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Abstract: In global climate change, improving carbon productivity holds great importance for China’s
sustainable growth. Based on panel data of 30 Chinese provinces and cities from 1997–2017, the
drivers, spatial effects, and convergence characteristics of carbon productivity in China are explored
by combining a factor decomposition framework and a spatial panel model. The findings show
that (1) China’s carbon productivity shows continuous positive growth, and the substitution effect
of capital for energy dominates this changing pattern; (2) There is a β-convergence trend and club
convergence in China’s carbon productivity, and the spatial technology spillover accelerates the
convergence rate; (3) With its accelerated industrial transformation and technological upgrading,
China’s current carbon productivity converges faster than its earlier stage, and the role of physical
capital investment has gradually shifted to suppression. In contrast, the positive push of human
capital investment has been strengthened; (4) From the perspective of the realization mechanism,
the convergence of carbon productivity in China mainly comes from the convergence of energy
restructuring and capital-energy substitution. These findings can help China narrow the inter-
provincial carbon productivity gap in terms of improving factor structure, upgrading technology, etc.,
and provide references for sustainable growth decision making in China and around the world.

Keywords: carbon productivity; growth drivers; convergence mechanism; spatial effects; environ-
mental protection

1. Introduction

In recent years, climate change issues such as extreme weather and glacier retreat have
received widespread attention from academic and political circles. Climate change and
its impacts have become one of the world’s most severe environmental problems [1]. The
large number of greenhouse gases emitted by human economic activities is the leading
cause of the global slowdown and ecological degradation. Carbon dioxide is the most
critical greenhouse gas [2,3]; governments have put forward low-carbon action plans to
meet the challenge, thus driving [4] both macroregions [5] and microenterprises to actively
explore sustainable development measures. However, the UN Emissions Gap Report 2021
states that countries’ current autonomous action contributions are insufficient to meet the
commitments of the Paris Agreement. The global temperature will still rise by a catastrophic
2.7 ◦C, which will cause irreversible damage to the global climate, and countries must
accelerate emissions reductions to keep temperature increases below 1.5 ◦C [6]. The
recent success of the 26th Conference of the Parties to the United Nations Framework
Convention on Climate Change (COP26) resulted in unprecedented commitments to protect
forests, set “net zero emissions targets,” reduce methane emissions, and accelerate green
technologies. For example, the UK supports sustainable infrastructure and revolutionary
green technologies in developing countries. France has proposed climate finance support
for developing countries, and Japan has joined a global agreement to cut methane emissions.
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Since its reform and opening-up, China’s economy has maintained rapid double-digit
growth for a long period of time, providing Chinese experience and solutions for devel-
oping countries. Environmental pollution and ecological imbalance inevitably emerged
during the industrialization process in developed Western countries, and China has now
surpassed the USA as the largest carbon emitter. China is actively participating, leading,
and contributing to global climate change prevention and control to assume its significant
power to reduce emissions and strengthen climate change action [7]. As the largest de-
veloping country, the income level of Chinese residents is still far from that of developed
countries, and the choice of intensity emission reduction is in line with the development
vision of shared prosperity for its citizens. Before COP15 in Copenhagen, the Chinese
government announced a 40–45% reduction in carbon dioxide emissions per unit of GDP
(carbon intensity) by 2020 compared to 2005. In 2020, at the Climate Ambition Summit,
President Xi Jinping further proposed a voluntary reduction target of more than 65% of CO2
emissions per unit of GDP by 2030 compared to 2005. By the end of 2020, China’s carbon
intensity had fallen by 48.4% compared to 2005, exceeding the autonomous commitment
target and reducing cumulative CO2 emissions by about 5.8 billion tons, basically reversing
the rapid growth of CO2 emissions [8]. It is now widely believed that sustainable develop-
ment cannot be achieved by increasing factor inputs alone. If it reaches peak emissions by
2030, China will face enormous pressure to reduce emissions.

Carbon Productivity (CP) is a core concept in evaluating low-carbon economic de-
velopment [9] and is another core indicator of sustainable economic growth, after labor
productivity and capital productivity. The McKinsey Global Institute report The Carbon
Productivity Challenge: Stemming Global Change, Sustaining Economic Growth states that
successful climate change action must support the goals of stabilizing greenhouse gases
and sustaining economic growth, i.e., there must be a significant increase in total GDP
output per unit of carbon equivalent emissions. Therefore, improving carbon productiv-
ity is an effective way to achieve coherence between emissions reductions and economic
growth [10,11], and thus an essential basis for governments to formulate long-term sustain-
able development policies. For a long time, research on economic growth has focused on
labor productivity and capital productivity, while less attention has been paid to carbon
productivity for sustainable development. Will carbon productivity eventually increase
with economic growth? What are the essential factors that drive carbon productivity im-
provements? Will carbon-productivity differences between regions eventually converge?
Suppose lower-carbon-productivity regions do not spontaneously catch up with developed
areas. In that case, this will not only undermine the achievement of overall national sustain-
able development goals, but the significant economic disparities could also lead to a series
of serious social problems, such as increased energy poverty in household welfare [12].
Therefore, a solution to the above issues is vital for stabilizing growth and promoting
emission reduction. Studying the drivers of carbon productivity and the convergence
characteristics in China provides new cases and lessons for other developing countries in
the world.

The environmental Kuznets curve (EKC) literature provides a starting point for this
paper, as empirical evidence suggests that the pattern of change between carbon produc-
tivity and economic growth arises from the influence of different drivers [13,14]. Within
the sustainable growth framework, data envelopment analysis (DEA) is widely used to
better reveal the relationship between drivers and output growth [15]. Evidence of eco-
nomic convergence and the spatial panel data approach suggests the possibility of carbon
productivity convergence and the significant effect of spatial dependence [9,16]. Based on
the evidence from the EKC literature, this leads to the research question of this paper. We
attempt to provide a new analytical framework and Chinese experience for sustainable
growth decisions under global energy conservation and emission reduction by integrating
factor decomposition techniques and convergence analysis methods to study the carbon
productivity problem in China. Therefore, this paper aims to achieve the following three
objectives: (1) to integrate a comprehensive decomposition framework to account for
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the growth of the main drivers of carbon productivity in China; (2) to construct a car-
bon productivity convergence equation based on economic growth theory to examine the
convergence characteristics and driving mechanisms of regional carbon productivity in
China; and (3) to introduce geographical factors into the convergence equation to explore
the spatial spillover effects on regional carbon productivity convergence. The follow-up
structure of this study first presents a literature review to track the latest research progress
on related issues. Second, a normative research framework is proposed to explain the
research methodology and data situation. Again, the study results are presented in layers
and fully discussed according to the empirical specification. Finally, the study reports the
main conclusions, policy recommendations, and outlook for future research.

2. Literature Review
2.1. Carbon Productivity and Economic Growth

The existing literature does not provide direct evidence of the relationship between
carbon productivity and economic growth. Since carbon productivity is precisely the
ratio of output to emissions, a logical starting point for this paper can be established
from the literature that explores the relationship between carbon emissions and economic
growth. Therefore, the literature on the relationship between carbon productivity and
economic growth can be traced back to the study of the EKC hypothesis [17]. The EKC
hypothesis supports the inverted U-shaped relationship between economic growth and
CO2 emissions [18]. Still, some evidence also suggests a linear relationship between the two,
and suggests that the positive effects of structural changes in the economy and technological
progress on emission levels persist [19]. Since there is a certain inverse correspondence
between carbon emissions and carbon productivity, it is easy to see from the differences in
studies in the early literature that the pattern of time variation in the relationship between
carbon productivity and economic growth is not certain.

In a recent study, an empirical test based on a larger sample provided strong evi-
dence for the EKC hypothesis of the relationship between carbon emissions and economic
growth, by estimating a panel smooth transition regression model for 40 countries over
the period of 1994–2016 [20]. By using a simplified form of the application model, this
literature supported the EKC hypothesis for developed economies [21], upper-middle-
income economies [22], and emerging economies [23]. In addition, there is also literature
that validated the N-shaped curve hypothesis and identified a more complex nonlinear
relationship between carbon emissions and economic growth [24]. From this perspective,
the latest study also further described that the EKC hypothesis was not rejected [25,26].
However, a study based on time series data at the individual country level provided little
evidence for the EKC hypothesis for the Arctic countries [27].

The available studies more and more strongly support a nonlinear relationship be-
tween carbon emissions and economic growth. Due to the advantages of energy struc-
ture [13,28], financial markets [20,29], and technology levels [14,30], the evidence of de-
coupling between the two mainly comes from countries with higher income levels [31].
This also implies that the inverted U-shaped relationship between carbon emissions and
economic growth estimated by panel data is not necessarily applicable to individual coun-
tries, as the development characteristics of low-income countries on the left of the inflection
point cannot be effectively captured, which further strengthens the necessity of additional
research on similar characteristics and even specific countries or regions [32]. Therefore,
the identification of complex time-varying patterns may be further facilitated by decompo-
sition accounting for carbon emission drivers. If there is an inverted U-shaped relationship
between carbon emissions and economic growth, then carbon productivity will show a
pattern of slow growth followed by rapid growth in change. A more complex nonlinear
relationship reveals a reconnected form of carbon productivity and economic development.
In this paper, the following research hypothesis is formulated using carbon productiv-
ity as the subject of study, in conjunction with the empirical evidence provided by the
above literature.
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Hypothesis 1 (H1). China’s carbon productivity growth exhibits a nonlinear pattern of change.

2.2. Drivers of Carbon Productivity

The existing literature most often uses parametric regression and nonparametric
decomposition to identify drivers of carbon productivity.

Parametric regressions are mainly based on parametric tests of econometric models,
which analyze the impact of relevant factors on carbon productivity. Numerous studies
have shown that industrial development’s effects on carbon productivity are heterogeneous
and do not behave precisely in different countries or regions. For example, the concrete in-
dustry in Canada [33], the metallurgical industry in China [34], and industrial development
in Pakistan [35] are inefficient, and the extensive growth of these industries hurts carbon
productivity improvement. In China’s Yangtze River Delta region, industrial development
was efficient, and industrial growth facilitated provincial carbon productivity improve-
ments [36]. In addition, previous studies supported the EKC hypothesis of the relationship
between urbanization and carbon productivity in developing countries. They suggested
that urbanization in developing countries was still decreasing carbon productivity and
increasing carbon emissions [37]. However, a recent study indicated that urbanization in
China has brought about concentrated energy use and technological advances, thereby
increasing carbon productivity while decreasing carbon emissions [38]. Admittedly, any
increase in GHG emissions will affect the development of technologies aimed at GHG
reduction [39]. Therefore, technological progress becomes a significant factor in reducing
energy intensity [40,41]. With the widespread use of spatial measurement techniques, a
growing body of literature has intensified the examination of spillover effects in analyz-
ing factors influencing carbon productivity. A recent study using spatial panel data for
17 Chinese provinces showed that the slow increase in carbon productivity had a significant
spatial spillover effect. The patterns of industrial development and urbanization affecting
carbon productivity were homogeneous and mimicked each other across the 17 provinces
studied [42]. Another similar study used the panel data of 30 provinces in China to identify
the multiple effects of GDP, urbanization rate, industrial structure, energy structure, energy
intensity, technological innovation, openness, and foreign direct investment on carbon
productivity. It argued that economic and energy-related emission reduction measures
were still the key to achieving Chinese provinces’ carbon intensity emission reduction
targets [43].

