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Autoantibody Profiling of Glioma 
Serum Samples to Identify 
Biomarkers Using Human 
Proteome Arrays
Parvez Syed1, Shabarni Gupta1, Saket Choudhary2, Narendra Goud Pandala1, Apurva Atak1, 
Annie Richharia1, Manubhai KP1, Heng Zhu3, Sridhar Epari4, Santosh B. Noronha2, 
Aliasgar Moiyadi5 & Sanjeeva Srivastava1

The heterogeneity and poor prognosis associated with gliomas, makes biomarker identification 
imperative. Here, we report autoantibody signatures across various grades of glioma serum samples 
and sub-categories of glioblastoma multiforme using Human Proteome chips containing ~17000 full-
length human proteins. The deduced sets of classifier proteins helped to distinguish Grade II, III and 
IV samples from the healthy subjects with 88, 89 and 94% sensitivity and 87, 100 and 73% specificity, 
respectively. Proteins namely, SNX1, EYA1, PQBP1 and IGHG1 showed dysregulation across various 
grades. Sub-classes of GBM, based on its proximity to the sub-ventricular zone, have been reported 
to have different prognostic outcomes. To this end, we identified dysregulation of NEDD9, a protein 
involved in cell migration, with probable prognostic potential. Another subcategory of patients 
where the IDH1 gene is mutated, are known to have better prognosis as compared to patients 
carrying the wild type gene. On a comparison of these two cohorts, we found STUB1 and YWHAH 
proteins dysregulated in Grade II glioma patients. In addition to common pathways associated with 
tumourigenesis, we found enrichment of immunoregulatory and cytoskeletal remodelling pathways, 
emphasizing the need to explore biochemical alterations arising due to autoimmune responses in 
glioma.

Gliomas are the most aggressive CNS tumours with poor prognosis1. World Health Organization (WHO) 
categorizes gliomas based on malignancy into 4 grades; where Grade I gliomas are localized and benign, 
whereas Grade II Gliomas are known to be diffused in nature. High Grade Gliomas include Grade III 
Gliomas, which are also called anaplastic gliomas while Grade IV gliomas, also termed as Glioblastoma 
multiforme (GBM), are the most malignant and aggressive form of glioma, known for its heterogeneous 
nature2,3.

Gliomas have been sub-typed based on various molecular markers like IDH1, 1p/19q co-deletion, 
amplification of EGFR amplification, loss of PTEN, MGMT etc. to predict the prognosis of the patients, 
with due consideration of parameters like patient’s age and complete histopathological profile4. One such 
sub-classification of GBMs is based on their position to the sub-ventricular zone (SVZ) in the brain5. The 
tumour positioned in proximity to the SVZ is called SVZ-positive (SVZp) while the tumour found in 
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an area other than the SVZ, is termed SVZ-negative (SVZn). The prognosis of SVZn patients has been 
reported to be better than SVZp subjects, making the proximity of GBMs to the SVZ, a potential predic-
tor of survival6. Similarly, IDH1 (isocitrate dehydrogenase 1) mutations have been a powerful molecular 
marker to predict the prognosis of glioma subjects, where subjects with IDH1 mutations referred to as 
positive for IDH1 mutations (IDH1p) are known to have better prognosis than those with the wild type 
copy of the IDH1 gene (WT)7. However, understanding the biological basis of this heterogeneity and its 
possible effect on autoantibody response, if any, is not clear.

Traditionally, gliomas have been diagnosed either by imaging techniques, histopathology or both8. 
Minimal-invasive and early diagnostic techniques can play an important role in improving the longevity 
and treatment of these patients9. The need for early diagnosis stems from the fact that, the two-year 
survival of the GBM patients is less than 30%10. The extent of invasiveness and risks involved in brain 
biopsies required to establish disease condition necessitates the need for novel serum based biomarkers 
to incorporate minimal invasive diagnosis9. This can be achieved with the help of autoantibody response 
towards certain aberrant self-proteins termed as tumour associated autoantigens (TAAs) using protein 
microarray based platforms. Neoplasms evoke an immune response against these TAAs, and this is often 
accompanied by the production of autoantibodies11. There are various reasons for the immunogenicity 
of the TAAs, such as expression of embryonic proteins in adults, expression of mutated oncogenic pro-
teins and overexpression of proteins12. Such autoantibodies can be used for early diagnosis of cancers. 
However, for achieving higher sensitivity and specificity, a panel of autoantibodies should be targeted, 
instead of a single autoantibody11.

