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Abstract

Gene co-expression networks (GCNs) provide multiple benefits to molecular research including hypothesis generation and biomarker
discovery. Transcriptome profiles serve as input for GCN construction and are derived from increasingly larger studies with samples
across multiple experimental conditions, treatments, time points, genotypes, etc. Such experiments with larger numbers of variables
confound discovery of true network edges, exclude edges and inhibit discovery of context (or condition) specific network edges. To
demonstrate this problem, a 475-sample dataset is used to show that up to 97% of GCN edges can be misleading because correlations
are false or incorrect. False and incorrect correlations can occur when tests are applied without ensuring assumptions are met,
and pairwise gene expression may not meet test assumptions if the expression of at least one gene in the pairwise comparison
is a function of multiple confounding variables. The ‘one-size-fits-all’ approach to GCN construction is therefore problematic for
large, multivariable datasets. Recently, the Knowledge Independent Network Construction toolkit has been used in multiple studies
to provide a dynamic approach to GCN construction that ensures statistical tests meet assumptions and confounding variables
are addressed. Additionally, it can associate experimental context for each edge of the network resulting in context-specific GCNs
(csGCNs). To help researchers recognize such challenges in GCN construction, and the creation of csGCNs, we provide a review of the
workflow.
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Introduction
The first form of a gene co-expression network (GCN)
(also called a relevance network) was reported in 1998
[1]. Since then, GCNs have been used for a variety of tran-
scriptomic analyses across a range of living organisms to
provide clues to the context in which genes interact to
identify novel gene candidates coordinating specific bio-
logical functions, to identify genes underlying complex
traits of interest (i.e. systems genetics analyses) [2, 3], to
translate knowledge about gene activity between species
[4, 5], to study evolutionary changes in gene modules
[6, 7], to improve identification of significant markers
in Genome-Wide Association Studies [8–10] and as prior
knowledge in regulatory network construction [11].

A variety of software tools have been developed
that use either microarray or RNA-seq data to assist
researchers to create GCNs. These include WGCNA [12–
14], CLR [15], MRNET [16], RMTGeneNet [17], petal [18],
INfORM [19] and FastGCN [20]. Because the construction
of GCNs involves pairwise calculations, the algorithm
is highly parallel, and developers of some of these
software have introduced modules for accelerated
computing on graphical processing units (GPUs) [20].
When constructing a GCN, a similarity test such as
Spearman, Pearson, Kendall Tau correlation, biweight
midcorrelation [21] or mutual information (MI) [16] is
applied to each pairwise comparison. After similarity
testing, values below a given threshold are excluded
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from the network. This threshold is determined using
ad hoc methods [22, 23], permutation testing [24], linear
regression [24], spectral graph theory [24], random matrix
theory (RMT) [25], topological properties [26], Fisher’s test
of Homogeneity [27], supervised machine learning [27,
28] or rank-based methods [29, 30].

Typically, significance thresholds are set at relatively
high stringency levels to ensure that network properties
are preserved, and false relationships are limited. Unfor-
tunately, such high correlation thresholds are indicative
of high levels of noise. For example, the RMT approach is
a thresholding method that identifies a correlation value
below which the GCN begins to exhibit properties of a
random network (i.e. too much noise). It is our experi-
ence that RMT identifies the point at which GCNs begin
to exhibit random properties typically between ±0.85
and ±0.95 correlation. Such high correlation thresholds
exclude moderate relationships (e.g. ≥ ±0.5) that are
obfuscated by high levels of noise. This is disappointing
for researchers who may fail to find the meaningful
relationships that exist below the threshold.

There are multiple sources of noise in gene expression
data that may result in high network thresholds. Noise
can result from natural intrinsic variation (stochastic
differences within a cell), extrinsic variation (differences
between homogenous cells) [31–33] and heterogeneity
caused by multiple experimental variables (e.g. geno-
type, treatment, developmental stage, tissue, etc.). Non-
natural sources include systematic noise from variation
in data collection and measurement and statistical bias
where methods may be applied inappropriately.

Accounting for intrinsic and extrinsic noise is impor-
tant with single-cell expression data and is an active
area of research [34, 35]. Here, we focus on RNA-seq
data where samples include mixed cell types, and
intrinsic and extrinsic noise cannot be accounted for,
but heterogeneity caused by experiments with multiple
variables can be accounted for. Single experiments
may include large numbers of samples across multiple
conditions, or sometimes researchers seek to combine
public datasets from large public repositories such as
NCBI Gene Expression Omnibus [36] and the Sequence
Read Archive (SRA) [37], which may have multiple
experimental conditions. In both cases, as datasets
become larger and more diverse, derived GCNs become
less informative due to an increase in noise from
multidimensionality [38].