Nonparametric methods often use exponential decomposition analysis (IDA) to sep-
arate the drivers of carbon productivity. Among them, the log-averaged Divisia index
(LMDI) method is the most widely used in practice, for its advantages of leaving no residu-
als, simplifying interpretation, and consistency of decomposition formulas [44]. The LMDI
method was used for a study on the manufacturing industry in Latvia to decompose the
change in total CO2 emissions into five different factor effects: industrial activity, structural
change, energy intensity, fuel mix, and emission intensity. Further analysis showed that
increased energy-intensive industrial activity could largely offset the positive effects of
improved energy efficiency and decarbonization measures [45]. The literature combined
the LMDI approach with a spectral clustering approach to describe the spatial and temporal
differences in industrial CO2 emission factors across 30 Chinese provinces. Energy intensity
and GDP per capita played a dominant role in suppressing and promoting industrial CO2
emissions [46]. By considering the accounting principle of electricity transfer consumption,
a study estimated the carbon productivity of the Chinese electricity industry. It decom-
posed the LMDI of electricity carbon productivity based on regional and industry demand
perspectives. The analysis concluded that the environmental and economic efficiency of the
electricity industry, although negative, had a more significant impact on scale effects than
technology effects on other industries [47] In addition, a recent study further explored the
growth potential of carbon productivity across Chinese provinces based on conventional
decomposition analysis combined with cluster analysis, and revealed that policymak-
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ers should focus on optimizing the industrial structure and reducing energy intensity to
promote sustainable development, and fully consider regional heterogeneity [48].

Although the existing literature has made many valuable explorations into the drivers
of carbon productivity, the economic mechanisms and policy interface are not sufficiently
discussed. A complete accounting framework reveals that the drivers’ contributions are
still lacking. The IDA method contains information that factor effects overlap, and it is
difficult to provide a reasonable economic explanation for carbon productivity changes [49].
In recent years, nonparametric methods based on DEA have also been more widely used in
environmental efficiency evaluation. Carbon emissions are considered input factors [15] or
undesired outputs [50] in DEA models, and the optimal solution of the model is usually
used to measure carbon efficiency [51]. Based on the multiperiod efficiency indices of
different production technology DEA models, total factor productivity (TFP) can also be
calculated by constructing productivity indices. It can be easily decomposed into technical
efficiency, scale efficiency, and technological progress [52,53]. For the DEA model in
the literature with a single-period production technology as the reference, technological
progress is not continuously comparable within the time series [54], which can easily lead
to misjudging the pattern of productivity change influenced by the drivers. In addition,
some DEA literature that introduces carbon emission constraints still refers to efficiency
indices as carbon productivity, which is not conducive to the essential distinction between
“single-factor” and “full-factor” productivity measures [9]. Although single-factor carbon
productivity does not consider the capital, labor, and other factors [55], the input–output
principle allows for linkages between factors. Total factor productivity as a driver of single-
factor carbon productivity is the focus of this paper. Based on the above analysis, the
following research hypotheses are proposed:

Hypothesis 2 (H2). Capital-to-energy substitution dominates the pattern of carbon productivity
change in China, and the role of total factor productivity is not sufficient.

Hypothesis 3 (H3). The asynchrony of capital-to-energy substitution is the main reason for
China’s regional differences in carbon productivity.

2.3. Convergence Analysis of Carbon Productivity

A basic consensus is that economic convergence originates from productivity con-
vergence under knowledge spillovers in the study of growth convergence. In academic
discourse, neoclassical growth theory assumes that differences in per capita income and
capital will disappear as the economic growth rate declines and the economy eventually
stabilizes. Endogenous growth theory argues that there are spillover effects of intellectual
and human capital accumulation in economic growth, and that low-productivity countries
rely mainly on latecomer advantages to catch up with high-productivity countries [56].
In recent years, global warming and energy shortages have received increasing attention,
and the evolutionary trends and convergence analysis of carbon emissions and carbon
productivity have become a research hotspot. In the context of global emission reduction,
countries aim toward economic growth with minimal carbon equivalent consumption,
and question whether sustainable development will be stabilized by diminishing marginal
returns. Convergence of energy productivity provides the initial empirical evidence that
countries or regions with lower initial levels have relatively higher growth rates [57].

The literature on the convergence of sustainable growth can be divided into two lines.
The first uses the traditional parametric approach to test for absolute, conditional, and
stochastic convergence. The literature that tests the carbon convergence hypothesis using
pairwise and club convergence tests shows that club convergence occurs in many countries,
while CO2 emissions diverge in pairwise tests [58]. Per capita, carbon emissions and carbon
intensity show convergence within World Bank member countries, with carbon emissions
relatively stable and converging at a lower rate than carbon intensity [59]. Panel data
estimates for a sample of Chinese cities also supported the carbon per capita convergence
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hypothesis but with more remarkable persistence in the towns with lower carbon per capita
emissions, greater mobility in the towns with higher carbon per capita emissions, and
significant differences in the dynamics of carbon per capita emissions across geographic,
income, and environmental policy groups [60]. Panel data tests for a 50-state U.S. sample
further validated the conditional convergence of per capita carbon emissions and the
existence of multiple club convergences based on industry segmentation [61]. Recent
literature examined the impact of spatial effects on sustainable growth convergence. For
example, provincial carbon intensity convergence in China is supported by tests of spatial
panel data models, where dynamic panel data models converge at a higher rate than cross-
sectional regression models, and spatial panel data models converge at a higher rate than
nonspatial models [16]. Another study used a similar approach to test the convergence of
total factor productivity, including carbon emissions. The results showed that total factor
productivity exhibited conditional spatial convergence and club convergence, and that
agglomeration externality was essential for increasing carbon productivity and achieving
convergence [9]. In addition, some of the literature used nonparametric methods to study
the dynamic distribution of sustainable growth. For example, recent literature tested
using spatial Markov transfer probability matrices, and found club convergence in the
carbon efficiency of Chinese cities [62]. A static test using Fourier functions to assess the
convergence of CO2 emissions found that emissions are converging in most countries,
independent of national development patterns [63].

There is already considerable literature that has explored the environmental con-
vergence hypothesis to some extent. However, further research on carbon productivity
convergence is yet to provide additional empirical evidence. Although some of the litera-
ture has noted the influence of spatial variation on the convergence characteristics of carbon
emissions, the examination of spatial factors of carbon productivity convergence is still
missing. On the other hand, technological progress in one economy may be transmitted
to other economies, meaning that the closed economy assumption of neoclassical growth
theory may be invalid. Moreover, from an econometric perspective, spatial dependence
can lead to unreliable statistical inferences if spatial spillover effects exist and are ignored.
Based on the above analysis, the following research hypotheses are proposed.

Hypothesis 4 (H4). There are overall convergence and club convergence characteristics of carbon
productivity growth in China.

Hypothesis 5 (H5). The spatial spillover effect further increases carbon productivity’s convergence
rate.

Hypothesis 6 (H6). The drivers play different roles in achieving carbon productivity convergence.

From a review of the above literature, it is easy to find that the uncertainty in the
pattern of carbon productivity change mainly comes from the differential influence of the
relevant drivers. These drivers’ differences also determine the mechanism of achieving
regional carbon productivity convergence. While exploring carbon productivity changes,
drivers, and convergence trends in isolation provides limited evidence for sustainable
growth, a convergence factor decomposition and convergence analysis framework appears
to provide richer empirical evidence and insights for decision making. Therefore, the
following extensions are attempted in this paper to enrich the existing literature: first,
construct a DEA decomposition framework that can reflect the growth mechanism by
unifying factor substitution, total factor productivity, and single-factor carbon productivity,
and then account for the contribution of drivers to carbon productivity improvement.
Second, we construct a convergence equation for carbon productivity based on panel data,
introduce spatial dependence to test the regional data of China, and then analyze the
impact of spillover effects on the rate of convergence and growth potential. Finally, we
integrate the power decomposition and convergence equation to further explore the impact
of drivers on the intersection of carbon productivity and growth potential.
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3. Research Methodology and Data Description
3.1. Power Decomposition Framework of Carbon Productivity

Carbon productivity is defined as the GDP output per unit of carbon equivalent
emissions in a certain period. Since different types of energy consumption can estimate
carbon equivalent emissions, and energy consumption per unit of emissions reflects the
influence of energy mix, we further isolate the energy mix based on the defining equation,
which can be obtained as:

CPt =
Yt

Ct
=

Et

Ct
× Yt

Et
= ESt × YEt (1)

In Equation (1), CP is carbon productivity, Y is GDP, C is carbon equivalent emissions,
and E is fossil energy consumption. ES is the energy consumption per unit emission,
reflecting the influence of energy structure on carbon productivity; YE is the GDP per unit
energy consumption output, which is the energy productivity. According to the production
theory, energy productivity can form an output relationship with the unit energy factor
input. Thus, the effects of factor accumulation and total factor productivity can be further
separated. The global DEA model is used in this paper to ensure the continuity and stability
of the decomposition of technological progress. KE and LE denote the capital input and
labor input per unit of energy consumption, respectively, and Dg

c is the distance function of
output direction under the constant payoff of scale (CRS). Then, the global optimal energy
productivity of the production unit in period t is from YEt = YEt × Dg

c (KEt, LEt, YEt).
Further, the decomposition formula of drivers is obtained as follows:

YECt+1
t =

YEt+1

YEt
=

Dg
c (KEt, LEt, YEt)

Dg
c (KEt+1, LEt+1, YEt+1)

× YEt+1(KEt+1, LEt+1)

YEt(KEt, LEt)
= TFPt+1

t × XECt+1
t (2)

In Equation (2), YEC and TFP denote GDP growth and total factor productivity change
per energy consumption unit, respectively. Since the factor input per unit of energy
consumption reflects the substitution relationship of capital and labor for energy input,
XEC is called the factor substitution effect here. According to the principle of DEA model
solving, Dg

c is known that the inverse reflects the global technical t efficiency of a given
production unit in the first period. Total factor productivity is thus defined as the ratio of
global technical efficiency of two adjacent periods, while the factor substitution effect is
defined as the optimal output. Further dynamizing Equation (1) and bringing Equation (2)
gives the following decomposition:

CPCt+1
t =

CPt+1

CPt
=

ESt+1

ESt
× YEt+1

YEt
= ESCt+1

t × TFPt+1
t × XECt+1

t (3)

CPC and ESC denote carbon productivity change and energy mix change, respectively.
Equation (3) shows that three mechanisms mainly drive carbon productivity growth: first,
energy structure optimization, i.e., the reduction in carbon emissions due to the substitution
of low-carbon energy for high-carbon energy; second, total factor productivity growth, i.e.,
the increase in energy production due to the improvement of global technical efficiency in
two adjacent periods; third, the factor substitution effect, i.e., the change in global optimal
unit productivity due to the substitution of capital and labor for energy under the same
technological conditions.

