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ABSTRACT

Although not all somatic mutations are cancer
drivers, their mutational signatures, i.e. the patterns
of genomic alterations at a genome-wide scale, pro-
vide insights into past exposure to mutagens, DNA
damage and repair processes. Computational decon-
volution of somatic mutation patterns and expert
curation pan-cancer studies have identified a num-
ber of mutational signatures associated with point
mutations, dinucleotide substitutions, insertions and
deletions, and rearrangements, and have established
etiologies for a subset of these signatures. However,
the mechanisms underlying nearly one-third of all
mutational signatures are not yet understood. The
signatures with established etiology and those with
hitherto unknown origin appear to have some differ-
ences in strand bias, GC content and nucleotide con-
text diversity. It is possible that some of the hitherto
‘unknown’ signatures predominantly occur outside
gene regions. While nucleotide contexts might be ad-
equate to establish etiologies of some mutational sig-
natures, in other cases additional features, such as
broader (epi)genomic contexts, including chromatin,
replication timing, processivity and local mutational
patterns, may help fully understand the underlying
DNA damage and repair processes. Nonetheless, re-
markable progress in characterization of mutational
signatures has provided fundamental insights into
the biology of cancer, informed disease etiology and
opened up new opportunities for cancer prevention,
risk management, and therapeutic decision making.

INTRODUCTION

Genomic instability is a hallmark of all cancers. Cancer
genomes typically harbor 103–105 somatic point mutations,
along with other classes of genomic alterations, including
insertions and deletions (InDels), copy number variations,
rearrangements and ploidy changes (1,2). While a vast ma-
jority of somatic mutations are not oncogenic drivers, their

patterns of genetic changes and associated contexts can pro-
vide insights into past exposure to mutagens, mechanisms of
DNA damage and repair defects, and extent of genomic in-
stability, which in turn can guide rational strategies for can-
cer prevention, risk management and therapeutic decision
making (3–5). Targeted mutagenesis and engineered pertur-
bation of cellular processes and reporter assays in cell lines
and animal model systems have been widely used to estab-
lish the consequences of exogenous mutagenic exposure, as
well as endogenous DNA damage and genome maintenance
processes [reviewed in (6–9)] (Figure 1A and B). More re-
cently, computational deconvolution of mutational patterns
in somatic genomes has provided complementary and un-
biased insight into the genome-wide consequences of these
mutagenic processes in vivo in human tissues. Here, we first
describe the computationally derived mutational signatures,
emerging bioinformatics resources for analysis of the sig-
natures and characteristics of signatures of known and un-
known etiologies; we then discuss the emerging approaches
for broader context-guided assessment of somatic muta-
tions, mechanistic inference of the signatures and future di-
rection.

DATA-DRIVEN INFERENCE OF MUTATIONAL SIGNA-
TURES

Consequences of exposure to carcinogenic agents were
known even in ancient civilizations. One of the oldest de-
scriptions of cancer is found in an Egyptian papyrus dated
about 3000 BC. After the industrial revolution, coal tar was
prescribed for medical purposes in the 1800s, but later it was
suspected to cause cancer in animals. In 1915, Yamagiwa
Katsusaburo and Koichi Ichikawa experimentally showed
that coal tar can induce tumors on rabbits’ ears, which could
be one of the early systematic experiments demonstrating
chemically induced carcinogenesis. However, the idea that
carcinogens cause DNA damage did not arise until the
1950s, and the now accepted paradigm of cancer develop-
ment that cancer is a genetic disease that progresses via mu-
tagenesis began to take shape in the 1960s. Initially, a num-
ber of reporter assays were used to investigate mutagenic
processes in cell lines and model systems (10–14). However,
these were relatively low throughput and did not capture all
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Figure 1. Inferences of mutational signatures using different approaches. (A) Targeted mutagenesis using selected agents and sequencing of clonally
derived cell populations to identify corresponding mutational signatures. (B) Perturbation of selected cellular processes in model systems (e.g. animal
models, organoids, cell lines), and then sequencing of tumors or clonally derived cell populations to identify corresponding mutational signatures. (C)
Data-driven approaches to identify mutational signatures of exo- and endogenous mutagenic processes. While the schematics above are shown for single
base substitution (SBS) signatures, similar approaches have also been adopted for doublet base substitution (DBS), small InDel and genomic rearrangement
signatures.

aspects of the complexity of environmental exposure and
deficiency in genome maintenance that are characteristics
of the mutational landscapes of human tumors and non-
malignant somatic cells.