One way to improve the utility of a network is to
address the causes of noise. Two common approaches
used to address noise in GCN construction are downsam-
pling and aggregation. Downsampling subdivides sam-
ples either by manually grouping them via experimental
conditions [39], or automating grouping by methods
such as k-means clustering or randomization [40, 41].
Downsampling is employed before network construction
to capture relationships that may be context-specific.
Aggregation is performed after network construction
and forms a consensus across multiple networks by

ranking edges that are conserved [42, 43]. Aggregation
is meant to reduce noise by lowering the rank of edges
with limited reoccurrence. Hybrid approaches have also
been employed to capture the benefits of both methods
[38, 44].

One major reason for downsampling is that researchers
often seek to identify context-specific relationships
between genes. In the literature, a context-specific net-
work is referred to as condition-specific, context-specific,
tissue-specific, trait-related, condition-dependent or
targeted networks. We refer to networks of such relation-
ships as context-specific GCNs (csGCNs). For example,
a subgraph, where all edges in the network consist
of relationships that are associated with a specific
tissue, treatment, phenotype, etc., is context-specific.
A researcher may perform downsampling, for exam-
ple, by separating samples into a group measuring
a treatment and another for control, and creating a
separate treatment GCN for each. Unfortunately, the
use of downsampling to generate csGCNs is increasingly
challenging as the dimensionality of experiments
increases. For example, how is one to divide samples
into groups when gene expression is a result of multiple
conditions at one time (e.g. genotype, treatment and
time point) without sacrificing statistical power? Also,
downsampling cannot resolve noise from confounding
variables (which we demonstrate later). Additionally, the
aggregation of networks seems biased toward contexts
that are more prevalent across the experiments and
edges that are specific to a single context would be more
likely not to be present in the network.

Neither downsampling nor aggregation fully addresses
issues of noise. Consider the two scatterplots of Figure 1.
These plots show pairwise gene expression from NCBI’s
SRA [37] PRJNA301554 project [45], which consists of
gene expression from four genotypes of Oryza sativa (rice)
that were exposed to drought, drought recovery, heat,
heat recovery and control regiments measured every
15 min over several hours. This experiment was selected
because it includes multidimensional data from a con-
trolled experiment with different treatments, genotypes
(and subspecies) and time points.

Figure 1A shows a gene pair with two distinct modes
(clusters) of co-expression for each rice subspecies. The
application of correlation considers all samples, and this
pair results in a Spearman’s rho of −0.003. Such a low
score would exclude this pair from a GCN. If only Indica
samples were included (such as if samples were down-
sampled by subspecies), then a Spearman’s rho of 0.82
would result and the Japonica samples would show little
or no correlation.

In Figure 1B, co-expression only exists distinctly for
heat and heat recovery conditions but very little for
the others. Overall, this pair exhibits a Spearman’s rho
of 0.62, which is often too low for most thresholding
approaches, and the edge is lost despite that heat and
heat recovery samples together exhibit a correlation of
0.98. However, suppose this pair were to be included in
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Figure 1. Examples of pairwise condition-specific gene co-expression.
RNA-seq expression data were from the NCBI SRA Project PRJNA301554.
The figure includes scatter plots of gene pairs with condition-specific
co-expression for (A) two rice subspecies and (B) different experimental
treatments.

the network at the 0.62 correlation value. The edge would
be accurate because the gene pair is correlated in heat,
but the context that the pair is only co-expressed in heat
is lost.

In both plots of Figure 1, the problem of systematic
noise is also demonstrated. Students of introductory
statistics are taught to check that assumptions of a test
are met before using that test. Yet for GCN construction,
checks of correlation assumptions are often overlooked—
most likely due to the high computational demand
for checking every pairwise comparison. Pearson is a
commonly used correlation method in GCN construction
and assumes no outliers, equal variance and linearity.
These assumptions are not met in the examples of
Figure 1—therefore, the strength of the relationship is
suspect. In other cases, inappropriate application of
correlation can lead to erroneous inclusion or exclusion
of edges when applying a threshold. Spearman seems
a better choice as it only assumes monotonically

increasing values, but it should not be applied with
multi-modal data such as the visible clusters of Figure 1,
and again, the conditional context and strength of the
relationship of Figure 1B would be lost with Spearman.