Combining single-period DEA with global DEA, TFP can be further decomposed
into technological progress changes and technical efficiency changes. Let Dt

c be the CRS
output distance function of the technical reference set for a single period, thus defining
technological progress as the ratio of the relative distances of a given production unit to the
single-period frontier and the global frontier, while technical efficiency is still defined as
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the ratio of the single-period technical efficiencies of the two adjacent periods, calculated
as follows:

TPCt+1
t =

Dg
c (KEt, LEt, YEt)

Dt
c(KEt, LEt, YEt)

/
Dg

c (KEt+1, LEt+1, YEt+1)

Dt+1
c (KEt+1, LEt+1, YEt+1)

(4)

TECt+1
t =

Dt
c(KEt, LEt, YEt)

Dt+1
c (KEt+1, LEt+1, YEt+1)

(5)

TPC and TEC denote the change in technical progress and the change in technical
efficiency, respectively, TFP = TPC × TEC. Since factor substitution includes the substi-
tution of capital and labor for energy, it can still be further decomposed into the capital
substitution effect (denoted as KEC) and labor substitution effect (denoted as LEC) in the
global DEA framework. To avoid the uncertainty of the fixed factor reference, the geometric
mean under the two-period consideration was chosen to respectively measure the capital
substitution effect and labor substitution effect in this paper, and we have:

KECt+1
t =

√
YEt+1(KEt+1, LEt+1)

YEt+1(KEt, LEt+1)
× YEt(KEt+1, LEt)

YEt(KEt, LEt)
(6)

LECt+1
t =

√
YEt+1(KEt+1, LEt+1)

YEt+1(KEt+1, LEt)
× YEt(KEt, LEt+1)

YEt(KEt, LEt)
(7)

According to the nature of the metafrontier DEA model, production units with the
same combination of factor input have the same output projection in the frontier, i.e.,
YEt(KEt+1, LEt) = YEt+1(KEt+1, LEt) and YEt(KEt, LEt+1) = YEt+1(KEt, LEt+1). The
product of the two equals the total effect of factor substitution (XEC) and is easily verifiable.
Carbon productivity growth is mainly driven by the factor substitution effect and the total-
factor productivity. The former includes low-carbon energy substitution, capital energy
substitution, and labor energy substitution, and the latter contains technical progress and
efficiency improvement. Therefore, by plugging the decomposition equations of total-factor
productivity and factor substitution effect into Formula (3), the decomposition equation of
the quintuple growth drivers of carbon productivity can be obtained as below:

CPCt+1
t = ESCt+1

t × TPCt+1
t × TECt+1

t × KECt+1
t × LECt+1

t (8)

It is easy to see that the change in carbon productivity is mainly driven by the energy
structure effect, technological progress change, technical efficiency improvement, capital
substitution effect, and labor substitution effect. Based on the above decomposition frame-
work, growth accounting for carbon productivity changes in a country or region can be
performed to assess the pattern of temporal changes dominated by the contributions of
different factors.

3.2. β-Convergence Model of Carbon Productivity

Convergence models derived from economic growth theory can examine whether
economic variables in different regions have normal and other steady states, i.e., whether
lagging areas can catch up with the trends in developed areas. Common steady-state
convergence is often referred to as absolute β-convergence. In contrast, different steady-
state convergence is conditional β-convergence when considering the impact of differences
in resource endowments and technological conditions between regions on steady-state
equilibrium. We use the Mankiw–Romer–Weil (MRW) convergence model [64] as the basis,
and first construct the following carbon productivity convergence model:

ln
(

CPi,t

CPi,t−1

)
= α + β ln(CPi,t−1) + ϕ ln(Si,t) + εi,t, εit ∼ N

(
0, σ2

)
(9)
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where ln(CPi,t/CPi,t−1) = ln(CPCi,t) denotes the i growth rate of regional carbon produc-
tivity in two periods, and there is a log-transformation CPCi,t relationship with that in
the decomposition model above. ln(CPi,t−1) denotes the logarithm i of the initial carbon
productivity level of the region, then ln(Si) is the logarithm of the effective depreciation
rate of capital in the corresponding region. α is a constant term, and the random ε, error
assignment, follows a normal distribution. When β, the coefficient, is less than 0, it indicates
that the carbon productivity in less-developed regions grows faster than that in developed
areas, and there is a convergence trend during the study period. When the differences in
regional endowment factors are ϕ = 0 not considered, i.e., Equation (9) examines β the
absolute convergence, otherwise, β is the conditional convergence.

Based on the proof of the MRW model, β it is clear that the parameters are defined by
an exponential decay function, i.e.,

β = e−vt − 1 (10)

In Equation (10), v is the rate of convergence and t is the period interval examined.
If the parameter takes the values −1 < β < 0 falling in the gap, this implies that carbon
productivity can converge directly to a steady state without oscillation. Thus, according
to the speed of convergence implied of β by the parameter, we can easily calculate the
regression results for v = − ln(1 + β)/t.

The traditional literature ignores the spatial dependence of carbon productivity, lead-
ing to bias in estimation convergence models. The resource endowments and market
conditions of neighboring provinces are generally more similar, factor flows and techno-
logical cooperation between regions will be adequate, and carbon productivity exhibits
significant spatial clustering characteristics. Therefore, it is necessary to adopt a spatial
panel model to revise the traditional convergence model, and we start from a spatial Durbin
model (SDM) of panel data.

ln(CPCt) = α + βln(CPt−1) + ϕln(St) + ρWln(CPCt−1)
+γWln(CPt−1) + θWln(St) + εt

(11)

For the convenience of writing, the subscripts of the variables in Equation (11) are
omitted to represent them in matrix and vector form. Among these, the W matrix is used
to describe the dependence between regions, and the commonly used spatial adjacency
weight matrix (Hainan is adjacent to Guangdong) was chosen here. W, the product with
the relative variables, represents the spatial lag term, and the other variables are defined
the same as in Equation (9). It is easy to see that the SDM simultaneously examines the
spatial association and mutual influence of carbon productivity and effective investment
rate between regions. When the spatial lag parameter γ sum θ is zero, the SDM model
degenerates to a spatial lag model (SLM), which means that the growth of carbon produc-
tivity comes only from the spatial spillover effect of the dependent variable. In addition,
the unidentifiable spatial effects can be further degraded to a spatial error model (SEM) by
attributing them to random error shocks if all spatial lag terms are insignificant, i.e.,

ln(CPCt) = α + βln(CPt−1) + ϕln(St) + µt
µt = λWµt + εt

(12)

In Equation (12), µt is the random error term for the presence of random spatial effects,
and εt is the same, subject to the normal distribution.

Further, the spatial convergence mechanism of carbon productivity can be further
tested by combining the power decomposition Equation (8) and the spatial convergence
Equation (11). Substituting ln(ESC), ln(KEC), ln(LEC), ln(TPC), and ln(TEC), these de-
note the energy structure effect, capital substitution effect, labor substitution effect, technical
progress effect, and technical efficiency improvement, respectively. The corresponding
growth rate forms are obtained by taking the logarithm according to the decomposition
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equation. Replacing in Equation (9), ln(CPC) as the spatial convergence equation with the
five major driving factors as the explanatory variables is further set. As a result, the set
of joint cubic equations based on the decomposition model extension constitutes a more
rigorous fully mediated effects model, and the following relationship exists between the
explanatory variables of the different convergence equations β, as well as the regression
coefficients, i.e.,

ln(CPC) = ln(ESC) + ln(KEC) + ln(LEC) + ln(TPC) + ln(TEC) (13)

βCPC = βESC + βKEC + βLEC + βTPC + βTEC (14)

Thus, by examining the magnitude and direction of the parameters of each driver
around the ln(CPi,t−1), the initial level of carbon productivity can be used to assess the
specific mechanisms by which carbon productivity convergence is achieved. In order to
provide the accuracy of parameter estimation, quasi-maximum likelihood (QML) estimation
is used for the spatial convergence model [65].

3.3. Variable Selection and Data Description

According to the guidelines developed by the United Nations Intergovernmental Panel
on Climate Change (IPCC), the reference method accounts for fossil energy production sites.
Still, many primary energy sources do not enter final consumption, resulting in severe risk
of overestimation [66], so this paper chooses those fossil energy carbon emissions accounted
for by the sectoral method. Based on data availability and consistency, 30 provinces, au-
tonomous regions, and cities in China, with the exceptions of Tibet and Hong Kong, Macao,
and Taiwan, were selected for the study during 1997–2017, with output as GDP, energy as
total consumption, and labor as total social employees. Capital was physical capital stock
and was estimated using the perpetual inventory method, which was extended to 2017
following the classical literature [67]. The underlying data are obtained from the China
Statistical Yearbook, China Energy Statistical Yearbook, provincial statistical yearbooks,
and the China Carbon Accounting Database (CEADs) for previous years. Considering that
fossil energy is not fully converted into CO2, the direct use of CO2 emission coefficients is
likely to cause estimation bias, so we used uniform carbon equivalents and reconstructed
them according to provincial CO2 emission inventories; GDP and physical capital stock
were adjusted to compare prices in 2000, and individual missing data were completed by
linear interpolation.

Regarding economic growth theory, the logarithm of the ratio of capital investment
rate to effective depreciation rate (g + δ) was chosen as the control variable in this paper,
and ln Sk and ln Sh were logarithms of the effective investment rate of physical capital and
the effective investment rate of human capital, respectively. The physical capital investment
rate was measured as the share of GDP’s total fixed capital formation. The human capital
investment rate used the share of the population with a high school education or above in
the 15–19 age group as a proxy variable [64], g as the GDP growth rate, and δ still used the
results measured in the classical literature [67]. Corresponding data were obtained from the
China Statistical Yearbook and the China Human Capital Index Report database (CHLR)
for previous years. The main variables and their measures are summarized in Table 1.
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Table 1. Variable descriptions and measurements.

Variable Symbol Unit Description of Indicator

Carbon productivity CP CNY 10 K/ton C The ratio of GDP to carbon equivalent emissions

Energy Productivity YE CNY 10 K/tce The ratio of GDP to standard coal energy
consumption

Capital energy substitution KE CNY 10 K/tce The ratio of total capital input to total energy
input

Labor energy substitution LE Person/tce The ratio of total labor input to total energy input

Energy consumption structure ES tce/ton C The ratio of total energy consumption to total
carbon emissions

Effective investment rate of
physical capital Sk / The ratio of fixed asset investment rate to the

effective depreciation rate
Effective investment rate of

human capital Sh / The ratio of investment rate in human capital to
effective depreciation rate

4. Empirical Results and Discussion
4.1. Accounting for Carbon Productivity Growth

Based on the actual GDP and carbon equivalent emissions of the sampled provinces,
we first calculated the carbon productivity of the whole country and the three regions
of East, West, and Central China by summing the provinces (see Figure 1). Overall, the
national carbon productivity level showed a continuous positive growth trend, increasing
from CNY 0.99 K/ton in 1997 to CNY 2.30 K/ton in 2017, with an average annual growth
rate of 4.7%. China’s carbon productivity experienced a brief decline during 2002–2005,
before the growth rate became faster, mainly due to China’s policy of energy-intensity-
constrained emission reduction targets for the provinces in 2006. The implementation of
the intensity reduction policy accelerated the growth rate of carbon productivity in each
province, so the curve rose more significantly afterward. The carbon productivity of the
three major regions of East, Central, and West has kept rising in tandem with the whole
country, with 1.24, 0.78, and CNY 0.77 K/ton in 1997 and increasing to CNY 2.92, 2.04,
and 1.55 K/ton in 2017, respectively. The Central region (5.3%) had the fastest average
annual growth rate, while the East region (4.8%) was slightly above the national average,
and the West region (4.2%) had the lowest. It is also easy to see from Figure 1 that the
carbon productivity gap between the East and Central regions tended to narrow year by
year. Still, the gap between the West and the other two regions significantly widened, and
further statistical tests are needed to verify whether the regional carbon productivity in the
country is converging or diverging. In addition, the pattern of temporal changes in carbon
productivity does not show a clear linear trend, either nationally or in the East, Central, and
West regions. It seems to indicate a flatter N-shaped relationship considering the previous
short-term decline, but this is all inconsistent with the EKC hypothesis based on multi-
country data validated in the literature [21–23]. The U-shaped relationship revealed by the
panel data may not apply to a specific country or region [27]. Nevertheless, both curves
are well above the linear trend with a goodness-of-fit of more than 0.9, which provides
evidence of a nonlinear pattern of carbon productivity changes, and hypothesis 1 cannot be
rejected. To focus on the highlights, we do not explore further the applicability of more EKC
curve-fitting methods but turn to the analysis of the characteristics of carbon productivity
changes and regional differences due to the drivers.