In 2010, Pleasance et al. used whole genome sequencing
to analyze mutational patterns in cancer cell lines (15,16)
and reported that lung and skin cancer cell lines show char-
acteristic signatures of smoking and UV exposure, respec-
tively. More recently, whole genome sequencing and whole
exome sequencing of thousands of cancer genomes have
provided an opportunity to examine mutation patterns in
cancer genomes using data-driven approaches and infer
their likely etiologies (Figure 1C). Alexandrov et al. im-
plemented non-negative matrix factorization (NMF) to de-
convolve mutation patterns in cancer genomes and identi-
fied an initial set of 30 mutational signatures (17,18). More
recently, using multiple computational methods the Pan-
Cancer Analysis of Whole Genomes (PCAWG) study has
identified a total of 77 consensus mutational signatures,
comprising 49 SBS, 11 DBS, 17 InDel and 6 rearrangement
signatures (19).

A majority of computationally inferred signatures match
with the mutation profile characteristics of known muta-
genic processes. These include environmental carcinogens
[e.g. smoking, UV, etc. (19)], food-borne mutagens [e.g.
aflatoxin (20)] and those attributed to cytotoxic treatments
[e.g. cisplatin exposure (21)]. Recently, SBS17 has been at-
tributed to 5-fluorouracil treatment (22). These findings
have provided insights into cancer etiology and influenced
treatment options. Analysis of mutational patterns has also
unveiled novel mutagenic processes and established their

etiologies [e.g. kataegis (23) and chromothripsis (24)]. It ap-
pears that some mutational signatures typically arise pro-
gressively during aging processes in normal somatic cells
[e.g. the clock-like signatures (25)], whereas some other sig-
natures (e.g. signatures of burst-like APOBEC mutagenesis
and uncorrected replication error) probably arise late dur-
ing tumor progression (26,27). The PCAWG mutational sig-
nature analyses and COSMIC catalog of mutational signa-
tures provide an excellent discourse of the latest mutational
signatures, their etiologies and nucleotide-level characteris-
tics (18,19).

COMPUTATIONAL RESOURCES FOR EXTRACTION
AND ANALYSIS OF MUTATIONAL SIGNATURES

A number of computational resources have been developed
for extraction, interpretation and annotation of mutational
signatures from large-scale somatic mutation data. WTSI
(28) and Emu (29) were among the first available to identify
mutational signatures from somatic mutation data in can-
cer genomes. Since then, a number of additional tools such
as SomaticSignatures (30), SigProfiler (19), SignatureAna-
lyzer (19), sigfit (31), Helmsman (32), maftools (33), signeR
(34) and others have been developed. These tools use prob-
abilistic approaches and NMF to process and extract mu-
tational signatures de novo from cancer genomic data. A
subset of these can now identify signatures associated with
other classes of genomic alterations such as InDels, DBS
and/or rearrangements. The number of mutational signa-
tures present in somatic genomes is not known a priori;
some tools can automatically estimate an optimal number
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of signatures [e.g. EMu (29), maftools (33)]. Appropriate
null models are critical for meaningful discovery of muta-
tional signatures from genomic data. Bergstrom et al. (35)
have developed utilities to simulate mutational landscapes
under different null models, which can be used to exam-
ine whether mutational patterns observed in somatic cells
show significant enrichment of certain signatures compared
to that expected by chance. Together, these tools provide
a rich resource for signature discovery. Omichessan et al.
have tabulated several software and compared their perfor-
mance for de novo signature extraction using simulated and
real data, and found that identification of signatures is chal-
lenging in tumor genomes comprised of multiple signatures
each having modest contributions and that probabilistic ap-
proaches tend to perform better than other approaches (36).
In the future, it might be appropriate to have a DREAM
Challenge-type community-driven systematic study to com-
pare and benchmark performance of these tools on an open
platform.

A number of computational methods such as decon-
structSigs (37), sigfit (31), MutationalPatterns (38), de-
compTumor2Sig (39), etc. allow users to determine relative
contributions of the signatures from an existing catalog in
the set of somatic mutations in tumor genomes. Some of
them [e.g. SignatureEstimation (40), SigsPack (41)] further
allow estimation of confidence intervals for each identified
signature in a somatic genome. Some utilities such as Mu-
SiCa (42) and MutaGene (43) allow web-based analysis of
mutational signatures.

It appears that analyzing somatic mutations in their ge-
nomic context and local patterns can provide additional
critical insights. Singh et al. used an hidden Markov model
(HMM)-based approach to identify different mutagenesis-
related composite epigenomic contexts, and then used that
to identify patterns of mutation signatures in different con-
texts and conclude that SBS8 likely arises due to uncor-
rected late replication errors (44). TensorSignatures (45) has
been recently developed based on an overdispersed statisti-
cal model incorporating mutational catalogues, transcrip-
tion and replication strand bias, and kataegis, leading to
more robust extraction of mutation signatures. SigMa (46)
and recently StickySig (47) model statistical dependencies
among neighboring mutations to characterize strand coor-
dination, and other genomic and nongenomic factors that
influence the activity of mutation signatures. Such efforts
are exciting and contributing to the broader understanding
of the patterns of the mutational signatures in the genome.
For example, it appears that some signatures (e.g. APOBEC
mutagenesis) are associated with extended processivity (48).