The plots of Figure 1 were specifically selected to
demonstrate the issues of noise and statistical bias;
however, to quantify the potential statistical bias, we
generated a traditional GCN using WGCNA from the
PRJNA301554 dataset and tested the best 15K edges.
After testing both for normality (Royston test; α = 0.01)
and equal variance (Breush Pagan test for the presence
of heteroscedasticity; α = 0.01), 97.3% of the edges in the
network did not meet one or both assumptions even
after outliers were removed. Thus, Pearson is largely
unsuited for this dataset. WGCNA uses the biweight
midcorrelation test rather than Pearson, yet it too is a
linear model with similar assumptions. Of the edges that
exhibited non-normal co-expression, 75% were multi-
modal like Figure 1A [identified using Gaussian Mixture
Models (GMMs)]. Thus, Spearman is largely unsuited
for most of the data as well. Also, the RMT approach
identified a correlation threshold of ±0.91—an extremely
high correlation threshold indicating high levels of noise.
Again, RMT thresholds indicate the point at which the
network begins to exhibit random properties. These
results imply that most of the edges in the network are
biased.

We should note that not all datasets exhibit such a
high level of bias. For example, the WGCNA package uses
for its tutorial a dataset containing 3600 genes from a
compendium of mouse liver microarray measurements
[46]. When the same tests of normality and equal vari-
ance were applied to the GCN constructed from that
data, 92.6% of the edges met both assumptions—a highly
contrasting result to the rice dataset. Therefore, GCNs
constructed from this dataset should have low statistical
bias. The RMT threshold for the mouse liver dataset
is 0.81. Although much lower than the rice data, it is
relatively high indicating there may be some noise adding
too much variability. Relationships below 0.81 that may
be meaningful are not explored due to this noise. The
rice and mouse liver datasets demonstrate that gene
expression data can vary widely in terms of bias and
researchers should be aware of such bias as it affects the
GCN construction approach they may have chosen to use.

Here, we describe a workflow that will allow researchers
to account for both the natural noise of large multivari-
able datasets and statistical bias that negatively affect
GCN construction. The workflow is not new, as it uses the
Knowledge Independent Network Construction (KINC)
software [47] and has been used in several recent plant,
human and data management studies. These include
identification of csGCNs that are specific to tumor types
in human cancer [48, 49], normal brain tissue [50], post-
harvest-specific networks in domesticated apples (Malus
domestica) [51], root nodulation biomarkers in Medicago
[52], ripening in d’Anjou pears [53] and exploration of
the effects of ‘lossy compression’ of GEMs [54]. Here, we
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describe sources of noise, compile a review of the work-
flow and describe the computational performances and
limitations. The objective is to help researchers consider
sources of noise in their increasingly multidimensional
transcriptomics datasets used for GCN construction, to
apply available solutions and to foster further advances.

Noise reduction strategy
Given high levels of potential noise in gene expression
datasets, we suggest that the ‘one-size-fits all’ approach
of most network construction tools is not appropriate for
all datasets. The examples of Figure 1 indicate that gene
co-expression can be unique at each pairwise compar-
ison. Therefore, each gene pair should be tested sepa-
rately. This contrasts with downsampling, which divides
samples into groups and creates GCNs separately for
each group but applies the same statistical methods to all
comparisons. By performing tests on each pair separately,
the unique patterns of expression between genes can
be accounted for. Testing each pair separately requires
more computational power—which we provide details
for below—however, it has the advantage of addressing
sources of noise specific to each unique gene pair and
can identify the context (or conditional association) for
each pair as well.

The following is a step-by-step description of the KINC
csGCN construction workflow that addresses noise at the
pairwise level. Most steps are performed at the gene–gene
pairwise comparison level. A flowchart of this workflow
is presented in Figure 2.

Preprocessing the GEM
Before execution of the following workflow, some pre-
processing of the input Gene Expression Matrix (GEM)
may be required. For researchers who combine samples
across experiments, it may be necessary to remove batch
effects using tools such as ComBat [55], ComBat-seq [56],
SVA [57] or SVAseq [58]. Systematic noise resulting from
different approaches to sample library construction may
result in bias that limits any GCN software, including
KINC. Also, before analyzing RNA-seq data for both DEG
analysis and GCN construction, it is common practice
to filter genes in samples with low counts. EdgeR rec-
ommends filtering genes that do not meet a set counts
per million threshold in a minimum number of samples
[59]. DESeq2 expands on this by using a mean normalized
count [60]. Such forms of filtering can occur, at the
discretion of the researcher, before using the workflow.
Such types of adjustments are not provided by KINC as
existing tools adequately perform these tasks.

