). For perfect LD

SNPs that occur 100–200 bp apart, the percentage of transversion

pairs increases much more slowly than for adjacent perfect LD

SNPs. However, it is still 10% higher in a sample of 2184 haplo-

types than in samples of 2 to 1000 haplotypes (Fig. 5).

Clustering of simultaneous mutations

Mutation-accumulation experiments have reported MNMs span-

ning long genomic distances (Denver et al. 2009; Keightley et al.

2009; Schrider et al. 2011, 2013), and yeast studies have suggested

a possible mechanism for their formation. Roberts and colleagues

reported that double-strand breakage and subsequent repair can

create sparse clusters of mutations spanning a megabase or more,

with a mean spacing of 3000 bp between simultaneous mutation

events (Roberts et al. 2012). We found evidence for higher-order

mutational clustering by counting groups of mutations in perfect

LD with fewer than 1000 bp between each adjacent pair and plot-

ting the distribution of cluster size, which ranged from 2 to 31 SNPs.

The distribution had a fatter tail than the distribution of perfect LD

clusters in an equivalent amount of simulated data, where the

largest cluster contained 23 perfect LD SNPs (Supplemental Fig. S3).

The effect of complex mutation on the site frequency spectrum

In addition to showing that large samples contain fewer linked

independent mutations than smaller samples, Figure 4 illustrates

that linked independent mutations should be enriched for high

frequencies relative to the site frequency spectrum (SFS) of ordi-

nary mutations. High-frequency mutations tend to occur on the

longest branches of a genealogical tree, whereas low-frequency

mutations are scattered across many short branches that are each

less likely to be hit with two separate mutations. Simulations

confirm that linked independent mutations are biased toward

Figure 3. The fraction of SNPs in perfect LD caused byMNM. The dash-
dotted curve plots our estimate of the fraction of transversions in perfect
LD at distance L that were caused by simultaneous mutation. It is uni-
formly higher than our corresponding estimates for mixed pairs and
transitions, plotted with solid and dashed lines.

Figure 4. Independent mutations in perfect LD. This figure depicts
a 20-lineage coalescent tree with a five-lineage subsample highlighted in
bold. Light circles represent mutation pairs that appear in perfect LD only
in the five-lineage sample. In contrast, dark circles represent pairs of in-
dependent mutations that occur in perfect LD in the entire 20-lineage
sample. These pairs are concentrated on the longest branches of the tree
that are often ancestral to many lineages, making their site frequency
spectrum enriched for high frequencies.

Harris and Nielsen
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high frequencies, with sixfold fewer singletons and doubletons

than the SFS of the data set they come from (Fig. 6F). In contrast,

MNMs should have the same SFS as ordinary point mutations as

long as they are not affected differently by natural selection.

Given a mixture of simultaneous and independent muta-

tions, the SFS should be a linear combination of the site frequency

spectra of independent and simultaneous linked mutations. The

more heavily the mixture is weighted toward independent muta-

tions, the more the SFS should be skewed toward high frequencies.

In agreement with our inference that MNMs contain a high per-

centage of transversions, we observe that perfect LD transversions

have lower frequencies on average than other perfect LD SNP pairs.

In addition, far-apart perfect LD SNPs have higher frequencies than

close-together pairs on average (Fig. 6).

Using the empirical spectraof linkedversusunlinkedmutations,

we devised a second method for estimating the fraction of perfect

LD SNPs that are MNMs. For each mutation pair type (ts/m/tv),

we compute the site frequency spectrum S(L) of perfect LD SNPs L bp

apart. We also computed a SFS Sglobal from the entire set of SNPs in

the sample. It is not possible to measure the spectrum Sindept�LD of

linked independent mutations directly, so we numerically opti-

mized the entries of this spectrum jointly with mixture model

coefficients cts(L), cm(L), and ctv(L) between 0 and 1, one for each

distance L and mutation pair type t. We treated all entries of

Sindept�LD as unknown free parameters and used the BFGS algo-

rithm to minimize the following squared error residual D:

D=+
n

i=2

+
t2fts;m;tvg

�
ct ðLÞ3Sglobal½i� + ð1� ct ðLÞÞ

3Sindept�LD½i� � StðLÞ½i�
�2
: ð1Þ

This has the effect of fitting each spectrum St(L) to the linear com-

bination ct(L)3 Sglobal + (1� ct[L])3 Sindept�LD ofMNMs and linked

independent mutations. The sum over i

starts at 2 to exclude singletons because

they cannot be phased. Assuming that

Sglobal is a good estimate of the SFS of

MNMs, we take ct(L) to be an estimate

of the fraction of MNMs among linked

SNPs of type t at distance L. In this way,

we obtain estimates similar to the mt(L)

estimates that we obtained earlier by

measuring the excess of same-lineage of

derived alleles (Fig. 7). We find that ct(L) is

larger than mt(L) for L < 3 and L > 50, but

smaller than mt(L) at intermediate dis-

tances. The discrepancy might stem from

noise in the data but might also reflect

a meaningful difference between the def-

initions of the two statistics. While m(L)

estimates the prevalence of MNMs among

close LD SNPs that are heterozygous in

a single diploid, c(L) estimates the preva-

lence of MNMs among all close LD SNPs

present in the 1000 Genomes data.

Evidence for error-prone synthesis
by Polymerase z

One mechanism that is known to gener-

ate MNMs in vivo is error-prone lesion

bypass by Polymerase z, an enzyme found

in all eukaryotes with the unique ability to extend primers with

terminal mismatches (Gan et al. 2008; Waters et al. 2009). At

a replication fork that has been stalled by a lesion, Pol z is re-

sponsible for adding bases to the strand containing the lesion and

then extending replication for a few base pairs before detaching

and allowing a high-fidelity enzyme to resume synthesis. During

this extension phase, it has the potential to create clustered errors.

Experimental work in yeast has confirmed that Pol z generates

MNMs (Sakamoto et al. 2007; Stone et al. 2012), and the same

enzyme has been linked to somatic hypermutation in the MHC

(Daly et al. 2012; Saribasak et al. 2012).

Translesion synthesis by Pol z is not the only pathway that has

the potential to create MNMs. Eukaryotes utilize at least seven dif-

ferent DNA replication enzymes that are considered ‘‘error-prone’’

(Goodman 2002;Waters et al. 2009) andhavemutation spectrawith

low transition/transversion ratios (McDonald et al. 2011). However,

we specifically analyzed human MNMs for signatures of Pol z ac-

tivity because a unique data set was available to make this possible.

Specifically, we were able to compare linked adjacent mutations in

the 1000 Genomes data to tandem (adjacent) mutations recorded

from a yeast strain bred by Stone and colleagues to be deficient in

nucleotide excision-repair machinery and rely heavily on Pol z to

bypass lesions that stall replication forks (Stone et al. 2012). Stone

and coworkers recorded a total of 61 spontaneous tandem muta-

tions; thesewere evenmoreheavilyweighted toward transversions

than linked SNPs in the 1000 Genomes data, with 52.5% trans-

version pairs, 37.7% mixed pairs, and only 9.8% transition pairs.

Two particular tandem mutations comprised >60% of the

tandem mutations in the Stone et al. (2012) yeast. One of them,

GA! TT, is a transversion pair that made up 31% of the total. The

other, GC! AA, is a mixed pair that made up 30% of the total. We

found that these were also by far the most common adjacent

Figure 5. Enrichment of transversion pairs and MNMs with increasing sample size. We generated
subsamples of the 1000 Genomes data containing 2–2184 haplotypes and computed the percentages of
transversion pairs, transition pairs, and mixed pairs for perfect LD SNPs in each data set. As the number of
sampled haplotypes increases, the percentage of perfect LD SNPs that areMNMs should increase, leading
to an increase in the frequency of transversions and a decrease in the frequency of transitions. This effect is
most apparentwhen the SNPs are adjacent (1 bp apart) or very close (5–10bp apart). However, perfect LD
SNPs that lie 100–200 bp apart display the same pattern, indicating thatMNMs spanning 100–200 bp are
much less common but are still evident in samples of many lineages.

Error-prone polymerases cause MNM in humans
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linked SNPs in the 1000 Genomes data, with GC! AA comprising

16% of the total and GA ! TT comprising 11%. No other single

mutation type accounts for >5% of the linked adjacent mutations

in the 1000 Genomes data, and no other type accounts for >7% of

the Stone et al. (2012) tandem mutations (Fig. 8).