Other resources have been developed to link the mu-
tational signatures with tumor evolution and therapeutic
strategies. Temko et al. used a probabilistic approach to
identify the preference for oncogenic mutations given the
prevailing mutational signatures (49). MutaGene offers a
maximum likelihood approach to predict the likely etiology
of individual mutations, which can be used to infer the likely
mutagenic process behind individual driver mutations in a
cancer (50). Palimpsest (51) and trackSig (52) can provide
clonality inferences for mutational signatures, which can in-
form how mutagenic processes change during the course
of tumor progression. Structural variation signatures (53)

and HRDetect (54) can identify homologous recombina-
tion (HR) deficiency in human tumors, which could be tar-
geted clinically. Several other tools can predict signatures
(e.g. APOBEC signature) associated with cancer diagnosis
and/or guide suitable treatment, including immunotherapy
(7,55,56).

MUTATIONAL SIGNATURES OF KNOWN AND UN-
KNOWN ETIOLOGIES

Etiologies of nearly one-third of the COSMIC version 3 sig-
natures are not yet fully understood as of July 2020. Some
signatures (e.g. SBS3, SBS8, SBS5) correlate with important
clinical and molecular features, but their underlying mech-
anisms are not yet fully determined or remain debated (18).
Are the known and unknown signatures somewhat differ-
ent? Are there certain characteristics or lack thereof that
helped decipher the known signatures, and could those pro-
vide potential informed guidance while investigating the sig-
natures of hitherto unknown etiologies?

The COSMIC mutational signatures were identified us-
ing NMF, which is a mathematical technique for blind
source separation, resolving an original matrix into a prod-
uct of two matrices with lower dimensions (57). It has an
inherent clustering property such that it implicitly and par-
simoniously groups the original dataset into a smaller set
of relatively homogeneous subgroups. Thus, if mutations of
a given etiology are sparse and clustered, i.e. occur in se-
lective nucleotide contexts, affect a select subgroup of pa-
tients and have high attributed mutation burden, it would
be easier to identify its associated signature by NMF-based
deconvolution. Indeed, many well-established endo- and ex-
ogenous mutational signatures have these properties. More-
over, many of these signatures are associated with external
mutagenic exposure or oncogenic mutations in DNA repair
pathways that result in a specific and substantial burden
of associated mutations in tumor genomes, which are as-
sociated with clinical variables. For instance, smoking and
UV exposure cause an excessive burden of somatic muta-
tions with distinct substitution patterns in lung and skin
cancer subtypes. Some DNA repair and genome mainte-
nance defects also result in distinct nucleotide-level changes
and manifest in tissue-dependent manner. For instance, tu-
mors with mismatch repair defects (e.g. MSH2, MLH1
and MSH6 mutations) or DNA polymerase functions (e.g.
POLD1 and POLE mutations) are relatively common in
colon tumors, which lead to distinct substitution biases and
up to one to two orders of magnitude more mutations in af-
fected tumors compared to other tumors of the same sub-
types; notably, a minority of tumors possessing defects in
both mismatch repair and DNA polymerase functions show
intricate signatures defined by SBS14 and SBS20 (58,59).
The other major subset of interpretable mutational signa-
tures of endogenous origin often involves sporadic, burst-
like activity of specific mutations at distinct contexts (e.g.
APOBEC signatures) (19), such that the affected genomes
have substantial burden of associated signatures (26,48). In-
deed, these signatures were among the first to be identi-
fied. Rigorous examination, curation and validation by the
broader collaborative scientific community in general, and
the COSMIC initiative in particular, have helped establish
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Figure 2. Differences between known and hitherto unknown SBS, DBS and InDel mutational signatures. PCA plots showing known (pink) and unknown
(cyan) SBS signatures based on their (A) trinucleotide frequencies, and (B) multiple features including GC content, Shannon’s and Simpson’s diversity
indices of trinucleotide context usage, transcriptional strand bias and presence in proportions of cancer types that could be computed based on their
COSMIC signature information alone. (C) Coefficients of the features with decreasing lambda in a LASSO regression are shown. PCA plots showing known
(pink) and unknown (cyan) DBS signatures based on their (D) dinucleotide frequencies, and (E) multiple features including GC content, Shannon’s and
Simpson’s diversity indices of dinucleotide context usage and presence in proportions of cancer types. (F) Coefficients of the features with decreasing lambda
in a LASSO regression are shown. PCA plots showing known (pink) and unknown (cyan) InDel signatures based on their (G) nucleotide frequencies, and
(H) multiple features including Shannon’s and Simpson’s indices and presence in proportions of cancer types. (I) Coefficients of the features with decreasing
lambda in a LASSO regression are shown. In all cases, random forest mean decrease in Gini index and mean decrease in accuracy, which indicate feature
importance, also showed comparable patterns.

