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Background
Interest in nonlinear wave propagation has grown rapidly during the last three decades 
and has gained considerable attention in engineering and applied mathematics. This 
should not be surprising since the nonlinear waves phenomena are presented in many 
physics areas, such as fluid dynamics, hydrodynamics, optical fibres, plasma physics, 
biology, etc. As is well known the models describing the phenomenon are often repre-
sented by a set of partial differential equations completed by the boundary conditions 
and initial conditions related to time (see Biswas and Triki 2011; Courant and Hilbert 
1953; Germain 1972; Miranville and Temam 2000). For example, the modeling of the 
phenomena from an hydrodynamic or optical fields can be generally outlined as follows: 
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This paper concerns a propagation of surface liquid waves, in general, and the special 
case linking major solitary gravity waves—called also solitons—which is a topic of inter-
est as well for physicists and mathematicians (see Ablowitz and Clarkson 1991; Biswas 
and Triki 2011; Germain 1972; Tzirtzilakis et al. 2002). The most model representative in 
fluid mechanics and best known is based on the Navier–Stokes equations (see Germain 
1972; Miranville and Temam 2000). It should be noted that these equations are gener-
ally nonlinear phenomenon and the explicit analytical solution is often non-existent; 
therefore the numerical approach remains the most appropriate approach to treat this 
phenomenon. Another model represented a swell propagation on horizontal bottom is 
describing throughout the Boussinesq equations (see Boussinesq 1872; Daripa and Hua 
1999) which represent the integration on vertical of both conservation of movement 
quantity and conservation of mass for an incompressible fluid. These allow considering 
the transfer of energy between the multiple frequency components and the changing of 
shape of individual wave and the evolution of a group random waves. The main limita-
tion of the most common form of the Boussinesq equations is that they are only valid for 
relatively shallow water depths. It was not until the year 1990 that many initial Boussin-
esq equations derived models have been developed to extend their domains of validity 
to shallow water and especially by improving the dispersion equation (see Boussinesq 
1872; Daripa and Hua 1999; Yao et al. 2007). This work leads to the study of the existence 
and the physical characteristics of solitary gravity waves (amplitude, speed, . . .). Experi-
mentally, these may be generated by a piston wave maker at the upstream of a horizontal 
channel (see, Fig. 1). After modeling the phenomenon by a system of equations, it can 
be transformed, by introducing a double distortion and a fourth order approximation 
with respect to the parameter of distortion ε, into KdV equation (see Gardner et al. 1967; 
Miranville and Temam 2000; Tzirtzilakis et al. 2002). The latter is given below:

where s and r are space and time variables respectively.
The balance between the nonlinear convection term f

∂f

∂r
 and the dispersion effect 

term ∂
3f

∂r3
 in the spatially one-dimensional KdV equation (1) gives rise to solitons (Gard-

ner et al. 1967). These are defined as localized waves that propagate without change of 
their shape and velocity properties and stable against mutual collisions (Yao et al. 2007).

The aim of our paper focuses on the study of solitary wave (soliton) generated 
by piston wave maker placed at upstream. The mathematical model requires both 

(1)
∂f

∂s
(r, s)− 6f

∂f

∂r
(r, s)+

∂3f

∂r3
(r, s) = 0,

Fig. 1  Description of the Phenomenon
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incompressibility condition, irrotational flow of no viscous fluid and Lagrange coordi-
nates. The use of both the inverse scattering method (see Alquran and Al-Khaled 2010; 
Ablowitz and Clarkson 1991; Aktosun 2005) and a given initial potential f0(r) allow to 
transform the KdV equation into Sturm–Liouville spectral problem (see Temperville 
1985): find the eigenvalues � and associated eigenfunctions ψ such that

More particularly, the problem amounts to find a negative discrete eigenvalues � and 
associated eigenfunctions ψ, where each calculated eigenvalue � gives a soliton and the 
profile of the free surface. For solving the problem (2), we can use a numerical method 
and for illustration, two examples of the wave maker movement are proposed.