In this study, we performed screening of sera from healthy controls and various grades of glioma 
patients using human proteome arrays containing more than 17000 proteins (Fig. 1a,b). To the best of 
our knowledge, this is the first study performing autoantibody profiling of such a huge collection of 
recombinant proteins using glioma sera across various grades of glioma. The enrichment analysis of such 
differentially expressed proteins highlighted the underlying perturbed pathways, which may play key 

Figure 1.  Experimental workflow and data preprocessing. (a) illustrates the experimental procedure 
involved in the microarray experiments in this study. (b) represents the quality of the proteins spotted on 
the microarray. The zoomed-in panel shows the increase in signal intensity with increase in concentration of 
purified GST protein spotted. Scatter plots in the top panel of (c) shows intrachip reproducibility, while the 
bottom panel represents interchip reproducibility. (d) represents the distribution of the data across all slides 
pertaining to each group of the samples. The top figure shows unnormalized data while the bottom panel 
shows normalized data (drawn by the authors PS and SG).
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roles in the tumourigenesis and progression of the disease. The enriched pathways include the pathways 
leading to the invasiveness of the disease. We have also identified potential candidate proteins, which are 
not only able to distinguish the healthy controls from various grades of glioma, but also the sub-types 
observed in case of the aggressive GBM, which provides the necessary groundwork for minimal invasive 
diagnostics of this disease.

Results
Quality control and protocol optimization.  As a part of quality control experiment, we analysed 
the signal intensities obtained from varying concentrations of GST purified proteins spotted, which 
were found to be directly proportional. The reproducibility of the duplicate spots of the same proteins 
showed good correlation (R2 =  0.99) (Fig. 1c). Similarly, fairly good correlation (R2 =  0.904) was observed 
between the signal-intensities from different microarrays processed on different days using the same 
serum sample (Fig. 1c).

Protein microarray data normalization.  After the background correction and normalization, the 
data seemed to be median centric (Fig.  1d), thereby eliminating any possible technical variances. This 
pre-processed data was used for further analysis.

Differential expression analysis.  The expression values of all the proteins from the healthy controls 
were compared to that of different grades of gliomas (Supplementary Tables 1, 2 and 3). In this process, 
we identified varied numbers of proteins which showed significant dysregulation. Although, each of 
these proteins showed differential expression, when combined, these proteins did not show any discrim-
inative power (Fig. 2a). Among the 11 differentially expressed proteins in Grade II samples, we found 5 

Figure 2.  Differentially expressed proteins. (a) represents heat-maps of comparisons of healthy controls 
with various grades of glioma using their respective differentially expressed proteins. (b) shows the number 
of unique and overlapping proteins dysregulated in various grades of glioma compared to the healthy 
controls. (c) represents the MDS plot highlighting poor discrimination of healthy controls from glioma 
samples using 4 commonly dysregulated proteins, SNX1, EYA1, PQBP1 and IGHG1. Their expression 
patterns across different sample types have been shown in panel (d) along with their spot intensity patterns 
on the microarray slides. (e) represents the expression patterns and spot intensities of few significantly 
dysregulated proteins in Grade II IDH1p cohort against Grade II glioma patients with WT IDH1.
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up-regulated proteins and 6 down-regulated proteins. Similarly, in Grade III samples we identified a list 
of the 200 significant proteins, which includes 97 up-regulated proteins and 103 down-regulated proteins. 
When healthy controls were compared with Grade IV samples, we identified 67 significant differentially 
expressed proteins. Among these 67 proteins, 34 were up-regulated, while the remaining 33 proteins 
were down-regulated.