Step 1. Outlier removal

For each pair of genes, the first step is outlier removal.
Outliers can bias the clustering step that follows and
should be removed. Outliers are identified from all the
pairwise sets of values using the Tukey method.

Step 2. Pairwise sample clustering

To address natural noise from experimental variation,
GMM clustering is applied at each pairwise gene com-
parison (before correlation). This step addresses noise
separately for each gene pair. Stated simply, GMM detec-
tion is an unsupervised, clustering approach that fits one
or more potentially overlapping Gaussian density distri-
butions over the pairwise data. An in-depth description
of GMMs as used by KINC is provided by Shealy and
Burns, et al. [47]. Users of KINC can specify the mini-
mum allowed size of a cluster. There are other clustering
approaches available but currently, KINC only supports
GMMs. Execution of GMMs is computationally expen-
sive and KINC uses a GPU implementation to improve
performance.

Step 3. Cluster outlier removal

The second round of outlier removal is performed on
each cluster identified by the previous step. Outliers are
removed because the subsequent similarity step may
be biased by outliers. For example, Pearson correlation
requires that no outliers exist in the data. Spearman is
more robust in the presence of outliers but removing
them will not prejudice the tests. Also, because clusters
follow a Gaussian distribution, they are certain to meet
other assumptions of both Spearman and Pearson tests.

Step 4. Similarity scoring

For each cluster, the similarity score is measured. For
pairs with multiple clusters, similarity will be calculated
multiple times, once for each cluster. For large gene sets,
billions of scores will be calculated and the resulting
output file may be extremely large. Therefore, KINC users
can set a minimum correlation value to limit output size.
By default, KINC sets this to ±0.5 to allow for meaningful
correlations while reducing storage requirements. Clus-
ters that do not meet the minimum score are excluded.
This filter is simply to limit output file size. If sufficient
storage space is available, then all correlation values, for
all pairwise tests, will be passed to the later steps for
filtering.

KINC supports both Pearson and Spearman correla-
tion methods. Regarding MI, studies have shown that, in
general, MI performs no better or worse than correlation
methods, Lindlöf and Lubovac indicated they did not
detect any difference between GCNs constructed via cor-
relation versus MI approaches. However, they attributed
that to a possible bias toward linear relationships in their
data due to the sampling approach [61]. Song et al. tested
their biweight midcorrelation approach against several
other methods, including MI and concluded, using both
real and simulated data that MI tends to be inferior and
suggested a spline-based regression model as an alterna-
tive to MI approaches. They note that MI is more mean-
ingful when sample sizes are larger (e.g. n > 300 samples)
[21]. Lastly, Huang et al. attempted to optimize GCN con-
struction by comparing multiple techniques as well. They
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Figure 2. The KINC GCN construction process. The flowchart depicts the eight steps of the KINC workflow for addressing statistical and natural noise
in GCN construction. In summary, each pair of genes proceeds through the workflow. First, outliers are removed. Second GMM is performed to identify
clusters of expression. Third, cluster outliers are removed and fourth the similarity test (e.g. Pearson or Spearman) is performed. Clusters with a
minimum score proceed. Fifth, a power analysis is performed to ensure sufficient statistical power in the correlation test. Clusters with high score
proceed. Sixth, clusters are tested for association with context (e.g. experimental conditions) and those with significant P values are associated with
the condition and proceed. Seventh, parallel tests for similar patterns of missingness (t-test) and difference in variance (Welch’s one-way ANOVA) are
performed. Clusters with significant P values are retained as context-specific edges in the network. Finally, all edges are ranked according to P values
and scores to help researcher prioritize edges.

also concluded that correlation-based approaches per-
form better for specific types of genes or specific types of
interactions but that larger samples size were important
for MI to perform well [62]. Consequently, KINC does not
support MI.