The plan of this paper is as follows. Section “Position of the problem” gives the 
“Description of the phenomenon” section and “Basic equations of the mathemati-
cal model” section. Section “Techniques of resolution” comprises three subsections: 
the introducing of “The distortion variables” section, the approximating solutions with 
respect to the parameter of distortion ε and the solution of Sturm–Liouville spectral 
equation (2) by the Runge–Kutta method. The last section presents numerical applica-
tions for illustrating the theoretical model.

Position of the problem
Description of the phenomenon

We consider a fixed Oxy reference system, where the y-axis is vertically ascendant and 
the x-axis coincides with the initial free surface. The position of the fluid particle at the 
moment t, t > 0, is denoted by (x, y) and their coordinates at the initial position by (a, b),  
where a, b and t are the Lagrangian variables.

The domain � =
{
x ≥ 0 and − h ≤ y ≤ 0

}
 is occupied by fluid of an infinite horizon-

tal band which is limited vertically by a free surface b = 0 and an impermeable horizon-
tal bottom b = −h. The wave maker type piston placed at upstream (a = 0) generates 
same waves (see, Fig. 1). The new coordinates X and Y are introduced as follows:

Basic equations of the mathematical model

General equations and mathematical model are listed below:
(i) the kinematic condition expresses the incompressibility of fluid (the Jacobian equals 

unity)

(ii) the dynamic condition for an irrotational movement

(2)
d2ψ(r)

dr2
+

(
�− f0(r)

)
ψ(r) = 0.

X(a, b, t) = x(a, b, t)− a and Y (a, b, t) = y(a, b, t)− b.

(3)
∂X

∂a
+

∂Y

∂b
+

∂X

∂α
+

∂X

∂a

∂Y

∂b
−

∂X

∂b

∂Y

∂a
= 0,

(4)
∂2X

∂b∂t

(
1+

∂X

∂a

)
−

∂X

∂b

∂2X

∂a∂t
+

∂Y

∂a

∂2Y

∂b∂t
−

∂2Y

∂a∂t

(
1+

∂Y

∂b

)
= 0,
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(iii) the impermeability boundary conditions

(iv) the initial conditions

(v) the piston wave maker equation

where D is a given positive function which represents the elongation of wave maker.

Techniques of resolution
The distortion variables

In this part, we transform the Eqs. (3)–(8) into KdV equation (1), for this we introduce 
distortion variables which express the assumption of shallow water and asymptotic pro-
file of wave respectively. Afterwards we use the approximate solution at fourth order and 
the inverse scattering method (for more details, see Aktosun 2005) in order to obtain 
Sturm–Liouville spectral problem.

(a) Classical distortion variables: the assumption of the shallow water theory (see Ger-
main 1972; Laouar 2008) inserts distortion variables space and temporal, translating the 
difference in scale between the sizes horizontal and vertical. This distortion will be char-
acterized by using a small parameter ε as follows:

where 
√
gh represents the critical celerity of the propagated long waves, h and g are the 

depth of fluid at rest and the gravity respectively.
The Eqs. (3)–(8) become respectively

(5)