Based on the previous decomposition framework, we calculated the contribution of
carbon productivity drivers for each province for each calendar year. The annual average
changes in carbon productivity and its drivers were calculated here for the whole country
and the East and West, using the GDP of each province as the weight, and are plotted
in Figure 2. On average, national carbon productivity was mainly driven by the capital
substitution effect (5.5%), followed by the energy structure effect (0.8%), with technological
progress showing no significant positive or negative impact, and the labor substitution effect
(−0.8%) and technical efficiency improvement (−1.0%) having an average suppressive
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effect, and these empirical findings are consistent with Hypothesis 2. Carbon productivity
in the three regions was still dominated by capital-substitution episodic growth, with the
capital substitution effect far outweighing other drivers, with the highest in the Central
(6.5%), the second-highest in the West (5.8%), and the lowest in the East (4.3%). The labor
substitution effect showed different degrees of deterioration, with the most severe decline
in the western region. The energy structure effects in the East, Central, and West all showed
different degrees of positive driving effect, with average annual growth rates of 0.8, 0.9,
and 1.0 percentage points, respectively, and the speed of low-carbon energy adjustment in
the three regions was not very different. The driving effect of TFP was not fully reflected in
either the central or western regions, and the driving impact of technological progress on
sustainable growth was more significant in the East. Hypothesis 2 is further supported by
empirical evidence at the regional level.

Figure 1. Temporal trends in carbon productivity for the country as a whole and the East, Central,
and West regions.

Table 2 reports the average growth effects of carbon productivity and its drivers by
region from 1997 to 2017, accounted for by the above power decomposition model. As can
be seen, there were large regional differences in the absolute levels of carbon productivity
in China, with Fujian being the highest and Shanxi the lowest in 1997, at CNY 2.61 and
0.36 K/ton, respectively; in 2017, Beijing ranked first with an absolute level of 6.70 and
was 18.36 times higher than last place Ningxia. In terms of the average annual growth
rate, except for Ningxia, which was harmful, all other regions achieved different degrees of
positive growth, with Beijing leading the way with an average annual growth rate of 8.0%.
So, what caused the significant regional differences in China’s carbon productivity? This
can be further answered by examining the contribution of the five drivers.

The factor substitution effect was the primary determinant of regional carbon produc-
tivity growth, within which capital substitution plays a dominant role, which provides
provincial-level evidence for Hypothesis 2. The results in Table 2 show that the capital
substitution effect showed positive growth in all regions. In contrast, the labor substitution
effect decreased to different degrees. The absolute value of the one-time contribution was
much larger than that of the latter, thus making the combined impact of factor substitution
significantly positive, consistent with the parametric method’s decomposition results in the
literature [68]. The growth trajectories of the capital–energy ratio and labor–energy ratio in
all regions during the sample period fully coincide with their corresponding substitution
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effects. This result also reflects the national trend of industrial restructuring character-
ized by factor mobility, i.e., labor-intensive industries are gradually being replaced by
energy-intensive industries. Capital-intensive industries are replacing energy-intensive
sectors more and more intensely. Substituting low-carbon energy for high-carbon energy
can significantly suppress cumulative carbon emissions. Still, the difference in preference
for energy-intensive technologies makes the polarization between regions prominent [69].
Among them, 22 areas such as Beijing and Zhejiang showed positive energy structure
effects, while 8 regions such as Ningxia and Xinjiang showed negative growth. Constrained
by the national “coal-based” energy endowment, the energy structure adjustment de-
carbonization effect in most areas was much smaller than the capital substitution effect.
The contribution of technological progress and technical efficiency to carbon productivity
growth was relatively low, and the total factor productivity in most regions was smaller
than the capital substitution effect. This indicates that China’s provincial carbon productiv-
ity growth is generally characterized as capital substitution-driven. In contrast, total factor
productivity-based organic growth dynamics are significantly insufficient, with more than
half of the regions showing varying degrees of deterioration in both technical progress and
technical efficiency. Among them, Shanghai was in the leading position in technological
advancement. Chongqing had the most significant improvement in technical efficiency,
driving the average annual growth rate of carbon productivity by 1.75 and 1.43 percentage
points, respectively. In terms of interprovincial differences, the coefficient of variation (CV)
of the annual average growth rate of carbon productivity was 1.96%, with the CVs of energy
structure, capital substitution, labor substitution, technological progress, and technical
efficiency being 1.14%, 1.46%, 0.33%, 0.72%, and 1.20%, respectively. This indicates that
the difference in provincial carbon productivity growth was mainly attributed to capital
substitution, followed by technical efficiency and energy structure, with a relatively small
effect of technological progress and labor substitution, and Hypothesis 3 is confirmed.

Figure 2. Annual average levels of carbon productivity drivers for the country as a whole and the
East, Central, and West (1997–2017).
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Table 2. Annual average levels of provincial carbon productivity drivers (1997–2017).

Region CP_1997 CP_2017 CPC ESC KEC LEC TPC TEC

Beijing 1.426 6.704 1.080 1.015 1.054 0.999 1.015 0.996
Tianjin 0.922 3.658 1.071 1.009 1.051 0.996 1.012 1.003
Hebei 0.695 1.334 1.033 0.998 1.057 0.993 0.993 0.993
Shanxi 0.363 0.726 1.035 0.994 1.067 0.994 0.994 0.988

Neimenggu 0.442 0.810 1.031 1.005 1.067 0.985 1.000 0.976
Liaoning 0.687 1.759 1.048 1.006 1.055 0.992 0.999 0.997

Jilin 0.573 2.155 1.068 0.998 1.103 0.994 0.998 0.978
Heilongjiang 0.722 2.168 1.057 1.004 1.063 0.994 0.995 1.001

Shanghai 1.266 4.463 1.065 1.013 1.038 0.995 1.017 1.000
Jiangsu 1.347 2.891 1.039 0.999 1.051 0.989 0.997 1.004

Zhejiang 1.588 3.573 1.041 1.008 1.042 0.991 0.995 1.006
Anhui 0.809 1.956 1.045 0.996 1.063 0.996 0.988 1.004
Fujian 2.606 4.130 1.023 0.999 1.051 0.991 0.996 0.988
Jiangxi 1.207 2.330 1.033 1.002 1.057 0.994 0.990 0.992

Shandong 1.247 2.487 1.035 1.001 1.050 0.990 0.995 1.000
Henan 0.996 2.379 1.044 1.005 1.077 0.997 0.993 0.975
Hubei 0.800 2.659 1.062 1.020 1.067 0.991 0.994 0.990
Hunan 1.109 2.827 1.048 1.008 1.060 0.994 0.990 0.996

Guangdong 1.929 4.586 1.044 1.013 1.045 0.992 0.995 0.999
Guangxi 1.313 2.451 1.032 1.005 1.067 0.993 0.993 0.976
Hainan 2.247 2.912 1.013 1.000 1.016 0.990 0.999 1.008

Chongqing 0.983 3.507 1.066 1.026 1.041 0.989 0.994 1.014
Sichuan 0.976 3.353 1.064 1.016 1.060 0.995 0.990 1.004
Guizhou 0.419 1.086 1.049 1.007 1.072 0.995 0.991 0.985
Yunnan 1.093 2.463 1.041 1.010 1.069 0.995 0.992 0.978
Shaanxi 0.743 1.855 1.047 1.004 1.068 0.989 0.995 0.992
Gansu 0.607 1.447 1.044 1.002 1.071 0.997 0.988 0.989

Qinghai 0.667 1.236 1.031 1.016 1.059 0.988 1.000 0.970
Ningxia 0.498 0.365 0.985 0.960 1.068 0.989 0.999 0.971
Xinjiang 0.649 0.658 1.001 0.992 1.038 0.989 1.001 0.982

CV 51.58 55.03 1.96 1.14 1.46 0.33 0.72 1.20

Data source: this table is compiled by accounting; carbon productivity and driver changes are annual averages;
and the coefficient of variation (CV) is the percentage of the ratio of standard deviation to the mean.

4.2. Convergence of Carbon Productivity
4.2.1. Absolute β-Convergence Estimates

We first examined the absolute convergence estimates without adding any control
variables. To compare the applicability and robustness of different models, we started with
least-squares estimation (OLS) for mixed data and reported the estimation results for the
panel fixed effects (FE) model, panel SLM, SEM, and SDM, in turn, as shown in Table 3. The
Hausman test results show that the critical probability p-values for all four-panel models
were significant at least at the 5% statistical level, indicating that the use of individual
fixed effects models was more appropriate. In addition, from the LR test results of the
spatial panel models, the p-values were much less than 1%, indicating that the panel SDM
cannot be degraded to SLM or SEM, and it was more appropriate to use SDM for testing
the convergence of carbon productivity.

From the test results of absolute β-convergence, the OLS estimation results were
significantly biased. At the same time, the coefficients of the other four panel models were
all significant at least at the 10% statistical level, verifying the absolute β-convergence
phenomenon, and Hypothesis 4 is partially confirmed. The FE estimation results obtained
a convergence rate of 3.13%, ignoring that the spatial effect would produce a significant
bias in the convergence estimation of carbon productivity. The SLM, SEM, and SDM
estimations, which sequentially introduced the spatial lag term, obtained a convergence
rate of 3.83%, 7.19%, and 22.21%, respectively, showing a significant increasing trend and
gradually obtaining a substantial increase in statistical significance. Since there is an inverse
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transformation relationship between carbon productivity and carbon intensity, our results
are consistent with the convergence tests in the literature on carbon intensity in China [16].
There is an inter-provincial absolute β-convergence trend in carbon productivity. The
spatial model estimates have a higher convergence speed than the nonspatial model, and
Hypothesis 5 is partially confirmed.

Table 3. Absolute β-convergence estimation results of carbon productivity.

Variables (1) OLS (2) FE (3) SLM (4) SEM (5) SDM

β 0.0071 (0.01) −0.0308 (0.02) * −0.0376 (0.02) ** −0.0694 (0.03) ** −0.1992 (0.05) ***
W × lnCP 0.2307 (0.05) ***

ρ 0.1965 (0.05) *** 0.2209 (0.05) ***
λ 0.2627 (0.06) ***

Constant 0.0397 (0.00) *** 0.0491 (0.01) ***
Sigma2_e 0.0085 (0.00) *** 0.0084 (0.00) *** 0.0077 (0.00) ***

LR (p-value) 60.98 (0.000) *** 54.85 (000) ***
Hausman (p-value) 7.38 (0.007) *** 6.65 (0.036) ** 6.23 (0.045) ** 26.57 (0.000) ***

Convergence
speed −0.71% 3.13% 3.83% 7.19% 22.21%

N 600 600 600 600 600
R2 0.0017 0.0068 0.0028 0.0068 0.0975

Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters, and p-values are in parentheses for diagnostic tests.

4.2.2. Conditional β-Convergence Estimation

Next, we examined the regional conditional convergence characteristics of China’s
carbon β productivity. The results are shown in Table 4. When the regression analysis
is restricted to specific individuals, fixed effects are often the better choice, as can also
be seen from the Hausman test results, where the different panel models all supported
estimation with individual fixed effects at the 1% statistical level, at least. Similar to the
absolute β-convergence test procedure, OLS still suffered from a significant estimation
bias, although the sign of the β coefficients changed from positive to negative. However,
it was not supported by a further significance test. In the conditional model estimation,
the improvement in the accuracy of the convergence parameter estimates was evident by
considering spatial dependence. Only the dependent convergence coefficient of SLM was
slightly lower than the FE results. At the same time, the other two spatial models obtained
significant improvement, and the rate of conditional convergence became more prominent
as the spatial effects were more fully considered, confirming Hypothesis 4. Parameter ρ
was significantly positive, which further verified the spatial dependence of China’s carbon
productivity growth rate, which was characterized by the spatial clustering of “neighbors
as partners”. The SDM estimation results showed a significant conditional β-convergence
trend of carbon productivity in China, and that the lower-carbon-productivity regions
are catching up with the developed areas faster, with an average annual convergence
rate of 23.19%. This shows that spatial spillover reduces the persistent technological
differences among provinces, which leads to faster convergence of carbon productivity,
further confirming Hypotheses 4 and 5. This finding is consistent with recent literature [16]
estimates of conditional convergence. Nevertheless, our estimates were slightly higher than
those in the literature for carbon intensity convergence, both from differences in estimation
methods and carbon accounting, as well as from the fact that we used control variables
consistent with growth theory.