Step 5. Power analysis

Next, a power analysis test is performed to remove clus-
ters that have too few samples to justify the correla-
tion score calculated in Step 4. For example, consider
a dataset with 100 samples. Suppose that gene X is



6 | Burns et al.

only expressed in five of those samples—perhaps it has
condition-specific expression. For all pairwise compar-
isons of gene X with every other gene, only the five
samples can be used for correlation as all other samples
must be excluded as they have no expression for gene X.
Suppose in those five samples the correlation of gene X
and a gene Y is 0.85. A power analysis calculation would
indicate that for a Type I error rate of 0.001 and a Type
II error rate of 0.20, we would need at least 14 samples
to determine if a correlation value of 0.85 differs from
zero. Therefore, such a test would be underpowered with
only five samples and should be excluded. Underpow-
ered correlation tests occur when there are too many
missing values for a gene or too few samples in a cluster
identified by GMMs. The former case is an unaddressed
problem for all GCN construction tools, and the latter
is specific for this approach. By default, KINC requires a
power of 0.8 (1 minus the type II error rate of 0.2) with a
significance value, α, of 0.001. Clusters with insufficient
power (i.e. have too few samples for the correlation level)
are excluded by KINC. Users can set different power and
α limits.

Step 6. Context testing

To add context, each cluster that passes the power anal-
ysis test is tested for association with experimental vari-
ables (e.g. treatment, genotype, developmental stage, tis-
sue, environment, etc.) and P values, one per variable,
are assigned to each cluster. For categorical variables,
clusters undergo two z-score tests of proportions. The
first tests enrichment of the category within the cluster
and the second tests that the category tends to not
appear outside of the cluster. By default, clusters with a P
value <0.001 in both tests are retained. For quantitative
variables (such as a time series or clinical measurement),
linear regression is used and by default, those with an
R2 > 0.3 and P value <0.001 are retained.

Step 7. Correct bias in context associations: missing values

A gene has missing expression in a sample if there are no
counts for it from the RNA-seq data, or if it was removed
through a low-count filter before network construction.
This does not imply the gene was not expressed, but
that it was not detected. During clustering (Step 2), sam-
ples with missing values, in either one of the genes, are
excluded because the two genes cannot be compared
when one sample has a missing value. The pattern of
missing values within each gene may have a biologi-
cal source. For example, suppose gene X and gene Y
have count values only in one treatment, say a control
treatment and in no other treatment. Step 6 will asso-
ciate their cluster with the control treatment because
the only samples in the comparison are from the con-
trol treatment. Their missing patterns should be similar.
Next, consider that a gene Z has basal function, has
count values in all treatments, and tends to correlate
with many genes, perhaps due to Circadian control in

a time-series experiment. When gene X and Z are com-
pared, Step 6 will also associate this pair with ‘con-
trol’ because the only samples in the comparison are
from control. This is despite that gene Z has ubiquitous
expression and is not ‘control’ specific. Any gene that
correlates with X will always be associated with control
resulting in a ‘spoke’ like appearance of connected genes
around X in the context-specific network. To reduce such
spokes, where context-only genes correlate with condi-
tion agnostic genes simply due to patterns of missing
values, a Student’s t-test is used to ensure that two genes
have similar patterns of missingness (P value <0.001).
Thus, genes X and Y in the example would be considered
context-specific for control but gene X and Z would not.
We acknowledge that this approach may be overly con-
servative for all comparisons and more work is needed to
improve such filtering.

Step 8. Correct bias in context associations: confounding
variables

Another reason for the incorrect association during Step
6 is from multivariate control of gene expression. Step 6
association is meant to identify when a cluster is associ-
ated with a single variable in the data. This variable could
be a category (e.g. heat treatment) or quantitative (e.g.
time). However, consider the case where the expression
of gene X is a function of two variables such as heat
response and time, and a gene Y’s expression is a func-
tion of circadian control, and not heat. Figure 3 shows
such an example. Figure 3A shows the pairwise scatter-
plot of two genes with samples colored by treatment.
The purple heat samples would be identified as a cluster
in Step 2 with moderate inverse correlation [Spearman
Correlation Coefficient (SCC) = −0.63]. Step 6 would then
associate the heat treatment with the cluster. Observa-
tionally, there does appear to be a heat-specific cluster in
Figure 3A. Yet, Figure 3B shows that heat samples have a
different mean expression in the LOC_Os01g04340 gene
indicating a heat-specific response in that gene but not
an obvious heat response in the other. Figure 3C indicates
that the expression of LOC_Os01g10580 increases with
time for all treatments, and Figure 3D indicates that the
expression of LOC_Os01g04340 decreases with time, but
only for the heat-treated samples. The expression of the
first gene appears to only be a function of one variable—
time (perhaps under circadian control). The expression
of the second gene is a function of two variables—heat
treatment and time (perhaps a waning response to heat
treatment). Time is a shared variable for both genes,
whereas heat only affects one gene. Because Step 6 is
meant to identify relationships that are specific to only
a single variable, this relationship (confounded both by
time and heat) is a false association to heat alone. KINC
excludes such false associations by performing a Welch’s
one-way analysis of variance (ANOVA) test on each gene
comparing the variance of the ‘in’ group with that of
the ‘out’ group. The ‘in’ group consists of those sam-
ples that are in the cluster. The ‘out’ group could be
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Figure 3. Confounding variables in gene co-expression: Heat example. The expression scatterplot of a rice gene pair is shown. The pair in (A) is poorly
correlated overall (SCC = −0.13) but moderately correlated if only the heat samples are considered (SCC = −0.63). In (B) only the LOC_OS01g04340 gene
has a visible difference in expression in the heat response with the LOC_OS01g04340 gene showing a visible increase in expression in heat samples. This
results in the purple cluster of genes distinctly separated from other samples in (A). In (C) and (D) both genes exhibit a linear relationship with time but
LOC_Osg04340 only exhibits time-dependence in heat samples. This covariance of both heat and time in LOC_OSg04340 falsely result in this pair being
associated with heat when it is only correlated by time in heat.