etiologies of more complex signatures (18). The success of
this approach is exemplified by deciphering complex signa-
tures (e.g. SBS3, SBS5, SBS25 or SBS35) that have nonspe-
cific tissue and/or nucleotide context preferences.

We further examined whether there are other quantitative
differences between the known and hitherto unknown sig-
natures. When the SBS signatures were projected on a prin-
cipal component analysis (PCA) plot based on their trinu-
cleotide frequencies (Figure 2A), the signatures of unknown
etiologies partially segregated from the known signatures,
although SBS7c, SBS7d and SBS22 showed contextual sim-
ilarities. In contrast, signatures SBS8, SBS40, SBS19, etc.
were more similar to known signatures. Next, for each sig-
nature we analyzed a number of meta-features including
GC content, transcriptional strand bias, presence in pro-
portions of cancer types and diversity of trinucleotide pref-
erence using Shannon’s and Simpson’s indices (Figure 2B;
also see the Supplementary Data for details of analyses) that
could be computed directly from the COSMIC signatures
without additional data on broader (epi)genomic or tissue
contexts. When the signatures were projected on a PCA plot
using these meta-features, the unknown signatures partially
segregated from the known signatures and the overall dif-
ferences were qualitatively similar to those observed above.
Such differences are not due to technical issues in NMF-
based signature extraction; the SBS signatures are generally
robust between COSMIC versions and have been identified
by multiple algorithms (19). Feature selection using LASSO
indicated that transcriptional strand bias and GC content

are associated with differences between signatures of known
and unknown etiologies (Figure 2C); the unknown signa-
tures on average have weak transcriptional strand bias and
lower GC content. When the analyses were extended for the
DBS and InDel signatures (Figure 2D–I), the signatures of
known and unknown etiologies showed some differences in
their nucleotide context usage (Figure 2D and G), while at
the level of meta-features the differences were less apparent
(Figure 2E and H). The known DBS signatures were char-
acterized by CC>NN (DBS1 and DBS2), TT>NN (DBS3
and DBS7) and CG>NN (DBS10), while unknown were
dominated by GC>NN, TG>NN and AC>NN substitu-
tions. Nucleotide diversity (Simpson’s index) at mutated po-
sitions and GC content were important for discriminating
DBS signatures of known and unknown etiologies, while
nucleotide diversity (Simpson’s index) at mutated positions
was relevant for a similar analysis on the InDel signatures.
Both DBS and InDel signatures are recent, such that differ-
ences between the known and hitherto unknown signatures
may be superficial, and etiologies of many of them could be
established in the near future.

It is possible that the unknown mutational signatures, es-
pecially those with rare occurrence and/or modest effect
sizes, might need larger sample sizes for robust detection.
However, compositions of the major signatures are broadly
consistent across COSMIC versions (18), indicating that
these are usually distinct and stable (19). It is also possible
that signatures of basal genome maintenance, DNA dam-
age and repair processes that are operative in most somatic
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Figure 3. Emerging strategies for investigating characteristics of mutation signatures. Approaches such as analyses of strand bias, context preference, local
patterns of mutations, cooperativity and correspondence with laboratory-generated mutation signature can potentially help provide additional mechanistic
insights into the mutational signatures, including those of hitherto unclear origin. Only representative examples are shown.

cells during development and aging are inter-related (59),
and thus harder to isolate. Differences in transcriptional
strand bias and/or GC content (Figure 2) raise a provoca-
tive question whether many, though not all, hitherto un-
known signatures might predominantly occur outside gene
regions, which are relatively poorly characterized. More-
over, crosstalk between multiple genome maintenance pro-
cesses might lead to complex signatures. For instance, co-
occurrence of mismatch repair (MMR) defect and DNA
polymerase mutations results in a signature (SBS14 and
SBS20) that is distinct from both (58,59). It is also possi-
ble that mutations arising from dose-dependent or reduced
activities of genome maintenance processes might be harder
to pinpoint than those associated with oncogenic mutations
in DNA replication and repair-related genes. Multidisci-
plinary efforts from the scientific community are addressing
these open questions from different angles, and their inno-
vative approaches are expected to provide new insights into
origins, higher order patterns and consequences of the mu-
tational signatures, as we discuss in the following sections.