In addition, conditional convergence also implies that the relative positions of steady-
state growth levels between regions are difficult to eliminate automatically in the long-term,
mainly determined by regional characteristic variables’ direct and spillover effects. From
the estimation results of SDM, only the spatial lag coefficient of the effective investment
rate of human capital passed the significance test at the 10% statistical level. In contrast,
the significance of other variables was relatively low. The differences in the effects of the
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control variables on the five major driving factors may obscure their significance in the
total convergence equation of carbon productivity, so further identification with the help of
the associative convergence model is needed.

Table 4. Conditional β-convergence estimation results for carbon productivity.

Variables (1) OLS (2) FE (3) SLM (4) SEM (5) SDM

β −0.0184 (0.01) −0.1447 (0.03) *** −0.1423 (0.03) *** −0.1457 (0.04) *** −0.2070 (0.05) ***
lnSk −0.0501 (0.03) * -0.0171 (0.04) −0.0177 (0.04) −0.0115 (0.04) −0.0355 (0.04)
lnSh 0.0764 (0.02) *** 0.1277 (0.02) *** 0.1215 (0.02) *** 0.1222 (0.02) *** −0.0083 (0.06)

W × lnCP 0.0867 (0.05)
W × lnSk −0.0129 (0.08)
W × lnSh 0.1390 (0.08) *

ρ 0.1097 (0.06) * 0.1240 (0.04) ***
λ 0.1079 (0.05) **

Constant 0.0327 (0.01) ** 0.0045 (0.02)
Sigma2_e 0.0078 (0.00) *** 0.0078 (0.00) *** 0.0075 (0.00) ***

LR (p-value) 22.03 (0.000) *** 22.63 (0.000) ***
Hausman (p-value) 53.74 (0.000) *** 20.86 (0.000) *** 22.75 (0.000) *** 21.82 (0.003) ***

Convergence
speed 1.86% 15.63% 15.35% 15.75% 23.19%

N 600 600 600 600 600
R2 0.0510 0.1129 0.1143 0.1127 0.1451

Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters, and p-values are in parentheses for diagnostic tests.

4.2.3. Heterogeneity Convergence Examination

To further examine the stage convergence and club convergence characteristics of re-
gional carbon productivity in China, we further estimated the SDM conditional β-convergence
model by stage and region. The results are shown in Table 5. Equations (1) and (2) corre-
spond to 1997–2010 and 2011–2017, respectively. This division was based on the fact that
the Chinese economy entered a distinct phase of low-to-moderate growth in 2011, which
may have impacted further carbon productivity. Equations (3)–(5) correspond to the sample
of provinces within the three regions of East, West, and Central China, respectively. The
regional division follows the traditional way, which can be obtained from the National
Bureau of Statistics of China database.

Table 5. Estimation results of stage convergence and club convergence based on the SDM model.

Variables (1) 1997–2010 (2) 2011–2017 (3) East (4) Central (5) West

β −0.3348 (0.07) *** −0.5071 (0.08) *** −0.1646 (0.03) *** −0.2859 (0.07) *** −0.2668 (0.09) ***
lnSk −0.0888 (0.06) 0.1036 (0.08) −0.0714 (0.05) −0.0091 (0.04) 0.0314 (0.08)
lnSh −0.0655 (0.09) 0.0027 (0.08) −0.0415 (0.05) 0.1231 (0.08) 0.0454 (0.11)

W × lnCP 0.0413 (0.08) 0.3125 (0.08) *** 0.0997 (0.05) ** −0.0013 (0.06) 0.2018 (0.11) *
W × lnSk 0.2342 (0.11) ** −0.3729 (0.16)** 0.2239 (0.15) −0.0758 (0.09) −0.2836 (0.15) *
W × lnSh 0.0995 (0.09) 0.3442 (0.09) *** 0.0636 (0.08) 0.1402 (0.10) 0.1368 (0.16)

ρ 0.0764 (0.05) 0.0869 (0.09) 0.1415 (0.06) ** 0.0198 (0.03) 0.0771 (0.06)
Sigma2_e 0.0078 (0.00) *** 0.0037 (0.00) *** 0.0040 (0.00) *** 0.0054 (0.00) *** 0.0118 (0.00) ***

Convergence
speed 40.77% 70.74% 17.98% 33.67% 31.03%

N 390 210 220 160 220
R2 0.2156 0.3377 0.2015 0.2505 0.1427

Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters, and p-values are in parentheses for diagnostic tests.

The results showed that China’s carbon productivity exhibited a spatial conditional
β-convergence trend within both phases. The conditional convergence speed of carbon
productivity was 40.77% in 1997–2017, while the convergence speed was as high as 70.74%
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in 2011–2017, the latter being significantly higher than the former. The effect of the effective
investment rate in the provinces themselves did not pass the significance test in terms of
control variables. The spatial spillover effect only showed positive spillover of physical
capital during 1997–2010, while carbon productivity and the effective investment rate in
2011–2017 all showed significant spatial spillover effects but negative spillover of physical
capital. The reason for this is that, on the one hand, since the reform and opening-up,
China’s economy has long been dominated by the crude growth mode of increasing capital
input, and the contribution of other factors has been dramatically weakened. On the
other hand, as China’s economy enters the stage of medium-to-low growth, industrial
transformation and technological upgrading become the inevitable choice for sustainable
growth, and high-quality development in this stage pays more attention to the role of
human capital and intellectual capital. Therefore, in the second stage, the convergence of
carbon productivity is further accelerated, but the technology spillover effect characterized
by human capital flow is more obvious, and the role of continuous accumulation of physical
capital has turned from positive to negative.

From the regional equation estimates, the coefficients β were all significantly negative
at the 1% level, indicating that China’s carbon productivity has typical club convergence
characteristics and growth convergence, and Hypothesis 4 is fully confirmed. Interregional
factor mobility and mutual imitation accelerate the convergence of carbon productivity, with
the fastest intersection in central China (33.67%), followed by western China (31.03%), and
the slowest in eastern China (17.98%). It is worth noting that physical capital accumulation
had a significant negative spillover effect on carbon productivity growth in the West,
because it is home to several energy-rich provinces with a high density of low-tech, high-
energy-consuming, and high-emission industrial types. The blind expansion of physical
capital investment by mutual imitation is not conducive to sustainable local growth, but
will lead to an excessive increase in energy consumption.

4.3. Dynamics of Convergence
4.3.1. Testing the Causes of Convergence

To further investigate the spatial convergence mechanism of carbon productivity, Ta-
ble 6 reports the estimated results of the convergence equations for the five major driving
factors. Firstly, we examined the convergence paths exhibited by the local initial carbon
productivity levels. The corresponding coefficients β estimates which were significantly
negative in Equations (1) and (2), and did not pass the significance test in Equations (3)–(5),
which indicates that the convergence paths of provincial carbon productivity in China were
mainly determined by the convergence mechanisms of the energy structure effect and the
capital substitution effect, and Hypothesis 6 is confirmed. The convergence results for
technological progress and technical efficiency were not consistent with the convergence
findings in the literature on total factor productivity [9]; on the one hand, this is because
the environmental DEA model dealing with undesired outputs is used in the literature. On
the other hand, we used the initial carbon productivity level to estimate the coefficients β
with the aim of analyzing the mechanism of the effect of the change in TFP with the initial
carbon productivity level on the overall convergence, which is significantly different. In
addition, the coefficients ρ were significantly positive in Equations (2)–(5). This shows
obvious spatial dependence characteristics in energy structure, capital substitution, labor
substitution, technological progress, and technological efficiency; the mutual imitation
between regions also further accelerated the overall growth rate. The spatial lag term of
initial carbon productivity passed the significance test only in Equations (1), (2), and (4).
The demonstration effect of carbon productivity improvement in neighboring regions on
local areas will prompt them to strengthen their energy-saving and emission-reduction
regulations and promote carbon productivity growth by optimizing energy structure and
accelerating technological innovation. However, the hitchhiking effect can also contribute
to the weakening of local government guidance in factor optimization allocation, which is
detrimental to the positive substitution of capital energy. If the demonstration effect is more
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significant than the hitchhiking effect or the economic steering behavior of local govern-
ments tends to choose the former, then the spatial effect of the initial carbon productivity
level in neighboring regions shows positive spillover; the opposite is true. The estimation
results in this paper, 0.133 + 0.025 − 0.041 = 0.117 showed that the demonstration effect
was much more significant than the free-rider effect, which is highly consistent with the
spatial clustering characteristics of carbon productivity in the country in recent years.

Table 6. Tests of the convergence mechanism of carbon productivity based on SDM model.

Variables (1) lnESC (2) lnKEC (3) lnLEC (4) lnTPC (5) lnTEC

β −0.1759 (0.05) *** −0.0371 (0.02) ** 0.0031 (0.00) −0.0022 (0.01) 0.0062 (0.01)
lnSk −0.0440 (0.04) 0.0902 (0.03) *** 0.0006 (0.01) 0.0310 (0.01) *** −0.1054 (0.02) ***
lnSh −0.0423 (0.05) −0.0244 (0.03) 0.0099 (0.01) * 0.0068 (0.01) 0.0410 (0.01) ***

W × lnCP 0.1332 (0.05) ** −0.0413 (0.02) ** −0.0006 (0.00) 0.0249 (0.01) ** −0.0147 (0.02)
W × lnSk 0.0463 (0.07) −0.0445 (0.02) * −0.0071 (0.01) −0.0420 (0.01) *** 0.0267 (0.03)
W × lnSh 0.0835 (0.06) 0.0579 (0.02) *** −0.0058 (0.01) −0.0152 (0.01) 0.0047 (0.02)

ρ 0.0393 (0.04) 0.3990 (0.04) *** 0.4578 (0.04) *** 0.6185 (0.04) *** 0.2953 (0.06) ***
Sigma2_e 0.0067 (0.00) *** 0.0014 (0.00) *** 0.0001 (0.00) *** 0.0002 (0.00) *** 0.0004 (0.00) ***

Hausman (p-value) 19.99 (0.006) *** 12.96 (0.073) * 25.43 (0.001) *** 16.97 (0.018) ** 20.77 (0.004) ***
Convergence

speed 19.35% 3.78% −0.31% 0.22% −0.62%

N 600 600 600 600 600
R2 0.0958 0.1919 0.0233 0.1690 0.1582

Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters, and p-values are in parentheses for diagnostic tests.

In terms of the mechanism of influence of the effective investment rate, both physical
and human capital investment rates were mainly mediated by capital–energy substitu-
tion and total factor productivity. Among these, the direct effect of the physical capital
investment rate on capital substitution (0.090) was significantly positive, while the effect on
technological progress (0.031) and technical efficiency (−0.105) was in the opposite direc-
tion. This finding is consistent with China’s long-standing capital-driven growth approach,
where overinvestment is also bound to cause general deterioration in total factor produc-
tivity. The coefficients of physical capital investment rates in neighboring regions passed
significance tests only in Equations (2) and (4), and both had negative signs, suggesting
that blindly following up on expanding investment reduces capital substitution (−0.045)
and technological progress (−0.042). The local human capital investment rate helps labor
substitution (0.010) and technical efficiency (0.04) to obtain significant improvements. In
contrast, human capital accumulation in neighboring provinces (0.058) only showed a
significant positive spatial spillover to the local capital substitution effect. Nevertheless,
human capital investment’s direct and spillover effects were significantly positive. In recent
years, their contribution to carbon productivity growth was further strengthened, which is
also highly correlated with China’s cross-regional talent mobility trait.