In addition to 61 tandem mutations affecting adjacent base

pairs, Stone and colleagues recorded 210 complex mutations

where two or more substitutions, insertions, and/or deletions oc-

curred at nonadjacent sites within a single 20-bp window (Stone

et al. 2012). From this data set, we extracted 84 pairs of simulta-

neous substitutions at distances of 2–14 bp apart. These pairs had

almost the same transition/transversion makeup as the tandem

substitutions, being comprised of 53.6% transversions, 36.9%

mixed pairs, and 9.5% transitions.

Among the nonadjacent yeast mutation pairs, GA ! TT and

GC ! AA were not particularly common, making up only 4.8%

and 1.2% of the total, respectively. However, 44.0% of the derived

allele pairs were ‘‘AA’’ or ‘‘TT’’ (compared to 72.1% of adjacent mu-

tation pairs). This percentage is much higher than what we would

expect in two mutations that occurred independently. Mutation

accumulation studies have shown that 33% of yeast mutations

have derived allele A (by A/T symmetry, 33% also have derived allele

T) (Lynch et al. 2008). From this, we expect the fraction of AA/TT

derived allele pairs to be only 2 3 0.332 = 0.22. We found that AA

and TTwere similarly overrepresented among thederived allele pairs

in linked human SNPs. In Figure 9, we plot the fraction fAA(L) of

derived AA/TT allele pairs as a function of the distance L between

perfect LD SNPs, charting its decline from fAA(1) = 0.445 through

fAA(100) = 0.144.

In their 2011 study of MNMs in

human trios, Schrider et al. (2011) tabu-

lated frequencies of all possible 144 di-

nucleotide substitutions but did not

report excess AA/TT derived allele pairs or

Pol z-associated mutations of the types

GA ! TT or GC ! AA. We believe that

these results differ because of our theo-

retical result that sampling more lineages

enriches the ratio of true MNMs to linked

independent mutations. To verify this,

we replicated the Schrider et al. (2011)

mutation frequency analysis on the 1000

Genomes data and obtained results that

were similar to theirs (Section S3 of the

Supplemental Material). We also found

that the excess of Pol z-associated muta-

tions increases as more lineages are sam-

pled (Supplemental Fig. S5), just as all

perfect LD transversions increase in fre-

quency with sample size (Fig. 5). Other

AA/TT derived allele pairs increase in fre-

quency as more lineages are sampled

when considering SNPs <4 bp apart. Since

this effect is not discernible for L > 4, de-

rived AA/TT pairs might only play a sig-

nificant role in closely spaced MNMs.

Correcting downstream analyses
for multinucleotide mutation

As evidenced by Figures 1 and 6, MNMs

can have considerable impact on sum-

mary statistics like the site frequency spectrum and the prevalence

of linkage disequilibrium. These summary statistics provide clues

about the genealogical histories of data sets and can be leveraged to

infer demographic history, natural selection, population structure,

recombination rates, and other quantities of interest. However,

accurate inference depends on accurately modeling the process

Figure 7. Two estimates of MNM prevalence. Here, the black lines plot
ct(L), our SFS-based estimate of the fraction of perfect LD mutations
caused by MNM. For comparison, gray lines plot the estimatemt(L) that is
based on the excess of same-lineage derived alleles over different-lineage
derived alleles in subsampled haplotype pairs.

Figure 6. Site frequency spectra of perfect LD mutations. Each of panels A through E contains site
frequency spectra of transitions, mixed pairs, and transversions found in perfect LD in the 1000 Ge-
nomes data. Singletons are excluded because they cannot be phased and therefore perfect LD status
cannot be determined. For comparison, each panel contains the population-wide SFS of unlinked SNPs
as well as the inferred SFS of linked independent mutations. SNP pairs are binned according to the
distance between them, showing that close-together SNPs and transversions have spectra closer to the
population SFS, while far-apart SNPs and transitions appear more weighted toward linked independent
mutations. Dotted lines show the frequency spectra predicted by Equation 1 for each length and pair
type category, assuming that the gray dashed line [m (theory)] depicts the correct SFS of linked in-
dependent mutations and that Figure 7 shows the correct MNM percentages in each category. For
comparison, panel F shows a population SFS and perfect LD frequency spectrum obtained from data
simulated under a human demographicmodel. In the simulated data, there is no difference between the
frequency spectra of linked independent mutations that lie 1 bp apart versus 100 bp apart.
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that generates data, and most population genetic models omit

MNMs.