BROADER CONTEXT-GUIDED ASSESSMENT OF SO-
MATIC MUTATIONS

DNA damage and repair depend on local nucleotide se-
quences, as well as broader genomic, epigenomic and nu-
clear contexts. Mechanisms underlying some mutational
signatures might be sufficiently explained by their nu-
cleotide contexts alone [e.g. tobacco signature (60)], while
in other cases broader genomic and epigenomic contexts,
which include chromatin, replication timing, processivity
and other relevant features, may help understand the mech-
anisms of DNA damage and DNA repair processes (Fig-
ure 3). COSMIC version 3 signatures already consider
transcriptional and replication strand biases (18). Tran-

scriptional strand biases can inform whether transcription-
coupled DNA damage and repair processes could con-
tribute to the signature of interest. Likewise, replication
strand bias can help predict whether replication of continu-
ous strands and Okazaki fragments or other associated fac-
tors could potentially contribute to a signature of interest.

Chromatin and nuclear contexts can influence mutagene-
sis and DNA repair pathway choices (61–63), such that cer-
tain signatures may show context-specific enrichment. To
narrow down likely mechanisms for a signature of inter-
est, under-representation of the signature in certain contexts
and absence of corresponding context-associated biases can
help exclude unlikely possibilities. For instance, using chro-
matin and replication timing data it was shown that SBS8
is uncommon in gene-rich euchromatin regions, and likely
arises in late and fast replicating regions due to uncorrected
replication errors during tumor progression (44). Local as-
sociative patterns of mutations can suggest potential coop-
erative processes driving the mutation signature(s). A classic
example is APOBEC mutagenesis: it was shown that signa-
tures SBS2 and SBS13 occur in late and early replicating
regions, respectively, and show significantly long stretches
of processivity that might be due to sporadic but burst-like
APOBEC mutagenesis during replication stress (48).

Signatures attributed to the same underlying mutagenic
processes may correlate within and between individuals. For
instance, SBS signature SBS3, InDel signatures ID6 and
ID8, and rearrangement signatures SV3 and SV5 indicate
different aspects of defects in homologous recombination-
mediated repair (54). Similarly, SBS8 and SBS40 show com-
parable trinucleotide frequencies and similar context prefer-
ences, and may be related (44). It is possible that attributes
of other unknown signatures could be predicted from their
association with known signatures. Moreover, correspon-
dence analysis between mutational signatures generated in
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engineered model systems with those in human tumors can
help establish etiologies of specific signatures (64,65), as also
discussed below. In light of these observations, it is unlikely
that a single strategy will be necessary and sufficient to ex-
plain all signatures, and those signatures that are not suf-
ficiently explainable by trinucleotide contexts alone could
benefit from analyses of broader contexts and patterns.

MECHANISTIC INFERENCE OF MUTATIONAL SIGNA-
TURES

Previous works on mutational landscape of tumor genomes
and mutational signatures have primarily analyzed epige-
nomic contexts from closely related cell types or those con-
texts that are cell type invariant (8,48,63,66,67). Unfortu-
nately, data on epigenome and replication profile are lim-
ited to reference cell lines and tissues (68,69), and it remains
technically challenging to obtain similar high-quality data
from primary cell types, especially from rare cell popula-
tions from normal or tumor tissues, which may have genetic
and nongenetic heterogeneity. Emerging single-cell assays
are enabling multi-omics profiling on primary cell popula-
tions (70,71), allowing for integrating relevant epigenomic
and mutation data directly from the cell populations of in-
terest, which may provide valuable insights about mutagenic
processes in somatic cells in vivo.

Reporter assays in well-characterized cell lines and model
organisms can validate selected mutational signatures and
provide mechanistic insights. After the development of mas-
sively parallel sequencing technologies, targeted or whole
genome sequencing of clonally derived cell populations has
been used to complement reporter assays and determine
genome-wide consequences of the mutagenic processes at
base-pair level resolution. It enables detailed characteriza-
tion of mutational signatures of the targeted mutagenic pro-
cess and allows one to directly connect the findings with
clinical observations in cancer and other diseases. Using this
approach, Szikriszt et al. analyzed the effects of eight com-
mon cytotoxic agents, including cisplatin, to show that se-
lect agents can cause significant mutagenesis with distinct
mutational signatures (72). More recently, a larger com-
pendium study analyzed the effects of 79 known or sus-
pected environmental carcinogens by analyzing mutational
patterns in isogenic cell populations with controlled expo-
sure (65). In parallel, other studies have focused on ana-
lyzing mutational signatures of defects in DNA replication,
DNA damage response or DNA repair pathways. Póti et al.
used the CRISPR–Cas9 system to disrupt key homologous
recombination-mediated repair and checkpoint genes, and
also correlated their genomic mutagenic phenotypes with
drug sensitivity (64).