4.3.2. Robustness Test

The paper re-estimated the joint cubic equation using the inverse weight matrix
of the latitude and longitude distances to examine further the robustness of the carbon
productivity spatial convergence mechanism. Table 7 reports the results of the robustness
tests of the total convergence equation and the power factor convergence equation. It is easy
to see that the sign and significance of the coefficients β in Equations (1) to (6) remained
unchanged. The sign of the capital investment rate coefficients and the spatial lag term
remained the same as the original model. Thus, it can be judged that the spatial convergence
mechanism of China’s carbon productivity estimated based on SDM was relatively robust
and reliable, and the test results had some applicability. In addition, it should also be seen
that the differences in the spillover effects estimated by different spatial weight matrices
were mainly from the influence of their exogenous settings. Since the adjacency weight
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matrix responds to the average effect of local spillover and the distance weight matrix
responds to the average global spillover effect, there was a significant difference in the
spatial transmission mechanism between the two. However, the sign of the spatial lag
coefficients of the distance weight matrix remained the same as that of the adjacency
weight matrix. The significance of the global spillover effect was more polarized among
the dynamic factors, which also caused the significance of the spatial lag coefficients of the
total convergence Equation (1) to change.

Table 7. Robustness test of the SDM model based on spatial distance weights.

Variables (1) lnCPC (2) lnESC (3) lnKEC (4) lnLEC (5) lnTPC (6) lnTEC

β −0.2011 (0.06) *** −0.1707 (0.05) *** −0.0395 (0.02) ** 0.0034 (0.00) 0.0017 (0.00) 0.0093 (0.02)
lnSk −0.0284 (0.04) −0.0312 (0.04) 0.0906 (0.03) *** −0.0026 (0.01) 0.0214 (0.01) *** −0.1082 (0.02) ***
lnSh −0.0338 (0.06) −0.0557 (0.05) −0.0362 (0.03) 0.0079 (0.01) 0.0120 (0.01) * 0.0500 (0.02) ***

W × lnCP 0.0248 (0.06) 0.0881 (0.06) −0.0600 (0.03) ** −0.0008 (0.01) 0.0069 (0.01) −0.0172 (0.02)
W × lnSk 0.0007 (0.17) −0.0237 (0.16) 0.0387 (0.07) 0.0119 (0.02) −0.0846 (0.03) *** 0.1153 (0.05) **
W × lnSh 0.1863 (0.12) 0.1540 (0.11) 0.0408 (0.05) −0.0133 (0.01) 0.0139 (0.02) −0.0473 (0.03) *

ρ 0.2971 (0.06) *** 0.0687 (0.06) 0.5345 (0.09) *** 0.6544 (0.06) *** 0.7713 (0.04) *** 0.4870 (0.07) ***
Sigma2_e 0.0073 (0.00) *** 0.0067 (0.00) *** 0.0014 (0.00) *** 0.0001 (0.00) *** 0.0002 (0.00) *** 0.0004 (0.00) ***
Hausman
(p-value) 37.41 (0.000) *** 31.34 (0.000) *** 17.82 (0.013) ** 20.71 (0.004) *** 10.91 (0.143) 24.00 (0.001)

Convergence
speed 22.45% 18.72% 4.03% −0.34% −0.17% −0.93%

N 600 600 600 600 600 600
R2 0.1630 0.0948 0.2590 0.0164 0.3402 0.1918

Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters, and p-values are in parentheses for diagnostic tests.

We further used data averaged every four years, i.e., 1997–2000, 2001–2004, 2005–2008,
2009–2012, and 2013–2016, and a total of ln(CPi,t−1) in the above five cycles showed that
the carbon productivity level in the initial year of each cycle in each province and other
variables were the average value in the cycle. This eliminated the influence of economic
cycles on the model estimation on the one hand and took into account the possible influence
of the lag of spatial spillover effects on the other hand. The results in Table 8 show that
the sign and significance of the coefficients β in the main equations did not change. The
sign of the coefficients of the control variables also remained the same as the results in
Table 6, which further indicates the robustness of the previous conclusion that there is a
convergence trend in the estimation of carbon productivity in China using SDM.

Table 8. Robustness test of the SDM model based on average data.

Variables (1) lnCPC (2) lnESC (3) lnKEC (4) lnLEC (5) lnTPC (6) lnTEC

β −0.1085 (0.03) *** −0.0922 (0.02) *** −0.0300 (0.01) ** 0.0059 (0.00) ** −0.0046 (0.01) 0.0154 (0.02)
lnSk −0.0449 (0.05) −0.0415 (0.04) 0.0529 (0.03) −0.0023 (0.01) 0.0379 (0.01) *** −0.0872 (0.02) ***
lnSh 0.0052 (0.05) −0.0641 (0.04) * 0.0007 (0.03) 0.0160 (0.01) *** 0.0029 (0.01) 0.0571 (0.02) ***

W × lnCP −0.0068 (0.04) 0.0718 (0.03) ** −0.0801 (0.02) *** −0.0104 (0.01) 0.0289 (0.01) ** −0.0443 (0.02) *
W × lnSk 0.0229 (0.08) 0.1035 (0.0623) * −0.0416 (0.03) −0.0147 (0.01) −0.0333 (0.02) ** −0.0163 (0.04)
W × lnSh 0.0948 (0.04) ** 0.0557 (0.04) 0.0668 (0.03) ** −0.0026 (0.01) −0.0200 (0.01) ** 0.0146 (0.03)

ρ 0.3150 (0.09) *** 0.1595 (0.08) * 0.3731 (0.07) *** 0.5743 (0.06) *** 0.6854 (0.04) *** 0.1789 (0.09) *
Sigma2_e 0.0011 (0.00) *** 0.0008 (0.00) *** 0.0006 (0.00) *** 0.0000 (0.00) *** 0.0001 (0.00) *** 0.0003 (0.00) ***
Hausman
(p-value) 15.44 (0.031) ** 17.04 (0.017) ** 13.08 (0.040) * 21.64 (0.003) *** 12.22 (0.09) * 16.67 (0.020) **

Convergence
speed 11.48% 9.67% 3.05% −0.59% 0.46% −1.53%

N 150 150 150 150 150 150
R2 0.3955 0.1962 0.4276 0.0935 0.3657 0.2024

Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters, and p-values are in parentheses for diagnostic tests.

4.4. Discussion of Empirical Results

This study provides preliminary evidence of a nonlinear relationship between carbon
productivity and economic growth in China, indicating that the EKC hypothesis is not
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valid in China. A study using autoregressive distribution lag (ARDL) modeling for Arctic
countries provides similar evidence, suggesting that the EKC curves revealed by panel data
may not apply to a single specific country or region [27]. Evidence of decoupling of carbon
productivity is rarely found in lagging or less-developed countries due to gaps in energy
structure, technology level, etc. [28,30,32]. Considering the economic growth patterns, the
evolution of different drivers and their regional differences may dominate the sustainable
growth process of carbon productivity in China.

Distinct from the EKC approach, this study provides a body of evidence on the
drivers of carbon productivity and regional convergence in China within a new framework.
Capital-to-energy substitution dominates the pattern of carbon productivity growth in
China as a whole, in the East, the Center, and the West, and at the provincial level. The
literature on parametric method decomposition provides similar findings [68], with the
difference that we do not find evidence of drivers of technological progress, as the para-
metric time-invariant setting results in a forced fit of technological progress. In addition,
the LMDI approach provides evidence on the drivers of macrofactors such as economic
activity, industrial structure [48], and energy intensity. Still, its inability to capture input-
output mechanisms is frequently cited [49,51]. Nevertheless, these empirical findings are
complementary, and together they warn policymakers of the importance of sustainable
growth by improving factor structure and upgrading technology. Optimizing the factor
structure can help green the industry, and upgrading the structure can also improve the
positive impact of total green factor productivity on pollution emissions [70].

The existing literature provides evidence of convergence in carbon intensity and energy
productivity [59,71]. This study adds support for convergence in sustainable growth from
the Chinese experience, where the convergence in carbon productivity across provinces
and municipalities comes mainly from the effect of diminishing marginal substitution of
low-carbon capital for high-carbon capital. We consider technology spillovers under spatial
effects [65], and we estimate faster convergence than the closed economy hypothesis since it
is easier for lagging regions to access low-carbon capital and learn low-carbon technologies
in an open economy. Similar empirical findings also provide evidence of convergence in
carbon intensity [16]. This study also closely links the convergence analysis to the drivers
and finds that carbon productivity convergence in China is mainly achieved through
conjunction in the energy structure and capital substitution. Unlike the generalized carbon
productivity convergence in the non-expected output perspective [9,70], our decomposition
framework does not find total factor productivity convergence evidence. Nevertheless,
this complementary empirical evidence shows that the spatial Solow model reasonably
explains sustainable growth.

Therefore, policymakers should develop new policies to attract low-carbon-oriented
extraterritorial investments and promote information exchange and technology transfer,
which may provide the basis for re-establishing sustainable growth ambitions. Policy-
makers in lagging regions should strengthen environmental regulations to prevent in-
creased environmental degradation due to energy-intensive and emission-intensive capital
inflow [72]. From a management perspective, policies on environmentally sustainable
behavior help regulate corporate social responsibility, which will ultimately positively
impact a sustainable and equitable future for all, as it is widely understood, accepted, and
implemented by stakeholders [73]. In addition, engaging in environmental protection and
environmentally sustainable behavior can further improve corporate reputation. A good
reputation is a valuable organizational resource that positively and significantly impacts
customer behavior [74].

5. Conclusions and Implications

Carbon productivity has a richer economic connotation as a core variable of sustainable
growth. Based on the global DEA model, the present paper constructed the relation
between factor substitution, technical progress, technical efficiency, and carbon productivity.
The present study measured the five driving forces of carbon productivity growth in
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30 provinces, autonomous regions, and cities based on the data sample during 1997–2017.
The work further tested and analyzed the spatial convergence mechanism of provincial
carbon productivity in China using the spatial panel model.

The empirical results show that the capital substitution growth pattern generally
dominates China’s provincial carbon productivity. Energy restructuring mostly has pos-
itive effects, and labor substitution effects show different degrees of deterioration. The
regional differences in total factor productivity are significant, with more pronounced
efficiency-based growth in the Eastern region and a general deterioration in the Cen-
tral and Western areas. These empirical findings are consistent with China’s economic
growth, as sloppy growth that relies on rapid capital accumulation is bound to undermine
a sustainable growth path centered on carbon productivity. China’s provincial carbon
productivity growth has robust spatial absolute β-convergence and spatial conditional
β-convergence trends. Low-carbon-productivity regions have catch-up effects relative
to high-carbon-productivity regions, and spatial spillover effects significantly accelerate
regional convergence. SDM is more suitable for testing China’s carbon productivity conver-
gence pattern. The spatial conditions of carbon productivity in China exhibit two stages of
convergence. After entering the medium and low growth stage, the economic transition
accelerates the rate of carbon productivity convergence. Similarly to economic conver-
gence, China’s carbon productivity exhibits typical club convergence characteristics, with
faster convergence in the Central and Western regions than in the East. While energy mix
and capital substitution dominate each province’s carbon productivity growth pattern,
they also determine the overall carbon productivity convergence trend. The mechanism
of effective investment rate on carbon productivity growth rate is mainly mediated by
capital substitution and total factor productivity. Physical capital investment has gradually
shifted to an inhibitory effect, while the positive push of human capital investment is
strengthening. Expanding physical capital investment can directly improve the local capital
substitution effect. Still, it is gradually offset by the deterioration of efficiency caused by
investment imbalance, which is more serious in terms of spatial effects. Expanding human
capital investment can significantly improve local factor allocation, and factor mobility and
mutual imitation across regions can significantly enhance the contribution of human capital
spillovers to carbon productivity growth. China’s sustainable growth will increasingly rely
on human capital accumulation in the form of technology spillovers.