samples in a specific category, such as ‘control’, or all
other samples not in the cluster. This test ensures that
the category being tested exhibits differential expres-
sion in both genes. Both genes must have a significant
P value (α < 0.001) for the cluster to be retained. We
acknowledge that this filtering is a bit harsh because,
as in the case of Figure 3, the relationship is excluded
for heat-specific and for time-specific, when it is time-
specific. Thus, some relationships will be missed. Bet-
ter approaches are needed. Of note, a downsampling
approach would not correct this bias.

Step 9. Ranking edges

Only clusters that pass correlation test assumptions,
have sufficient power, have significant P values for
context association, have significant P values for the
missingness test and have no confounding bias from
other variables are retained. These clusters become
edges in the csGCN. The network is a csGCN because each
edge is annotated with a specific experimental variable,
indicating the context in which that edge is expressed. A
gene pair may have multiple edges (each for a different
context), but each would have a different P value and/or
R2 for the respective condition. Unfortunately, because
a pair of genes can have multiple edges, methods such
as RMT cannot be used for thresholding as the similarity
matrix becomes multidimensional. Therefore, to help
researchers prioritize edges, they are ranked using a
valuation approach that includes the similarity score, P
values from all tests and the R2 value if linear regres-
sion was performed (for quantitative variables). The

ranking provides an alternative to the traditional
correlation similarity score to prioritize the best edges
in the network. This ranking can help prioritize edges in
very large csGCNs.

Step 10. Visualization

Once a csGCN is complete, exploration of the network
can occur. Users can filter the ranked edges, select exper-
imental variables of interest or import the entire csGCN
into the popular network visualization tool, Cytoscape
[63]. Alternatively, KINC provides a 3-dimensional net-
work viewer that allows the end-user to explore the
csGCN by layering the edges by experimental variable, P
values, similarity scores, etc. A screenshot of this tool is
shown in Figure 4.

KINC v3.7 performs these steps and was written
in the C++, OpenCL, CUDA, R and Python languages.
It uses the Accelerated Computing Engine library
v3.2.0 [64], which provides a mechanism for managing
computational tasks on heterogeneous computational
infrastructure. KINC is an open-source software package
with source code available at the GitHub repository,
https://github.com/SystemsGenetics/KINC and full step-
by-step documentation at https://kinc.readthedocs.io/.
The accompanying R package, KINC.R, is available at
https://github.com/SystemsGenetics/KINC.R.

Computational performance
The space and time requirements of the described
workflow are most affected by the GMM calculations.

https://github.com/SystemsGenetics/KINC
https://kinc.readthedocs.io/
https://github.com/SystemsGenetics/KINC.R
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Figure 4. KINC GCN visualization. KINC provides a web-based tool for network visualization that allows the researcher to layer and color edges by their
similarity score, R2 value, P values, rank, variable categories and relationship direction (negative or positive). The left sidebar provides useful plots such
as scatter plots for selected edges, violin plots of expression for selected nodes, scale-free and clustering plots for the network and functional details
about nodes.