Cell line-based systems are easy to manipulate and can
recapitulate clinically relevant mutation signatures (9), but
design of experiments requires careful considerations. In-
herent chromosomal and genomic instability in some com-
mon cell lines can potentially result in genetic heterogene-
ity within the initial cell population and/or accumulation
of spontaneous mutations during passage, such that with-
out appropriate control these mutations can introduce bi-
ases in the predicted mutational signature of the targeted
mutagenic process. Therefore, it is important to select cell

lines with relatively higher level of genomic stability, and to
sequence clonally amplified, isogenic cell populations after
exposure. Stable cell lines such as DT40 and RPE1 remain
popular choices. Furthermore, DNA damage response and
DNA repair defects can have cell type-dependent conse-
quences in certain contexts. For instance, germline muta-
tions in homologous recombination-mediated repair (e.g.
BRCA1, BRCA2), mismatch repair (e.g. MLH1, MSH2,
MSH6) or genome maintenance (e.g. TP53) result in in-
creased cancer incidence rate in selected tissue types. There-
fore, it is necessary to use relevant cell lines to examine phys-
iologically relevant consequences. Kucab et al. used a hu-
man induced pluripotent stem cell line, which is noncancer-
ous, undifferentiated and diploid, and has stable karyotype
(65). Development of other cell lines with similar robust
characteristics will be of interest to the scientific commu-
nity.

Animal models are key components of mechanistic stud-
ies. Generation of novel animal models requires substan-
tial efforts, and although key cellular processes are largely
conserved among higher eukaryotes (e.g. mammals), it still
remains nontrivial to sufficiently recapitulate the conse-
quences of multifaceted exposure, human physiology and
aging in the model systems in laboratory environments.
Nonetheless, recent developments are exciting. Recently,
Jacks and colleagues have adapted the CRISPR–Cas9 sys-
tem in a mouse model of small cell lung cancer to rapidly
model mutations in target genes (73), and such models can
be potentially used to examine the genome-wide conse-
quences of loss of key DNA repair genes in vivo. Applica-
tion of optogenetics has enabled detection of chromosome
dynamics in response to accumulating DNA damage in ze-
brafish (74). In any case, the laboratory-based model sys-
tems will continue to provide fundamental mechanistic in-
sights into DNA replication and repair defects in cell and
tissue contexts and put them in the perspective of develop-
ment, aging and diseases such as cancer.

FUTURE DIRECTIONS

Pan-cancer studies have identified the stable and repro-
ducible catalog of mutational signatures for all common
types of genomic alterations, from tumor samples repre-
senting all major cancer types, and also established the eti-
ologies of a subset of the signatures (19). Degasperi et al.
provided a practical framework outlining necessary precau-
tions and rational approaches for careful analyses of muta-
tional signatures (8). This probably marks the end of the
initial discovery phase of the prevalent mutation signatures
in somatic tissues, and over the next few years we anticipate
further refinement and consolidation of the signatures, and
the focus will turn to gain deeper mechanistic insights into
their etiologies using interdisciplinary approaches. Cell line
and other laboratory model systems that take advantage
of emerging technologies will advance the validation and
mechanism-oriented investigations. Advancement of single-
cell genomics technologies will probably enable more robust
detection of somatic mutations in single cells or small num-
ber of subclonal cell populations in malignant or normal
tissues (75). Long InDels and complex structural variations
are still not well characterized. Long and linked read tech-
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nologies will probably help reconstruct complex genomic al-
terations better (76) and provide testable hypotheses about
their etiologies.

Early tumor development remains asymptomatic, such
that early stages of genomic instability and neoplastic
changes in vivo in humans are challenging to study (77).
Analysis of accumulation of mutational signatures dur-
ing development, premalignant and malignant contexts can
provide some insights into cancer initiation and progres-
sion. Predominant mutational processes in tumor genomes
can influence selection of oncogenic driver mutations (49),
ultimately guiding the course of cancer development. Such
a bias might also be relevant for emergence of resistant mu-
tations during treatment. On the other hand, mutational
signatures provide information about genome maintenance
defects in individual tumors that can be exploited in preci-
sion medicine settings. For instance, deficiency in homolo-
gous recombination-mediated repair tends to sensitize tu-
mors to PARP inhibitors, while tumors with excessive so-
matic mutation burden due to APOBEC activity and de-
fects in mismatch repair and DNA polymerase functions
tend to be responsive to immunotherapy (7,54,55). Cur-
rent progress in these areas is encouraging (3–5), and may
provide additional options for combination therapies tar-
geting multiple types of cancer. Taken together, mutational
signatures derived from somatic mutations, a majority of
which are passenger mutations, have provided fundamental
insights into the biology of cancer and disease etiology, and
have opened up opportunities for clinical intervention that
are truly remarkable.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Cancer Online.