The above findings have important policy implications for China in the promotion of
sustainable growth, with carbon productivity at its core. Since capital energy substitution
has dominant empirical evidence, policymakers should continuously optimize the design
and implementation strategies, strengthen the structure and quality of capital inputs, and
restrain the excessive growth of energy factors. Policymakers should impose strict restric-
tions on those backward industries with high energy consumption and high emissions,
and control the carbon productivity decline caused by their production scale expansion.
The adoption of low-energy consumption capital and the development of independent
innovation capacity are the main policy instruments. Given the positive effect of human
capital on carbon productivity improvement, policymakers should strengthen the guidance
of human capital investment to improve the factor input structure. In economically back-
ward inland regions, policymakers should fully consider the technology spillover effects of
human capital investment to benefit local and global sustainable growth. The spatial tech-
nology spillover effect accelerates the overall convergence process. This finding provides a
scientific basis for policymakers to sustain innovation support and regional cooperation
in low-carbon, energy, and other environmental technologies. It enables the sustainable
growth advantages of lagging provinces and cities to be fully unleashed. Inter-regional
trade and technical exchanges are inseparable from supporting an excellent infrastructure
and institutional system. Therefore, promoting the construction of infrastructures such as
transportation and information transmission and improving the institutional mechanism of
inter-regional exchange and cooperation should also attract the full attention of policymak-
ers. In addition, the results of this study provide Chinese experiences and Chinese cases
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for global energy conservation and emission reduction, especially for developing countries
or regions that adopt intensity reduction strategies. A formal unified constraint system,
effective regulation of energy-intensive capital, and enhanced cooperation in low-carbon
technologies remain valuable references for decision-making.

The above findings have important practical implications for carbon intensity reduc-
tion practices and sustainable growth programs in China and other countries. The policy
implications are as follows: firstly, we should continue to deepen the structural reform
on the supply side of energy, further strengthen the control of excessive accumulation of
energy factors, optimize the energy consumption structure, accelerate the technological
transformation of coal energy consumption, and improve energy utilization efficiency.
Secondly, we should pay attention to the guiding role of fixed asset investment efficiency,
strengthen the control of regional investment growth rates and spatial structure regula-
tion, and gradually realize the reasonable and orderly substitution of capital factors for
energy factors. Again, improving human capital investment, especially in economically
less-developed inland areas, gives full play to the technological spillover effect of human
capital investment and actively promotes the joint innovation and coordinated develop-
ment of production technology, energy technology, and environmental technology. Finally,
we should develop and implement differentiated regional development strategies, promote
infrastructure construction such as transportation and information transmission, increase
the depth and breadth of exchanges and cooperation between regions, especially between
developed and less-developed regions, and further release the spatial spillover effects of
factor flows and technology diffusion.

The relatively short period of the dataset provides a potential limitation of this study,
while the natural process of convergence may take decades or even longer to end. Our
findings may indicate initial signs of convergence in carbon productivity, and it may be
easier for provinces to collaborate in future synergies in emission reduction targets. It
is crucial to investigate this relationship further. In addition, our study only provides
empirical evidence. It does not provide a more in-depth theoretical proof of the spatial
convergence mechanism of carbon productivity, which is also missing in the existing
literature, and is undoubtedly an important research topic for sustainable growth theory.

Author Contributions: Conceptualization, W.Q. and M.S.; methodology, M.S.; software, W.Q.; vali-
dation, W.Q., C.S., M.S. and L.W.; formal analysis, Y.H.; investigation, W.Q.; resources, M.S.; data
curation, Y.H.; writing—original draft preparation, M.S.; writing—review and editing, W.Q. and C.S.;
visualization, L.W.; supervision, Y.H. and C.S.; project administration, W.Q.; funding acquisition, M.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Social Science Foundation of China, grant
number 17CJY023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hodson, R. Climate change. Nature 2017, 53, 550. [CrossRef] [PubMed]
2. U.S. Energy Information Administration (EIA). International Energy Outlook 2019 with Projections to 2050; Energy Information

Administration: Washington, DC, USA, 2019.
3. González-Zeas, D.; Erazo, B.; Lloret, P.; De Bièvre, B.; Steinschneider, S.; Dangles, O. Linking global climate change to local water

availability: Limitations and prospects for a tropical mountain watershed. Sci. Total Environ. 2019, 650, 2577–2586. [CrossRef]
[PubMed]

4. Sarkodie, S.A. Environmental performance, biocapacity, carbon & ecological footprint of nations: Drivers, trends and mitigation
options. Sci. Total Environ. 2021, 751, 141912. [PubMed]

5. Bokolo, A., Jr. Examining the role of green IT/IS innovation in collaborative enterprise-implications in an emerging economy.
Technol. Soc. 2020, 62, 101301.

http://doi.org/10.1038/550S53a
http://www.ncbi.nlm.nih.gov/pubmed/29019973
http://doi.org/10.1016/j.scitotenv.2018.09.309
http://www.ncbi.nlm.nih.gov/pubmed/30293009
http://www.ncbi.nlm.nih.gov/pubmed/32898749


Int. J. Environ. Res. Public Health 2022, 19, 1374 23 of 25

6. UNEP, UNEP DTU Partnership. UNEP Emissions Gap Report 2021. Available online: https://www.unep.org/resources/
emissions-gap-report-2021 (accessed on 9 October 2021).

7. Chen, Z.; Chen, S.; Liu, C.; Nguyen, L.T.; Hasan, A. The effects of circular economy on economic growth: A quasi-natural
experiment in China. J. Clean. Prod. 2020, 271, 122558. [CrossRef]

8. State Council Information Office. White Paper: China’s Policies and Actions on Climate Change. Available online: http:
//www.gov.cn/zhengce/2021-10/27/content_5646697.htm (accessed on 9 October 2021).

9. Shen, N.; Peng, H.; Wang, Q. Spatial dependence, agglomeration externalities and the convergence of carbon productivity.
Socio-Econ. Plan. Sci. 2021, 78, 101060. [CrossRef]

10. He, J.; Deng, J.; Su, M. CO2 emission from China’s energy sector and strategy for its control. Energy 2010, 35, 4494–4498. [CrossRef]
11. Fernando, Y.; Hor, W.L. Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey

of Malaysian manufacturing firms. Resour. Conserv. Recycl. 2017, 126, 62–73. [CrossRef]
12. Deller, D. Energy affordability in the EU: The risks of metric driven policies. Energy Policy 2018, 119, 168–182. [CrossRef]
13. Cai, Y.; Sam, C.Y.; Chang, T. Nexus between clean energy consumption, economic growth and CO2 emissions. J. Clean. Prod. 2018,

182, 1001–1011. [CrossRef]
14. Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from

patent data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [CrossRef]
15. Ramanathan, R. An analysis of energy consumption and carbon dioxide emissions in countries of the middle east and north

Africa. Energy 2005, 30, 2831–2842. [CrossRef]
16. Zhao, X.; Burnett, J.W.; Lacombe, D.J. Province-level convergence of China’s carbon dioxide emissions. Appl. Energy 2015, 150,

286–295. [CrossRef]
17. Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement (No. 3914); NBER Working Papers;

NBER: Cambridge, MA, USA, 1991.
18. Aslanidis, N.; Xepapadeas, A. Smooth transition pollution—Income paths. Ecol. Econ. 2006, 57, 182–189. [CrossRef]
19. De Bruyn, S.M.; van den Bergh, J.C.J.M.; Opschoor, J.B. Economic growth and emissions: Reconsidering the empirical basis of

environmental Kuznets curves. Ecol. Econ. 1998, 25, 161–175. [CrossRef]
20. Leitão, J.; Ferreira, J.; Santibanez-González, E. New insights into decoupling economic growth, technological progress and carbon

dioxide emissions: Evidence from 40 countries. Technol. Forecast. Soc. Chang. 2022, 174, 121250. [CrossRef]
21. Olale, E.; Ochuodho, T.O.; Lantz, V.; El Armali, J. The environmental Kuznets curve model for greenhouse gas emissions in

Canada. J. Clean. Prod. 2018, 184, 859–868. [CrossRef]
22. Alvarado, R.; Ponce, P.; Criollo, A.; Córdova, K.; Khan, M.K. Environmental degradation and real per capita output: New

evidence at the global level grouping countries by income levels. J. Clean. Prod. 2018, 189, 13–20. [CrossRef]
23. Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Majeed, M.T. Heterogeneous effects of energy efficiency and renewable energy on carbon

emissions: Evidence from developing countries. J. Clean. Prod. 2020, 247, 119122. [CrossRef]
24. Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72,

639–647. [CrossRef]
25. Cheikh, N.B.; Zaied, Y.B.; Chevallier, J. On the nonlinear relationship between energy use and CO2 emissions within an EKC

framework: Evidence from panel smooth transition regression in the MENA region. Res. Int. Bus. Financ. 2021, 55, 101331.
[CrossRef]

26. Dauda, L.; Long, X.; Mensah, C.N.; Salman, M.; Boamah, K.B.; Ampon-Wireko, S.; Dogbe, C.S.K. Innovation, trade openness and
CO2 emissions in selected countries in Africa. J. Clean. Prod. 2021, 281, 125143. [CrossRef]

27. Baek, J. Environmental Kuznets curve for CO2 emissions: The case of Arctic countries. Energy Econ. 2015, 50, 13–17. [CrossRef]
28. Wang, S.; Li, G.; Fang, C. Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from

countries with different income levels. Renew. Sustain. Energy Rev. 2018, 81, 2144–2159. [CrossRef]
29. Elheddad, M.; Benjasak, C.; Deljavan, R.; Alharthi, M.; Almabrok, J.M. The effect of the Fourth Industrial Revolution on the

environment: The relationship between electronic finance and pollution in OECD countries. Technol. Forecast. Soc. Chang. 2021,
163, 120485. [CrossRef]

30. Mensah, C.N.; Long, X.; Boamah, K.B.; Bediako, I.A.; Dauda, L.; Salman, M. Correction to: The effect of innovation on CO2
emissions across OECD countries from 1990 to 2014. Environ. Sci. Pollut. Res. 2021, 1, 29678–29698. [CrossRef]

31. Shuai, C.; Chen, X.; Wu, Y.; Zhang, Y.; Tan, Y. A three-step strategy for decoupling economic growth from carbon emission:
Empirical evidences from 133 countries. Sci. Total Environ. 2019, 646, 524–543. [CrossRef]

32. Furuoka, F. The CO2 emissions—Development nexus revisited. Renew. Sustain. Energy Rev. 2015, 51, 1256–1275. [CrossRef]
33. Adesina, A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ. Chall. 2020, 1, 100004.

[CrossRef]
34. Benjamin, N.I.; Lin, B. Quantile analysis of carbon emissions in China metallurgy industry. J. Clean. Prod. 2020, 243, 118534.