One strategy for improving the accuracy of downstream

analyses without adding much to their complexity is to identify

MNMs in a probabilistic way and remove them from the data. For

each pair of SNPs occurring in perfect LD, we can estimate the

probability that theywere caused by anMNMas a function of their

inter-SNPdistance and transition/transversion status, then use this

information to correct summary statistics for the presence of

MNMs. To illustrate, we devise a method for correcting the corre-

lation coefficient r2(L) that is commonly used to measure linkage

disequilibrium as a function of genomic distance L (Hill and

Robertson 1968). We computed r2(L) in the 1000 Genomes data as

described in the Methods and then devised a corrected statistic

r2MNMðLÞ that accounts for MNMs and estimates the average cor-

relation between independent mutations. As shown in Figure 10,

r2MNMðLÞ is significantly less than r2(L) at short genomic distances.

Discussion
We have uncovered a strong signature of multinucleotide muta-

tion in 1092 genomes sequenced by the 1000 Genomes Consor-

tium, with a large excess of close LD SNPs that cannot be explained

by demography or mutational hotspots. This is consistent with

earlier reports of MNM in smaller human data sets; however,

MNMs are enriched relative to independent linked SNPs as more

lineages are sampled and mutations are localized to increasingly

short genealogical branches.

By looking at the allelic composition of close LD SNPs con-

taining MNMs, we found several signatures that are consistent

with error-prone lesion bypass by Polymerase z. One signature is an

excess of transversions; the second is an excess of the dinucleotide

mutations GA ! TT and GC ! AA, and the third is a bias toward

homogeneous AA/TT derived allele pairs. It remains an open

question what percentage of human MNMs is introduced by Pol z

and how many other DNA damage and repair mechanisms come

into play. However, it is interesting that Pol z appears to create the

same mutation types in the human lineage that it creates in yeast

with artificial excision repair deficiencies. We are hopeful that

MNM can be understood more completely in the future by com-

paring perfect LD SNPs to de novo mutations from other sources.

An important alternative hypothesis for the observed pat-

terns is DNA sequencing or assembly errors in the 1000 Genomes

data, but there are several different lines of evidence that show that

our results cannot be explained by such errors. First, we observed

similar patterns in data sequenced by Complete Genomics using

non-Illumina technology. Second, the excess close LD SNPs that

are enriched for transversions and AA/TT derived alleles are not

only singleton mutations but occur at a range of higher allele fre-

quencies. Errors could only cause such patterns if they occurred in

an identical fashion in multiple individuals, mimicking the fre-

quency distribution expected for mutations. Third, as already

noted, the MNMs we infer are enriched for the same types as

MNMs that were observed de novo in yeast. The patterns we ob-

serve are consistent withMNM patterns that have been previously

found using Sanger sequencing and other high-fidelity variant

detectionmethods (Drake et al. 2005; Levy et al. 2007; Lynch et al.

2008; Chen et al. 2009).

The most commonly used methods for analyzing DNA se-

quences assume that mutations occur independently of each

other. The fact that this assumption is violated in human data, and

perhapsmost other eukaryotic data,may compromise the accuracy

of population genetic inference.Methods based solely on counting

mutations, such as SFS-based methods (Gutenkunst et al. 2009),

will probably be minimally affected and mostly in their measures

of statistical confidence. In contrast, methods that explicitly use

the spatial distributions of mutations, in particular the number of

mutations in short fragments of DNA (Yang and Rannala 1997;

Nielsen and Wakeley 2001; Wang and Hey 2010; Gronau et al.

2011), should be strongly affected. Several recently developed

methods analyze genomic data by explicitly modeling the spatial

distribution of independentmutations (Hobolth et al. 2007; Li and

Durbin 2011; Harris and Nielsen 2013; Sheehan et al. 2013), and

these are at risk for bias in regions where SNPs are close together.