ACKNOWLEDGEMENTS

The authors thank members of the Center for Systems
and Computational Biology at Rutgers Cancer Institute for
helpful discussions.

FUNDING

National Institutes of Health [R01 GM129066, P30
CA072720, R21 CA248122]; Robert Wood Johnson Foun-
dation [to S.D.].
Conflict of interest statement. None declared.

REFERENCES
1. Campbell,P.J., Getz,G., Korbel,J.O., Stuart,J.M., Jennings,J.L.,

Stein,L.D., Perry,M.D., Nahal-Bose,H.K., Ouellette,B.F.F., Li,C.H.
et al. (2020) Pan-cancer analysis of whole genomes. Nature, 578,
82–93.

2. Stratton,M.R., Campbell,P.J. and Futreal,P.A. (2009) The cancer
genome. Nature, 458, 719–724.

3. Alexandrov,L.B. and Stratton,M.R. (2014) Mutational signatures:
the patterns of somatic mutations hidden in cancer genomes. Curr.
Opin. Genet. Dev., 24, 52–60.

4. Phillips,D.H. (2018) Mutational spectra and mutational signatures:
insights into cancer aetiology and mechanisms of DNA damage and
repair. DNA Repair (Amst.), 71, 6–11.

5. Loeb,L.A. (2011) Human cancers express mutator phenotypes:
origin, consequences and targeting. Nat. Rev. Cancer, 11, 450–457.

6. Segovia,R., Tam,A.S. and Stirling,P.C. (2015) Dissecting genetic and
environmental mutation signatures with model organisms. Trends
Genet., 31, 465–474.

7. Ma,J., Setton,J., Lee,N.Y., Riaz,N. and Powell,S.N. (2018) The
therapeutic significance of mutational signatures from DNA repair
deficiency in cancer. Nat. Commun., 9, 3292.

8. Degasperi,A., Amarante,T.D., Czarnecki,J., Shooter,S., Zou,X.,
Glodzik,D., Morganella,S., Nanda,A.S., Badja,C., Koh,G. et al.
(2020) A practical framework and online tool for mutational
signature analyses show intertissue variation and driver dependencies.
Nat. Cancer, 1, 249–263.

9. Zou,X., Owusu,M., Harris,R., Jackson,S.P., Loizou,J.I. and
Nik-Zainal,S. (2018) Validating the concept of mutational signatures
with isogenic cell models. Nat. Commun., 9, 1744.

10. Rosin,M.P. and Stich,H.F. (1979) Assessment of the use of the
Salmonella mutagenesis assay to determine the influence of
antioxidants on carcinogen-induced mutagenesis. Int. J. Cancer, 23,
722–727.

11. Hsie,A.W., Brimer,P.A., Mitchell,T.J. and Gosslee,D.G. (1975) The
dose–response relationship for ethyl methanesulfonate-induced
mutations at the hypoxanthine-guanine phosphoribosyl transferase
locus in Chinese hamster ovary cells. Somatic Cell Genet., 1, 247–261.

12. Collins,A.R. (2004) The comet assay for DNA damage and repair:
principles, applications, and limitations. Mol. Biotechnol., 26,
249–261.

13. Pauly,G.T., Moschel,R.C. and Hughes,S.H. (1991) A sectored colony
assay for monitoring mutagenesis by specific carcinogen–DNA
adducts in Escherichia coli. Biochemistry, 30, 11700–11706.

14. Weinstock,D.M., Nakanishi,K., Helgadottir,H.R. and Jasin,M.
(2006) Assaying double-strand break repair pathway choice in
mammalian cells using a targeted endonuclease or the RAG
recombinase. Methods Enzymol., 409, 524–540.

15. Pleasance,E.D., Stephens,P.J., O’Meara,S., McBride,D.J.,
Meynert,A., Jones,D., Lin,M.L., Beare,D., Lau,K.W., Greenman,C.
et al. (2010) A small-cell lung cancer genome with complex signatures
of tobacco exposure. Nature, 463, 184–190.

16. Pleasance,E.D., Cheetham,R.K., Stephens,P.J., McBride,D.J.,
Humphray,S.J., Greenman,C.D., Varela,I., Lin,M.L., Ordonez,G.R.,
Bignell,G.R. et al. (2010) A comprehensive catalogue of somatic
mutations from a human cancer genome. Nature, 463, 191–196.