(
1+

∂X

∂a

)
∂2X

∂t2
+

∂Y

∂a

∂2Y

∂t2
− g

∂Y

∂a
= 0 at the free surface (b = 0),

(6)Y (a, b = −h, t) = 0 at the bottom,

(7)X(a, b,−∞) = 0 and Y (a, b,−∞) = 0 at rest ,

(8)X(a = 0, b, t) = D(t),

α = εa, β = b and τ = ε
√

ght,

(9)
∂Y

∂β
+ ε

[
∂X

∂α
+

∂X

∂α

∂Y

∂β
−

∂X

∂β

∂Y

∂α

]
= 0,

(10)
∂2X

∂β∂τ
+ ε

[
∂X

∂α

∂2X

∂β∂τ
−

∂X

∂β

∂2X

∂α∂τ
+

∂Y

∂α

∂2Y

∂β∂τ
−

(
1+

∂Y

∂β

)
∂2Y

∂α∂τ

]
= 0,

(11)
∂Y

∂α
+ εh

∂2X

∂τ 2
+ ε2h

[
∂X

∂α

∂2X

∂τ 2
+

∂Y

∂α

∂2Y

∂τ 2

]
= 0 at the free surface (β = 0),

(12)Y (α,β , τ ) = 0 at the bottom (β = −h),

(13)X(α,β ,−∞) = 0 and Y (α,β ,−∞) = 0 (at rest ),

(14)X(α = 0,β , t) = D(t).
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(b) Double distortion variables: before reaching their asymptotic profile, the waves will 
under go from the initial potential a slow evolution. The double distortion is introduced 
as follows:

where θ and ϕ represent the fast and slow variable respectively.
The derivatives with respect to θ and ϕ are

Using new distortion variables in Eqs. (9)–(13) we obtain respectively

Approximation of the solutions of the eqs. (17)–(21)

According to the classical theory of shallow water (see Germain 1972; Laouar 2008), the 
solutions are developable entire series in ε as follows:

Substituting (22) and (23) in (17)–(19) and approximating at fourth order, we choose, 
among the various approximations, the following

(15)θ = ε

(
α −

√
ght

)
, ϕ = ε3α,

(16)
∂

∂α
= ε

∂

∂θ
+ ε3

∂

∂ϕ
and

∂

∂t
= −ε

√
gh

∂

∂θ
.

(17)
∂Y

∂β
+ ε

[
∂X

∂θ
+

∂X

∂θ

∂Y

∂β
−

∂X

∂β

∂Y

∂θ

]
+ ε3

[
∂X

∂ϕ
+

∂X

∂ϕ

∂Y

∂β
−

∂X

∂β

∂Y

∂ϕ

]
= 0,

(18)

∂2X

∂β∂θ
+ ε

[
∂X

∂θ

∂2X

∂β∂θ
−

∂X

∂β

∂2X

∂θ2
+

∂Y

∂θ

∂2Y

∂β∂θ
−

∂Y

∂β

∂2Y

∂θ2
−

∂2Y

∂θ2

]

+ε3
[
∂X

∂ϕ

∂2X

∂β∂θ
−

∂X

∂β

∂2X

∂θ∂ϕ
+

∂Y

∂ϕ

∂2Y

∂β∂θ
−

∂Y

∂β

∂2Y

∂θ∂ϕ
−

∂2Y

∂θ∂ϕ

]
= 0,

(19)

1

h

[
∂Y

∂θ
+ ε2

∂Y

∂ϕ

]
+ ε

[
∂2X

∂θ2
+ ε

(
∂X

∂θ

∂2X

∂θ2
+

∂Y

∂θ

∂2Y

∂θ2

)
+ ε3

(
∂X

∂ϕ

∂2X

∂θ2

+
∂Y

∂ϕ

∂2Y

∂θ2

)]
= 0,

(20)Y (θ ,ϕ,−h) = 0 and β = −h,

(21)X(θ ,ϕ,−∞) = 0 and Y (θ ,ϕ,−∞) = 0.

(22)X(θ ,ϕ,β) =
∞∑

n=0

ε2n+1X2n+1(θ ,ϕ,β),

(23)Y (θ ,ϕ,β) =
∞∑

n=0

ε2nY2n(θ ,ϕ,β).

(24)
h2

3

∂4X1

∂θ4
− 3

∂X1

∂θ

∂2X1

∂θ2
+ 2

∂2X1

∂θ∂ϕ
= 0.
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Using auxiliary variables r and s

the expression (24) becomes

where η is a free surface 
(
y = η(x, t)

)
.

If we neglect the O
(
ε4
)
 (see Temperville 1985), the function f(r, s) can be written in the 

form

which must satisfy the KdV equation (1).
The free surface equation is:

For α = s = 0, the function f0(r) (where f0(r) = f(0, r)) equals 
∂X1

∂θ
(α = 0, t). The gen-

erator of the movement of long waves follows a given law (see Temperville 1985) whose 
equation is

Note that the term O
(
ε3
)
 can be neglected in all the sequel.