However, confounding of these methods by MNMs can be mini-

mized by analyzing only a few individuals at a time and by dis-

regarding pairs of SNPs <100 bp apart, which is often coincidentally

done for the sake of computational efficiency (Li andDurbin 2011;

Harris and Nielsen 2013). MNMs likely have a stronger effect on

methods that look at data from many individuals across short,

allegedly nonrecombining genomic fragments that are only 1 kb

long and contain many SNPs fewer than 100 bp apart (Yang and

Rannala 1997; Gronau et al. 2011). However, our results can be

used to devise bias-correction strategies because, as illustrated in

Figure 8. Tandem mutations caused by Pol z. Black bars plot the fre-
quencies of specific tandem mutations observed by Stone and coworkers
in yeast deficient in nucleotide-excision repair machinery. Each mutation
type is pooled with its reverse complement because there is no way to
know on which DNA strand a mutation occurred. The two mutations
GC ! AA and GA ! TT account for >60% of all tandem mutations ob-
served by Stone and coworkers (Stone et al. 2012). As shown in gray, these
are also the two most common types of mutations occurring at adjacent
sites of the 1000 Genomes data in perfect LD.

Figure 9. Linked derived AA/TT allele pairs in the 1000 Genomes data.
After observing that a high fraction of yeast MNMs had homogeneous
AA/TT derived allele pairs, we tabulated the frequencies f

ðLDÞ
AA ðLÞ of AA/TT

derived allele pairs among perfect LD SNPs L bp apart in the 1000 Ge-
nomes data. For comparison, we also plot f

ðnon�LDÞ
AA ðLÞ, the frequency of

AA/TT derived allele pairs among SNPs not in perfect LD. This fraction is
consistently lower than f

ðLDÞ
AA ðLÞ and does not decrease with the distance

between SNPs.
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Figure 3, it is straightforward to estimate the probability that

a given pair of linked SNPs is an MNM. This also has the potential

to improve the accuracy of phylogenetic tree branch length es-

timation and molecular-clock-based inferences, as well as dN/dS
estimation, and their associated measures of statistical confi-

dence. Our results are also relevant to the interpretation of evi-

dence that genetic variation is being maintained by balancing

selection—such evidence typically involves short loci with

closely spaced linked SNPs (Charlesworth 2006; S�egurel et al.

2012; Leffler et al. 2013).

A topic worth further investigation is the possibility of local

variation in the rate of MNMs. If most MNMs are caused by error-

prone polymerase activity, it is likely that high error-prone poly-

merase traffic should elevate rates of MNMs and simple point

mutations in the same genomic regions. Both MNMs and point

mutations in these regions might be subject to elevated trans-

version rates, and it will be important to separate the two classes of

mutations to accurately study local variation of the transition/

transversion ratio as in Seplyarskiy et al. (2012). Seplyarskiy and

coworkers reported that the transition/transversion ratio k appears

depressed in the neighborhood of all human SNPs, even transi-

tions, but we found that the apparent depression of k in the

neighborhood of transitions disappears when SNPs in perfect LD

are excluded from the analysis (Supplemental Fig. S7).

MNMs have the potential to accelerate evolution by quickly

changing several amino acids within a single gene (Schrider et al.

2011). Our results indicate that they also have the potential to

increase both sequence homogeneity and A/T content. There is ev-

idence that repetitive sequences experience more indels and point

mutations than sequences of higher complexity (McDonald et al.

2011), possibly due to the recruitment of error-prone polymerases,

giving MNM extra potential to speed up local sequence evolution

by triggering downstream mutations. We are hopeful that more

details about this process can be elucidated by studying the spatial

and allelic distributionofMNMs. In thisway, population sequencing

data could provide new information about the biochemistry of DNA

replication, e.g., providing away tomeasure the activity of Pol z over

evolutionary time. Pol z is tightly regulated in embryonic and

adult cells because over- and underexpression can each be harmful;

excess error-prone DNA replication increases the genomicmutation

rate, but impaired translesion synthesis ability can lead to replica-

tion fork stalling, DNA breakage, and translocations that are more

harmful than point mutations (Waters and Walker 2006; Waters

et al. 2009; Northam et al. 2010; Ogawara et al. 2010; Lange et al.