17. Alexandrov,L.B., Nik-Zainal,S., Wedge,D.C., Aparicio,S.A.J.R.J.R.,
Behjati,S., Biankin,A. V., Bignell,G.R., Bolli,N., Borg,A.,
Børresen-Dale,A.-L.L. et al. (2013) Signatures of mutational
processes in human cancer. Nature, 500, 415–421.

18. Tate,J.G., Bamford,S., Jubb,H.C., Sondka,Z., Beare,D.M., Bindal,N.,
Boutselakis,H., Cole,C.G., Creatore,C., Dawson,E. et al. (2019)
COSMIC: the catalogue of somatic mutations in cancer. Nucleic
Acids Res., 47, D941–D947.

19. Alexandrov,L.B., Kim,J., Haradhvala,N.J., Huang,M.N., Tian
Ng,A.W., Wu,Y., Boot,A., Covington,K.R., Gordenin,D.A.,
Bergstrom,E.N. et al. (2020) The repertoire of mutational signatures
in human cancer. Nature, 578, 94–101.

20. Huang,M.N., Yu,W., Teoh,W.W., Ardin,M., Jusakul,A., Ng,A.W.T.,
Boot,A., Abedi-Ardekani,B., Villar,S., Myint,S.S. et al. (2017)
Genome-scale mutational signatures of aflatoxin in cells, mice, and
human tumors. Genome Res., 27, 1475–1486.

21. Boot,A., Huang,M.N., Ng,A.W.T., Ho,S.-C., Lim,J.Q., Kawakami,Y.,
Chayama,K., Teh,B.T., Nakagawa,H. and Rozen,S.G. (2018)
In-depth characterization of the cisplatin mutational signature in
human cell lines and in esophageal and liver tumors. Genome Res.,
28, 654–665.

22. Christensen,S., Van der Roest,B., Besselink,N., Janssen,R.,
Boymans,S., Martens,J.W.M., Yaspo,M.L., Priestley,P., Kuijk,E.,
Cuppen,E. et al. (2019) 5-Fluorouracil treatment induces
characteristic T>G mutations in human cancer. Nat. Commun., 10,
4571.

23. Lada,A.G., Dhar,A., Boissy,R.J., Hirano,M., Rubel,A.A.,
Rogozin,I.B. and Pavlov,Y.I. (2012) AID/APOBEC cytosine
deaminase induces genome-wide kataegis. Biol. Direct, 7, 47.

24. Cortés-Ciriano,I., Lee,J.J.K., Xi,R., Jain,D., Jung,Y.L., Yang,L.,
Gordenin,D., Klimczak,L.J., Zhang,C.Z., Pellman,D.S. et al. (2020)
Comprehensive analysis of chromothripsis in 2,658 human cancers
using whole-genome sequencing. Nat. Genet., 52, 331–341.

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaa026#supplementary-data


8 NAR Cancer, 2020, Vol. 2, No. 3

25. Alexandrov,L.B., Jones,P.H., Wedge,D.C., Sale,J.E., Campbell,P.J.,
Nik-Zainal,S. and Stratton,M.R. (2015) Clock-like mutational
processes in human somatic cells. Nat. Genet., 47, 1402–1407.

26. Kanu,N., Cerone,M.A., Goh,G., Zalmas,L.P., Bartkova,J.,
Dietzen,M., McGranahan,N., Rogers,R., Law,E.K., Gromova,I.
et al. (2016) DNA replication stress mediates APOBEC3 family
mutagenesis in breast cancer. Genome Biol., 17, 185.

27. Jamal-Hanjani,M., Wilson,G.A., McGranahan,N., Birkbak,N.J.,
Watkins,T.B.K., Veeriah,S., Shafi,S., Johnson,D.H., Mitter,R.,
Rosenthal,R. et al. (2017) Tracking the evolution of non–small-cell
lung cancer. N. Engl. J. Med., 376, 2109–2121.

28. Alexandrov,L.B., Nik-Zainal,S., Wedge,D.C., Campbell,P.J. and
Stratton,M.R. (2013) Deciphering signatures of mutational processes
operative in human cancer. Cell Rep., 3, 246–259.

29. Fischer,A., Illingworth,C.J.R., Campbell,P.J. and Mustonen,V. (2013)
EMu: probabilistic inference of mutational processes and their
localization in the cancer genome. Genome Biol., 14, R39.

30. Gehring,J.S., Fischer,B., Lawrence,M. and Huber,W. (2015)
SomaticSignatures: inferring mutational signatures from
single-nucleotide variants. Bioinformatics, 31, 3673–3675.

31. Gori,K. and Baez-Ortega,A. (2020) sigfit: flexible Bayesian inference
of mutational signatures. bioRxiv doi:
https://doi.org/10.1101/372896, 20 July 2018, preprint: not peer
reviewed.
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