Soliton‑solution of the KdV equation

Now in order to show that the KdV equation admits as particular solution a solitary 
wave, we give the proposition below.

Proposition 1  The KdV equation (1) admits as particular solution a solitary wave 
(soliton):

where µ is an arbitrary parameter.

Proof  Putting

where ξ = r − µs and µ is an arbitrary parameter.
Substituting φ in (1), we obtain the following differential equation:

(25)r =
θ

εh
=

α −
√
ght

h
, s =

ϕ

6ε3h
=

α

6h
,

(26)
3

2
ε2

∂X1

∂θ
= −

3

2
ε2

η2

h
=

−3η

2h
+ O

(
ε4
)
,

(27)f (r, s) ≃
3

2
ε2

∂X1

∂θ
= −

3

2
ε2

η2

h
=

−3η

2h
.

(28)η(x, t) = −
2

3
hf (r, s).

D(r) = X(α = 0,β , t) = εX1(α = 0, t)+ O
(
ε3
)
.

(29)
f (r, s) =

−µ

2 cosh2
(√

µ

2 (r − µs)
) ,

(30)f (r, s) = φ(ξ) = φ(r − µs),
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By integration, it becomes

where l1 is a constant.
Multiply the Eq. (32) by 

dφ

dξ
 and integrate, it comes

the constants l1 and l2 are determined by using boundary conditions: the wave is flat at 
infinity; and therefore φ and its derivatives vanish at infinity ξ; this gives l2 = 0.

The derivative of (33) with respect to ξ and simplification 
(
division by

dφ

dξ

)
 yield

therefore l1 = 0 when ξ → ∞.

Substituting l1 = l2 = 0 in ( 33) and integrating elementary transcendental functions, 
we obtain the solution

then

It is easy to verify that the function f is a solution of the KdV equation (1). Note that f is 
practically zero when ξ is taken some units (e.g. √µ|ξ | = √

µ|r − µs| ≥ 20) (see, Miran-
ville and Temam 2000).�  �

The solution of the KdV equation (1) corresponding to the reflections potential can be 
asymptotically represented as a superposition of N single-soliton solutions propagating 
to the right and ordered in space by their speeds. For this, we give the proposition below.

Proposition 2  The function (36) is asymptotically represented by a linear superposition

where

(31)(−µ− 6φ)
dφ

dξ
+

d3φ

dξ3
= 0.

(32)−3φ2 − µφ +
d2φ

dξ2
= l1,

(33)−φ3 −
µ

2
φ2 +

1

2

(
dφ

dξ

)2

= l1φ + l2;

(34)−3φ2 − µφ +
d2φ

dξ2
= l1,

(35)
φ = φ(ξ) =

−µ

2 cosh2
(√

µ

2 ξ

) ,

(36)
f (r, s) =

−µ

2 cosh2
(√

µ

2 (r − µs)
) .

(37)f ∼
N∑

n=1

fn,
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with Kn a number to calculate and δn is the phase shift dependent of Kn.

Proof  (cf, Temperville 1985).�  �

The Sturm–Liouville equation

As we said previously, the solution of the KdV equation can be transformed to the 
Sturm–Liouville linear ordinary differential equation (for more details, see Alquran and 
Al-Khaled 2010; Temperville 1985); add to this the boundary conditions, the problem 
becomes:

For a given potential f0(r), find the eigenvalues � ∈ R and the eigenfunctions  
ψ (ψ(r) �= 0, for any r ∈ R) such that

The function f0(r), here, is taken as follows:

where r1 = −
√
g/h t1; t1 is the time at stops wave maker.