2011). An important avenue for future work will be to assess

whether different eukaryotes incur different levels of MNM because

of changing evolutionary pressures being exerted on error-prone

DNA replication activity throughout the tree of life.

Methods

Data summary and accession
We performed all of our analyses on SNP calls that were generated
by the 1000 Genomes Project Consortium using joint genotype
calling on 23–63 whole genome coverage of 1092 humans
sampledworldwide (The 1000 Genomes Project Consortium 2012).
All sequences were mapped to the human reference hg19. To
determine ancestral alleles, we downloaded alignments of hg19 to
the primate genomes panTro2 (chimpanzee), ponAbe2 (orangu-
tan), and rheMac3 (rhesus macaque) from the UCSC Genome
Browser.

Ascertainment of SNP pairs from the 1000 Genomes Phase I
data

Let S(L) be a count of SNPs that are polymorphic in a pair of hap-
lotypes and lie L bp apart with their derived alleles on the same
haplotype. Similarly, let D(L) be a count of SNPs with derived al-
leles that lie on opposite haplotypes. To measure S(L) and D(L)
precisely from the 1000 Genomes data, we used a stringent pro-
cedure for ancestral identification, utilizing only sites that had the
same allele present in chimp, orangutan, and rhesus macaque. For
each pair p of SNPs L bp apart satisfying this criterion and passing
the four-gamete test (to avoid confounding effects of recom-
bination and sequencing error), we counted the number of hap-
lotypes NAA(p) carrying the ancestral allele at both sites, the
numberNAD(p) carrying the ancestral allele at only the first site, the
numberNDA(p) carrying the ancestral allele at only the second site,
and the number NDD(p) with both derived alleles. Singletons are
excluded because they cannot be phased. Combining this in-
formation across the set P(L) of SNP pairs L bp apart, we obtain
counts

SðLÞ= +
p2PðLÞ

NAAðpÞ3NDDðpÞ ð2Þ

and

DðLÞ= +
p2PðLÞ

NADðpÞ3NDAðpÞ ð3Þ

as desired.
The quantity S(L) � D(L) has been used as an estimate of the

number of MNMs lying L bp apart. Since two simultaneous mu-
tations should always lie in perfect LD, S(L) � D(L) should, in
theory, always be smaller than the following count of perfect-LD
same lineage pairs:

SLDðLÞ= +
p2PðLÞ

NAAðpÞ3NDDðpÞ31ðNAD =NDA =0Þ: ð4Þ

Figure 10. Average r2 LD correlations between 1000 Genomes SNP
pairs. The correlation coefficient r2 between allele frequencies at neigh-
boring sites is often used to measure the decay rate of genealogical corre-
lation with genomic distance. However, we have seen that multinucleotide
mutation creates excess LD compared to the expectation under in-
dependent mutation. We computed the average r2 across all SNP pairs
L bp apart on chromosome22, then corrected this value for the presence of
MNM. r2MNM is lower at a distance of 1 bp than a distance of 2 bp because
of double deaminations at CpG sites that occur on separate lineages.
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To count perfect LD mutation pairs in a way that is more robust
to genotype and phasing error, we instead compute SLD(L) as
follows:

SLDðLÞ = +
p2PðLÞ

NAAðpÞ3NDDðpÞ

31

�
NAD +NDA

1092
<min

�
0:02;

2NAA +NAD +NDA

232184
;

NAD +NDA +2NDD

232184

��
: ð5Þ

This criterion is designed such that genotyping/phasing error up to
2% will not disrupt perfect LD but such that very low- or high-
frequency alleles will not be considered in perfect LDunless at least
half of the minor alleles appear in the same lineages.

We use a slightly different procedure to obtain the counts
NLD

ts ðLÞ, NLD
m ðLÞ, and NLD

tv ðLÞ that do not need to be compared to
S(L) � D(L). After dividing P(L) into transition pairs, mixed pairs,
and transversion pairs to obtain sets Pts(L), Pm(L), and Ptv(L), we
simply count the number of pairs with derived alleles that occur in
the exact same set of lineages:

NLD
t ðLÞ = +

p2Pt ðLÞ
1ðNADðpÞ =NDAðpÞ=0Þ ð6Þ

for each t 2 {ts, m, tv}. Nearby singletons are considered to be in
perfect LD if the derived alleles occur in the same diploid indi-
vidual. It is this counting procedure that we use to obtain the site
frequency spectra of perfect LD SNPs shown in Figure 6.