[CrossRef]
35. Ullah, S.; Ozturk, I.; Usman, A.; Majeed, M.T.; Akhtar, P. On the asymmetric effects of premature deindustrialization on CO2

emissions: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 13692–13702. [CrossRef] [PubMed]
36. Zhu, B.; Zhang, T. The impact of cross-region industrial structure optimization on economy, carbon emissions and energy

consumption: A case of the Yangtze River Delta. Sci. Total Environ. 2021, 778, 146089. [CrossRef] [PubMed]

https://www.unep.org/resources/emissions-gap-report-2021
https://www.unep.org/resources/emissions-gap-report-2021
http://doi.org/10.1016/j.jclepro.2020.122558
http://www.gov.cn/zhengce/2021-10/27/content_5646697.htm
http://www.gov.cn/zhengce/2021-10/27/content_5646697.htm
http://doi.org/10.1016/j.seps.2021.101060
http://doi.org/10.1016/j.energy.2009.04.009
http://doi.org/10.1016/j.resconrec.2017.07.023
http://doi.org/10.1016/j.enpol.2018.03.033
http://doi.org/10.1016/j.jclepro.2018.02.035
http://doi.org/10.1016/j.techfore.2019.06.010
http://doi.org/10.1016/j.energy.2005.01.010
http://doi.org/10.1016/j.apenergy.2015.04.015
http://doi.org/10.1016/j.ecolecon.2005.04.002
http://doi.org/10.1016/S0921-8009(97)00178-X
http://doi.org/10.1016/j.techfore.2021.121250
http://doi.org/10.1016/j.jclepro.2018.02.178
http://doi.org/10.1016/j.jclepro.2018.04.064
http://doi.org/10.1016/j.jclepro.2019.119122
http://doi.org/10.1016/j.rser.2017.01.059
http://doi.org/10.1016/j.ribaf.2020.101331
http://doi.org/10.1016/j.jclepro.2020.125143
http://doi.org/10.1016/j.eneco.2015.04.010
http://doi.org/10.1016/j.rser.2017.06.025
http://doi.org/10.1016/j.techfore.2020.120485
http://doi.org/10.1007/s11356-021-13136-w
http://doi.org/10.1016/j.scitotenv.2018.07.045
http://doi.org/10.1016/j.rser.2015.07.049
http://doi.org/10.1016/j.envc.2020.100004
http://doi.org/10.1016/j.jclepro.2019.118534
http://doi.org/10.1007/s11356-020-07931-0
http://www.ncbi.nlm.nih.gov/pubmed/32034591
http://doi.org/10.1016/j.scitotenv.2021.146089
http://www.ncbi.nlm.nih.gov/pubmed/34030353


Int. J. Environ. Res. Public Health 2022, 19, 1374 24 of 25

37. Martínez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ.
2011, 70, 1344–1353. [CrossRef]

38. Wang, W.-Z.; Liu, L.-C.; Liao, H.; Wei, Y.-M. Impacts of urbanization on carbon emissions: An empirical analysis from OECD
countries. Energy Policy 2021, 151, 112171. [CrossRef]

39. Su, H.N.; Moaniba, I.M. Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas
emissions. Technol. Forecast. Soc. Chang. 2017, 122, 49–62. [CrossRef]

40. Sun, H.; Edziah, B.K.; Kporsu, A.K.; Sarkodie, S.A.; Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation
and knowledge spillover. Technol. Forecast. Soc. Chang. 2021, 167, 120659. [CrossRef]

41. Wurlod, J.D.; Noailly, J. The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in
OECD countries. Energy Econ. 2018, 71, 47–61. [CrossRef]

42. Wu, Y.; Zheng, H.; Li, Y.; Delang, C.O.; Qian, J. Carbon Productivity and Mitigation: Evidence from Industrial Development and
Urbanization in the Central and Western Regions of China. Sustainability 2021, 13, 9014. [CrossRef]

43. Xue, L.-M.; Meng, S.; Wang, J.-X.; Liu, L.; Zheng, Z.-X. Influential Factors Regarding Carbon Emission Intensity in China: A
Spatial Econometric Analysis from a Provincial Perspective. Sustainability 2020, 12, 8097. [CrossRef]

44. Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [CrossRef]
45. Dolge, K.; Blumberga, D. Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry:

LMDI Decomposition Analysis. Energies 2021, 14, 8006. [CrossRef]
46. Wen, L.; Li, Z. Provincial-level industrial CO2 emission drivers and emission reduction strategies in China: Combining two-layer

LMDI method with spectral clustering. Sci. Total Environ. 2020, 700, 134374. [CrossRef] [PubMed]
47. Chen, G.; Hou, F.; Chang, K.; Zhai, Y.; Du, Y. Driving factors of electric carbon productivity change based on regional and sectoral

dimensions in China. J. Clean. Prod. 2018, 205, 477–487. [CrossRef]
48. Niu, M.; Tan, X.; Guo, J.; Li, G.; Huang, C. Driving Factors and Growth Potential of Provincial Carbon Productivity in China.

Sustainability 2021, 13, 9759. [CrossRef]
49. Boqiang, L.; Kerui, D. What is the driving force of China’s energy productivity growth—Decomposition based on distance

function. Financ. Res. 2013, 9, 84–96.
50. Nakano, M.; Managi, S. Productivity analysis with CO2 emissions in Japan. Pac. Econ. Rev. 2010, 15, 708–718. [CrossRef]
51. Zhou, Z.; Cao, L.; Zhao, K.; Li, D.; Ding, C. Spatio-Temporal Effects of Multi-Dimensional Urbanization on Carbon Emission

Efficiency: Analysis Based on Panel Data of 283 Cities in China. Int. J. Environ. Res. Public Health 2021, 18, 12712. [CrossRef]
52. Sueyoshi, T.; Goto, M.; Wang, D. Malmquist index measurement for sustainability enhancement in Chinese municipalities and

provinces. Energy Econ. 2017, 67, 554–571. [CrossRef]
53. Kumar, S.; Jain, R.K. Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal

power sector. Energy Econ. 2019, 81, 104–116. [CrossRef]
54. Oh, D. A metafrontier approach for measuring an environmentally sensitive productivity growth index. Energy Econ. 2010, 32,

146–157. [CrossRef]
55. Ghali, K.H.; El-Sakka, M.I.T. Energy use and output growth in Canada: A multivariate cointegration analysis. Energy Econ. 2004,

26, 225–238. [CrossRef]
56. Warriner, D. Review of Economic Backwardness in Historical Perspective: A Book of Essays, by A. Gershenkron. Slavon. East Eur.

Rev. 1964, 43, 235–240.
57. Miketa, A.; Mulder, P. Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of

growth and convergence. Energy Econ. 2005, 27, 429–453. [CrossRef]
58. Herrerias, M.J. The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy. Energy

Policy 2013, 61, 1140–1150. [CrossRef]
59. Zang, Z.; Zou, X.; Song, Q.; Wang, T.; Fu, G. Analysis of the global carbon dioxide emissions from 2003 to 2015: Convergence

trends and regional contributions. Carbon Manag. 2017, 9, 45–55. [CrossRef]
60. Wu, J.; Wu, Y.; Guo, X.; Cheong, T.S. Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic

distribution approach. Energy Policy 2016, 91, 207–219. [CrossRef]
61. Apergis, N.; Payne, J.E. Per capita carbon dioxide emissions across US states by sector and fossil fuel source: Evidence from club

convergence tests. Energy Econ. 2017, 63, 365–372. [CrossRef]
62. Wang, S.; Gao, S.; Huang, Y.; Shi, C. Spatiotemporal evolution of urban carbon emission performance in China and prediction of

future trends. J. Geogr. Sci. 2020, 30, 757–774. [CrossRef]
63. Sun, J.; Su, C.W.; Shao, G. Is carbon dioxide emission convergence in the ten largest economies? Int. J. Green Energy 2016, 13,

454–461. [CrossRef]
64. Mankiw, N.G.; Romer, D.; Weil, D.N. A contribution to the empirics of economic growth. Q. J. Econ. 1992, 107, 407–437. [CrossRef]
65. Yu, J.; Lee, L. Convergence: A spatial dynamic panel data approach. Glob. J. Econ. 2012, 1, 1250006. [CrossRef]
66. Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data

2018, 5, 170201. [CrossRef] [PubMed]
67. Haojie, S. Re-estimation of China’s capital stock k: 1952–2006. Res. Quant. Econ. Tech. Econ. 2008, 25, 17–31.
68. Cheng, Z.; Jianke, W.; Wenyue, S.; Yuan, L. Factor decomposition of regional carbon productivity fluctuation in China. China

Popul. Resour. Environ. 2014, 24, 41–47.

http://doi.org/10.1016/j.ecolecon.2011.02.009
http://doi.org/10.1016/j.enpol.2021.112171
http://doi.org/10.1016/j.techfore.2017.04.017
http://doi.org/10.1016/j.techfore.2021.120659
http://doi.org/10.1016/j.eneco.2017.12.012
http://doi.org/10.3390/su13169014
http://doi.org/10.3390/su12198097
http://doi.org/10.1016/j.enpol.2015.07.007
http://doi.org/10.3390/en14238006
http://doi.org/10.1016/j.scitotenv.2019.134374
http://www.ncbi.nlm.nih.gov/pubmed/31629266
http://doi.org/10.1016/j.jclepro.2018.09.082
http://doi.org/10.3390/su13179759
http://doi.org/10.1111/j.1468-0106.2010.00526.x
http://doi.org/10.3390/ijerph182312712
http://doi.org/10.1016/j.eneco.2017.08.026
http://doi.org/10.1016/j.eneco.2019.03.015
http://doi.org/10.1016/j.eneco.2009.07.006
http://doi.org/10.1016/S0140-9883(03)00056-2
http://doi.org/10.1016/j.eneco.2005.01.004
http://doi.org/10.1016/j.enpol.2013.06.120
http://doi.org/10.1080/17583004.2017.1418594
http://doi.org/10.1016/j.enpol.2015.12.028
http://doi.org/10.1016/j.eneco.2016.11.027
http://doi.org/10.1007/s11442-020-1754-3
http://doi.org/10.1080/15435075.2014.966373
http://doi.org/10.2307/2118477
http://doi.org/10.1142/S2251361212500061
http://doi.org/10.1038/sdata.2017.201
http://www.ncbi.nlm.nih.gov/pubmed/29337312


Int. J. Environ. Res. Public Health 2022, 19, 1374 25 of 25

69. Ma, H.; Oxley, L.; Gibson, J.; Kim, B. China’s energy economy: Technical change, factor demand and interfactor/interfuel
substitution. Energy Econ. 2008, 30, 2167–2183. [CrossRef]

70. Yang, Y.; Wei, X.; Wei, J.; Gao, X. Industrial Structure Upgrading, Green Total Factor Productivity and Carbon Emissions.
Sustainability 2022, 14, 1009. [CrossRef]

71. Apergis, N.; Christou, C. Energy productivity convergence: New evidence from club converging. Appl. Econ. Lett. 2016, 23,
142–145. [CrossRef]

72. Aller, C.; Ductor, L.; Grechyna, D. Robust determinants of CO2 emissions. Energy Econ. 2021, 96, 105154. [CrossRef]
73. Burlea, A.S.; Vertigans, S.; Idowu, S.O. Corporate Social Responsibility in Times of Crisis: A Summary; Springer: Berlin, Germany,

2017.
74. Burlea, A.S.; Balan, D.A. Modelling the impact of corporate reputation on customers’ behaviour. Corp. Soc. Responsib. Environ.

Manag. 2021, 28, 1142–1156. [CrossRef]

http://doi.org/10.1016/j.eneco.2008.01.010
http://doi.org/10.3390/su14021009
http://doi.org/10.1080/13504851.2015.1058899
http://doi.org/10.1016/j.eneco.2021.105154
http://doi.org/10.1002/csr.2113

	Introduction 
	Literature Review 
	Carbon Productivity and Economic Growth 
	Drivers of Carbon Productivity 
	Convergence Analysis of Carbon Productivity 

	Research Methodology and Data Description 
	Power Decomposition Framework of Carbon Productivity 
	-Convergence Model of Carbon Productivity 
	Variable Selection and Data Description 

	Empirical Results and Discussion 
	Accounting for Carbon Productivity Growth 
	Convergence of Carbon Productivity 
	Absolute -Convergence Estimates 
	Conditional  -Convergence Estimation 
	Heterogeneity Convergence Examination 

	Dynamics of Convergence 
	Testing the Causes of Convergence 
	Robustness Test 

	Discussion of Empirical Results 

	Conclusions and Implications 
	References