Direct spectral problem: for a given potential f0(r), the problem (39) is to find the set 
{�} of the admissible values for � and to construct the corresponding eigenfunctions 
ψ(r, �). We assume the satisfied Faddeev’s condition (see, Grimshaw 2007)

The upper bound for the number N of solitons-solutions can be estimated by the for-
mula (see, Grimshaw 2007)

The spectrum comprises a continuous and discrete spectrum. Note that the Continuous 
Spectrum (� > 0), called scattering solutions, is not our objective in this study [for more 
details, see Grimshaw (2007) and Temperville (1985)]

Discrete Spectrum (� = �n < 0) :  (bound states)
If the potential f0(r) is sufficiently negative near the origin of the x−axis, the spectral 

problem (39) implies existence of finite number (see, pp. 416–418, Sulem 1999) of bound 
states ψ = ψn(r; �), n = 1, . . . ,N  corresponding to the discrete admissible values of the 
spectral parameter � = �n = −K 2

n , Kn ∈ R, where K1 > K2 > · · · > KN .

(38)fn(r, s) =
−2K 2

n

cosh2[Kn(r − 4K 2
n s)+ δn]

, n = 1,N ,

(39)






d2ψ(r)

dr2
+

�
�− f0(r)

�
ψ(r) = 0,

ψ(−∞) = ψ(+∞) = 0.

(40)f0(r) =

{
3

2h

dD(r)

dr
r ∈ [r1, 0],

0 r /∈ [r1, 0],

(41)

∫ +∞

−∞
(1+ |r|)

∣∣f0(r)
∣∣ dr < ∞.

(42)N ≤ 1+
+∞∫

−∞

|r|
∣∣f0(r)

∣∣dr.
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Each eigenvalue �n = −K 2
n  permits to determine the function f (r, s) which is a soliton.

Kn-Conditions The solution of “The Sturm–Liouville equation” section is to integrate 
(39) and take into account the continuous solutions and their derivatives which vanish at 
infinity (see, Temperville 1985).

To solve (39), three cases are to be considered
α) if r ∈] −∞, r1[ then f0(r) = 0, the Eq. (39) becomes

whose solution is

which satisfies the boundary conditions imposed when r → r1

β) if r ∈ [r1, 0], the Eq. (39) can be solved by the Runge–Kutta algorithm at fourth order. 
By using (45), we can calculate

γ ) if r ∈ ]0,∞[ then f0(r) = 0, the general solutions of (39) obtained by Fourier method 
is

The coefficients c1 and c2 are calculated by using the continuity conditions of ψ̂n and its 
the derivative at r = 0. These yield

The bounded solution is obtained if the coefficient c2 tends to zero, when r → +∞, then 
Kn must verify the following relation

the solution of this equation can be obtained by integration. Note that the Eq. (50) is 
very interesting numerically since it permits to obtain the discrete number Kn which is 
calculated by using the sweeping method in the interval [0,Kmax]. The number Kmax can 
be obtained throughout the proposition below.

(43)
d2ψn(r)

dr2
− K 2

nψn(r) = 0,

(44)ψ̂n(r) = eKn(r−r1),

(45)ψ̂n(r1) = 1 and
dψ̂n(r1)

dr
= Kn.

(46)ψ̂n(0) and
dψ̂n(0)

dr
.

(47)ψ̂n(r) = c1e
−Knr + c2e

Knr .

(48)c1 =
1

2

[
ψ̂n(0)−

1

Kn

dψ̂n

dr
(0)

]
,

(49)c2 =
1

2

[
ψ̂n(0)+

1

Kn

dψ̂n

dr
(0)

]
.

(50)Knψ̂n(0)+
dψ̂n

dr
(0) = 0,
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Proposition 3  Let the solution (44) and the condition (45), then we have

Proof  Suppose that

this entrains that

According to (44), we have:

therefore

We deduce that ψ̂n and dψ̂n
dr

(r) are increasing positive functions. The function ψ , its first 
derivative dψ

dr
 and second derivative d

2ψ

dr2
 grow with positive eigenvalues, then the relation 

(50) is not verified; so the (52) is false.�  �

Free surface equations

The free surface equation can be written as follows:

where

with

An is an amplitude of the n-the soliton (Temperville 1985).
If we neglect δn and know the Kn, the free surface equation becomes

where

(51)Kmax =
√

sup
∣∣f0(r)

∣∣.