Simulating SNP pairs in LD under the coalescent

The simulated data used to generate Figure 1 were produced using
Hudson’s coalescent simulator ms (Hudson 2002). We simulated
2184 human haplotypes (1092 African and 1092 European) under
the demographic model published in Harris and Nielsen (2013)
that was previously inferred from tracts of identity by state in the
1000 Genomes trios. Because we were only interested in SNP pairs
separated by 100 bp or less, we simulated a total of 5.6 3 105

independent ‘‘chromosomes’’ of length 10 kb using the mu-
tation rate 2.5 3 10�8 bp�1gen�1 and the recombination rate
1.0 3 10�8 bp�1gen�1.

Estimating the contribution of MNM to new point mutations

In the 1000 Genomes data, we counted NSNP = 17,140,039
nonsingleton SNPs that met our criterion for ancestral identifi-
ability. For each pair type t, we also counted the number
Nrelaxed�LD

t ðLÞ of t-type SNP pairs L bp apart that met the relaxed
definition of perfect LD given in Equation 6. We estimate the
fraction fMNM = 0.019 produced by MNM using the following
equation:

fMNM =
2

NSNP
+

t2fts;m;tvg
+
100

L=1

Nrelaxed�LD
t ðLÞ3mtðLÞ: ð7Þ

This fraction is a lower bound because it discounts singletons and
MNMs spanning >100 bp.

Calculating r2 with a correction for multinucleotide mutation

Given two SNPs sA, sBwithmajor alleles A, B andminor alleles a, b,
let pAB, pAb, paB, and pab be population frequencies of each of the
four associated haplotypes. Let pA, pa, pB, and pb be the allele fre-

quencies at individual loci. Onemeasure of linkage disequilibrium
between the loci is the correlation coefficient

r 2ðsA; sBÞ= jpABpab � paBpAbjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pApapBpb

p :

LD decays as a function of the genetic distance between loci. It is
often useful to summarize the rate of this decay by computing the
average value of r2(s, s9) over all SNP pairs (s, s9) that occur L bp
apart. Letting S(L) denote this set of SNP pairs, we define

r 2ðLÞ = 1

jSðLÞj +
ðs1 ;s2Þ2SðLÞ

r 2ðs1; s2Þ:

To avoid averaging together the effects of MNM and linked in-
dependent mutation, it would be ideal to replace S(L) with the
number of SNPs LD bp apart that were produced by independent
pairs of mutations.

Although it is not possible to classify a SNP pair in perfect LD
as anMNMunambiguously, we can correct forMNMby estimating
the probability that each observed SNP s was generated as part of
a pair of simultaneous mutations. This probability, PMNM(s), is
calculated as a function of the nearest SNP sLD occurring in perfect
LD with s. If s is not in perfect LD with any other SNP within 1000
bp, we assume that swas generated by an ordinary point mutation
and let PMNM(s) = 0. Otherwise, letting A(s, sLD) denote the allelic
state of the pair (s, sLD) (either transitions [ts], transversions [tv], or
mixed [m]) and L denote the distance between s and sLD, we esti-
mate that PMNMðsÞ=mAðs;sLDÞðLÞ. Note that when s1 and s2 are in
perfect LD and mutually closer to one another than to any other
SNP in perfect LD,

1

2
ðPMNMðs1Þ+PMNMðs2ÞÞ=PMNMðs1Þ=PMNMðs2Þ:

After estimating PMNM(s) for each SNP s that occurs in S(L), we use
these values to compute a weighted average r2MNMðLÞ that down-
weights each SNP by the probability that it is part of a complex
mutation pair:

r2MNMðLÞ =
+ðs1 ;s2Þ2SðLÞr

2ðs1; s2Þð1� ðPMNMðs1Þ +PMNMðs2ÞÞ=2Þ
+ðs1 ;s2Þ2SðLÞ1� ðPMNMðs1Þ +PMNMðs2ÞÞ=2 :
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