Therefore, to demonstrate the computational perfor-
mance of Steps 1–4, we use four different size datasets.
The first dataset is a small yeast dataset with 7050
genes and 188 randomly selected RNA-seq samples from
the NCBI SRA. The second is a medium-size dataset
and is the same 475-sample rice dataset (PRJNA301554)
described previously. The third is a subset of the rice
dataset that contains only 141 samples that underwent
drought stress. The fourth is a large GTEx [65] normal
human brain tissue dataset consisting of the expression
pattern of 56 202 genes across 1671 samples and 13
brain tissues [50]. The GTEx GEM was preprocessed by
log2 transformation of the expression values obtained
from GTEx, applying the Kolmogorov–Smirnov test to
remove outlier samples and quantile normalization on
the GEM. These datasets were selected to demonstrate
computational performance for small, medium and
large GEM sizes with different numbers of genes and
samples.

To quantify computational requirements, we tested
performance via KINC version 3.4.2 using GMMs on both
the WSU Kamiak cluster and the Clemson University Pal-
metto cluster. Five compute nodes were used in parallel
on Kamiak and each node provides two NVIDIA Tesla K80
(four GPUs each), 24 Intel Xeon E5-2670 CPUs and 256GB
of RAM. The nodes that were used on Palmetto were
equipped with Intel Xeon E5-2680 CPUs, 2 NVIDIA P100
GPUs and 128GB of RAM. Multiple iterations of testing
occurred using between 16 and 120 CPUs and 1 and 17
GPUs in parallel.

KINC uses a binary encoding for storing the similarity
matrix and GMM results. These output files were named
with the extension ‘CCM’ (for the cluster correlation
matrix) and ‘CMX’ (for the correlation matrix). The sim-
ilarity matrix can become quite large {size of [n × (n
− 1)]/2, where n is the number of genes}. KINC there-
fore automatically sets a default correlation threshold
of 0.5 and uses a sparse matrix format to keep data
files relatively small although end-users can change the
cutoff as needed. We used this 0.5 cutoff for performance
testing. The amount of storage space required for this
experiment was also recorded.

Results show that the use of GMMs can be compu-
tationally time-consuming depending on the size of the
GEM and large GEMs require larger amounts of storage.
KINC can use both CPUs and GPUs concurrently across
multiple compute nodes in parallel; This was fully tested
using four different GEMs varying in size in both genes
and samples from small (7050 genes × 188 samples) to
large (56 202 genes × 1671 samples) (Figure 5). For the
small yeast dataset (shown in Figure 5A and B), execution
on Kamiak with 16 CPUs required several hours and exe-
cution on just a single GPU provided similar performance.
The time was dramatically decreased as the number of
CPUs and GPUs increased but with diminishing speedup.
Even the dataset with more genes and similar samples
(55 986 genes × 141 samples) was completed in less
than a day with three GPUs (Figure 5C). Thus, small
datasets can complete in a few hours to a day using
similar computational resources that are increasingly
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Figure 5. Computational performance of Steps 1–4 using KINC. Plots (A) and (B) indicate time of execution on a yeast (Saccharomyces cerevisiae) GEM
containing 7050 gene transcripts and 188 samples on both CPUs and GPUs respectively. Performance measurements were measured on Clemson’s
Palmetto HPC cluster and WSU’s Kamiak HPC cluster. Plot (C) indicates the time required to analyze GEMs of different dimensions on WSU’s Kamiak
cluster using three GPUs. Plot (D) indicates the size in MB for the CCM file and the CMX file. KINC was instructed to only retain correlations whose
absolute value was greater than or equal to 0.5. The GEM size axis in plots (C) and (D) is represented as the number of gene transcripts versus the
number of samples.

available via institutional, national or cloud computing
facilities. In contrast, very large datasets with thousands
of samples can take weeks. Such large compute times
may be impractical for some users. Additional research
is needed to find methods that can reduce very large
GEMs without loss of meaningful relationships or use
other dimensionality reduction methods that are less
computationally intensive.

Limitations and areas to explore
The workflow described here is provided as a protocol
that can be used to address issues of noise in GCN
construction. One objective for this manuscript is to alert
researchers to such issues and to foster the develop-
ment of better tools, including those that can improve
on this protocol. Here, we describe a few limitations.
First, GMMs are not perfect in identifying all clusters.
Because it is computationally intractable to explore all
possible solutions, GMMs require random start locations,
which may settle in different local minimums with dif-
ferent runs. We have observed improper identification
of clusters when few samples are present or for genes
biased by very low expression levels. The power-analysis
step should filter clusters with few samples and context
association testing will overlook clusters with no discov-
erable context. However, a more thorough examination

of false edges resulting from the imperfect use of GMMs
is needed.