(52)Kn >

√
sup

∣∣f0(r)
∣∣,

(53)K 2
n + f0(r) > 0, ∀r.

(54)ψ̂n(r1) = 1 and
dψ̂n(r1)

dr
= Kn > 0,

d2ψ̂

dr2
(r1) > 0.

(55)η(x, t) =
N∑

n=1

An

cosh2 (φn)
, for n = 1,N

(56)φn =
xKn

h

(
1−

2

3
K 2
n

)
−

√
g

h
Knt + δn,

(57)An =
4

3
hK 2

n ,

(58)η(x, t) =
N∑

n=1

An

cosh2 (x − cnt)
, for n = 1,N

(59)
cn =

√
gh

(
1+

An

2h

)
,
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cn is the velocity of the n-the soliton.

Numerical applications
We have to solve numerically the problem by using Runge–Kutta and Heun methods

We rewrite (60) as a system of first order equations. Putting

the (60) can be written as follows

At M equally spaced numbers in the interval [r1, 0] and Kn is fixed when N equally spaced 
numbers in the interval [0,K max].

INPUT: the time at stops wave maker t1, elongation e, depth of fluid at rest h, gravity g, 
tolerance TOL,  end point r1, integers N and M, and

1st application N = 1, 2.

The equation of displacement of the piston wave maker follows the given theoretical 
low:

where ω 
(
ω =

π

t1

)
 is the pulsation.

According to (40), the function f0 is taken

We take the following data(Table 1)

(60)






d2ψn(r)

dr2
−

�
K 2
n + f0(r)

�
ψn(r) = 0, for all r ∈ [r1, 0]

�ψn(r1) = 1 and d �ψn(r1)
dr

= Kn > 0,

u = ψ and v =
du

dr
,

(61)






v(r) =
du

dr
(r),

dv

dr
(r) =

�
K 2 + f0(r)

�
u(r), for all r ∈ [r1, 0],

u(r1) = 1, v(r1) = Kn.

Kmax =
3πe

2t1
√

gh
.

(62)
D(r) =





e

�
1− cos

�
ωr

�
h

g

��
all r ∈ [r1, 0],

0 r /∈ [r1, 0],

(63)f0(r) =
3πe

2t1
√
gh

sin

(
πr

t1

√
h

g

)
, r ∈ [r1, 0].

Table 1  The time at stops wave maker t1, elongation e, depth of fluid h, integer N, gravity g 
and tolerance for sinusoidal movement displacement of the piston wave maker

t1 (s) e (cm) h (cm) N
�

Kn ε g 
(

cm/s2
)

1.5 10 8 103 10−4 6× 10−7 981
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We obtain one Kn (n = 1) which implies the existence of one soliton 

K max Kn A(cm) c(cm/s)

0.5955 0.2148 0.6152 0.6152

The free surface of one soliton at times t1 = 0 s, t2 = 0.05 s and t3 = 0.1 s,  is given by 
the graph (see, Fig. 2).

Now, we take the following data (Table 2)

The Table 2 gives Kn (n = 1, 2) which implies the existence of two solitons (see Fig. 3) 

K max K1 K2 A1(cm) c1(cm/s) A2(cm) c2(cm/s)

0.5392 0.318 0.14 1.3483 106.2054 0.2613 100.3568

Comment: this example shows the propagation of two solitons: the soliton of high 
amplitude (1.35 cm associated with the eigenvalue K1 = 0.32) and small amplitude 
soliton (0.26 cm associated with the eigenvalue K2 = 0.14) and their transient collision. 
A soliton propagates more quickly than its amplitude is large and if two solitons of dif-
ferent amplitudes are created, there is a collision that does not change the shape of the 
waves.

2nd application N = 2, 3

The wave maker D(r) follows a theoretical law of the motion that generates almost 
solitons in the absence of “tail” [5].

(64)D(r) = e

[
1+ tanh

(
−2.48r

√
h

g
− 3

)]
,

(65)f0(r) =
−3.72e√

gh

[
1− tanh2

(
−2.48r

√
h

g
− 3

)]
, r ∈ [r1, 0].

Fig. 2  1-Soliton solution
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We take the following data (Table 3)
We give the results of two solitons (see Fig. 4) 

K max K1 K2 A1(cm) c1(cm/s) A2(cm) c2(cm/s)

0.6428 0.516 0.216 3.5501 120.4206 0.6221 102.2251

Now, we modify the data as follows (Table 4):

Fig. 3  2-Soliton solution: interaction of two solitons

Table 2   New data: The time at stops wave maker t1, elongation e, depth of fluid h, integer 
N, gravity g and tolerance for sinusoidal movement displacement of the piston wave maker

t1(s) e( cm) h(cm) N
�

Kn ε g
(

cm/s2
)

1.8 11 10 5× 105 2× 10−3 4× 10−7 981
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We obtain the results below (see Fig. 5) 

K max K1 K2 K3 A1(cm) c1(cm/s) A2(cm) c2(cm/s) A3(cm) c3(cm/s)

0.6220 0.503 0.256 0.154 3.3735 119.1413 0.8738 103.5705 0.3162 100.6366

Remark 4  To check the validity of our results, it is insightful to compare the obtained 
soliton solutions with localized pulses propagating in other nonlinear media such 
as optical waveguides. In this setting, the dynamics of optical solitons is governed by 
the well-known nonlinear Schrödinger (NLS) equation which is completely integrable 
by the inverse scattering transform (Ablowitz and Segur 1981). To search for various 
soliton solutions for the NLS family of equations, many powerful numerical and ana-
lytical methods have been recently established and developed. For instance, the finite 
element method (Kaisar 2008), the ansatz scheme (see, Xu et al. 2016; Zhou et al. 2014), 
the coupled amplitude-phase formulation (Du et al. 1995; Palacios et al. 1999), variable 
parametric method (Zhang and Yi 2008), Darboux-Bäcklun transform, and the inverse 

Table 3  The time at stops wave maker t1, elongation e, depth of fluid h, integer N, gravity 
g and tolerance for hyperbolic  tangent movement displacement of the piston wave maker 
in the absence of “tail”

t1(s) e(cm) h(cm) N
�

Kn ε g(cm/s2)

2 11 10 103 10−3 10−5 981

Table 4  The time at stops wave maker t1, elongation e, depth of fluid h, integer N, gravity g 
and tolerance for hyperbolic  tangent movement displacement of the piston wave maker

t1(s) e(cm) h(cm) N
�

Kn ε g(cm/s2)

2 10.3 10 103 10−3 10−5 981

Fig. 4  2-Soliton solution in absence of ‘tail’
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scattering transform (Zhou et al. 2014) have been successfully applied to exactly solve 
these models. If one compares the solitary wave profile of the KdV equation presented 
in Fig. 2 with the bright soliton profile of the NLS equation reported in Du et al. (1995), 
we can see that there is a certain resemblance. The only noticeable difference is the func-
tional form of the soliton solution in these two models. In fact, the solitary wave solution 
of the KdV equation is given in terms of “sech2” function (Eq. 36) which differs from the 
one with “sech” profile for the NLS equation [see Eq. (18) in Du et al. (1995)].

Conclusion
 This work is devoted to the generation of KdV type solitary wave, obtained by the initial 
potential f0(r). We have considered two types of movement, either sinusoidal or hyper-
bolic tangent. The obtained results show that one can therefore control the number of 
solitons generated by judicious choice of potential f0(r) and physical parameters: posi-
tive elongation e, depth h and time t of the displacement. These results will be further 
expanded in the future. Our next goal is to study the influence of an irregular bottom (h 
depends on the variable x) or the presence of an isolated obstacle on the propagation of 
the solitary wave.
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