GMMs may also suffer when context expression of
genes overlaps in the 2D space. For example, consider
the scatterplot of Figure 3A. The drought and control
labeled samples overlap and are not distinguishable from
one another. This is not problematic because there is
no correlation within this group. However, if there were
correlation in one treatment but not the other then KINC
would fail to identify the cluster as context-specific. We
believe the likelihood of overlap increases as more exper-
imental variables are represented in the data. More work
is needed to explore amelioration strategies to reduce the
loss of sensitivity as more variables are included. The
problem, however, limits the discovery of edges rather
than producing false edges.

An additional challenge is that running this workflow
on large GEMs may be difficult for some users who do
not have access to GPUs or large compute clusters. We
anticipate that as such resources become more widely
available via institutional, national and commercial
cloud computing, researchers will have access to these
facilities. Given that facilities such as XSEDE [66], the
Open Science Grid [67] and the Pacific Research Platform
[68] are available to many researchers, more time-
consuming analytical approaches can be used. Despite
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the computational challenges for analyzing multidi-
mensional data, the simplistic traditional GCN methods
are not adequate to account for bias at the pairwise
level and researchers should attempt to account for
them.

One topic absent from this manuscript is the measure-
ment of the biological performance of csGCNs. Biological
performance can be defined in terms of the number
of true relationships that are represented in the csGCN
and the lack of false associations. This is a challenging
question to address for GCNs as well as csGCNs because
of the lack of a gold standard, validated network by which
GCNs can be compared, especially in all contexts. One
of the most popular methods for measuring the perfor-
mance of a GCN is comparing the number of conserved
functional terms between neighbors in the network. This
approach relies on the GBA concept that interconnected
genes should share similar function. Extending ‘Guilt-
by-Association’ by Degree [69] is one tool that uses a
machine learning approach to measure how well a neigh-
borhood of connected genes can predict the function of
its connected neighbors. It has been shown, however, that
these evaluation approaches may be biased toward genes
that are more highly researched (i.e. have more anno-
tated terms), multifunctional and with higher intercon-
nections (or degree) in the network [70]. Another study
shows that downsampling and aggregation improve the
functional performance of GCNs [38]. Therefore, it seems
reasonable to assume that downsampled and aggregated
networks may be biased toward multifunctional genes. In
contrast, csGCNs are context-specific and our assump-
tion is they will be enriched for genes that are not con-
stitutively expressed, have fewer annotations and tend
to be less multifunctional. This would result in csGCNs
performing worse in GBA studies and perhaps falsely
imply that they perform poorly. This hypothesis should
be explored further.

Despite the lack of a metric on biological performance,
we assume that biological performance is improved in
the csGCNs simply by ensuring that statistical biases
are handled, and noise is accounted for using simple,
commonly used statistical practices and methods. By
ensuring that statistical assumptions are met, that tests
have sufficient power and bias from missing values and
confounding variables are accounted for, we conclude
that the number of false edges should be reduced when
exploring deeper into the correlation space that RMT
would normally exclude.

Finally, the use of GMMs provides thousands of
new context-specific edges that need exploration.
KINC-derived networks can retrieve context-specific,
statistically significant edges at correlation values as
low as ±0.3 provided sufficient data (statistical power)
are available. The biological role of correlation at such
lowly correlated relationships is unknown. Are these
primarily indirect relationships? More research is needed
to determine the role of such significant but lowly
correlated relationships.

Conclusion
GCN construction is a widely applied technique that
warrants improvement. As described here, multidi-
mensional transcript profiles create challenges for
traditional GCN construction due to multiple sources
of noise and bias that are unaccounted for in traditional
approaches. As previously noted, approximately 97% of
edges in the rice dataset did not meet test assumptions.
This result implies that the quality of traditional
approaches (including the highly popular WGCNA) is
highly dependent on the structure of the data. Thus,
when researchers fail to find modules of interest it
may be due to deficiencies of current GCN construction
methods for multidimensional data rather than a lack of
‘signal’ in the data.

Data availability
No new data were generated or analyzed in support of
this research.

Key Points

• Multidimensional gene expression data contain
natural and systematic noise that affects GCN
results.

• The ‘one-size-fits-all’ approach to co-expression
network construction cannot correct for noise.

• Sources of noise are different for each pairwise
comparison so correction strategies should be
applied at the pairwise level.

• The KINC toolkit offers an approach for pairwise
correction of bias.
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