When the lists of differentially expressed proteins were compared with each other, we identified sets of 
proteins which were differentially expressed in more than one grade (Fig. 2b). For example, EXOSC7 was 
found to be differentially expressed in Grade II and III. Similarly there were 17 proteins, namely, RNF25, 
C11orf74, CALCOCO2, C14orf119, IMPDH2, TIPIN, CAMK2N1, LOC285382, MAPK3, HBG2, JUB, 
ZMYM3, PRPSAP2, LRFN1, DUPD1, TIRAP and ZNF397, which were dysregulated both in Grade III 
and IV (Fig. 2b). However, there were no common proteins which were differentially expressed in Grade 
II and IV with the exception of 4 proteins, SNX1, EYA1, PQBP1, and IGHG1, which were dysregulated 
across all the grades of gliomas (Fig. 2b). The multidimensional scaling plot of the healthy controls and 
gliomas using these 4 proteins (Grades II, III and IV together) showed some partial discrimination 
(Fig. 2c). Among these 4 proteins, SNX1 and IGHG1 were up-regulated in gliomas, while, PQBP1 and 
EYA1 were down-regulated in gliomas (Fig. 2d).

The comparison of SVZp versus SVZn (Supplementary Table 4) revealed dysregulation of 18 proteins. 
Of these, the expression of 6 proteins was found to be higher in the SVZp samples compared to that of 
SVZn samples. On the other hand, lower expression of 12 proteins in SVZp samples was observed in 
comparison with SVZn.

Another analysis with IDH1 mutation as focus, revealed 22 proteins significantly dysregulated in a 
comparison of Grade II WT versus IDH1p (Supplementary Table 5). Among these proteins YWHAH 
and STUB1 were found to be down-regulated in IDH1p (Fig. 2e). No significantly dysregulated protein 
was found in Grade III WT versus IDH1p and only 1 significantly dysregulated protein in case of Grade 
IV WT versus IDH1p was found. Considering all the WT IDH1 across all grades as a cohort against all 
IDH1p subjects as another cohort, we did not find any significantly dysregulated proteins.

Enrichment Analysis.  Grade II Gliomas were found to be enriched in invasive pathways like 
cytoskeleton based cell adhesion and migration, cytoskeleton remodelling, chemotaxis, etc. (Fig. 3 and 
Supplementary Table 6). Metabolic networks like phosphatidic acid pathway, phosphatidylinositol-4
,5-diphosphate pathway (Supplementary Table 7) process networks like cell adhesion & cell matrix attrac-
tions and cytoskeleton remodelling involving actin filaments were enriched in this grade (Supplementary 
Table 8). Grade III Gliomas had pathways like cytoskeleton based cell adhesion and migration, cytoskele-
ton remodelling common with the low-grade gliomas (Fig. 3). In addition to this, differentially expressed 
proteins in Grade III were found to be enriched in certain cell signalling pathways like Flt3, JAK-STAT, 
NOTCH, interleukin signalling pathways etc. (Fig. 3 and Supplementary Table 6). Process networks were 
found to be enriched in NOTCH signalling pathways and haematopoiesis development and blood vessel 
development etc. (Supplementary Table 8). Grade IV gliomas were found to be enriched in immune reg-
ulatory pathways, cell cycle signalling pathway and RAB3 signalling pathways (Fig. 3 and Supplementary 
Table 6). Process networks that were found to be enriched were inflammation signalling pathways, cell 
cycle transition from G2 to M phase and protein folding and unfolding (Supplementary Table 8). No 
significant metabolic networks could emerge in case of Grade III and GBM when subjected to enrich-
ment analysis.

TLR signalling and histone phosphorylation were among the top enriched Gene Ontology (GO) pro-
cesses in case of comparison of high grade gliomas with healthy subjects while aorta morphogenesis was 
one of the top hits in this category, in case of low grade gliomas (Supplementary Table 9). On enriching 
these differentially expressed proteins for diseases by known biomarkers, intraductal papilloma was the 
top hit while large granular lymphocytic leukaemia emerged among the top hits in high-grade gliomas 
(Supplementary Table 10). The results from GeneGo Metacore (Thomson Reuters) with a complete list of 
FDR corrected enriched pathways, metabolic networks, process networks, GO terms, enriched diseases 
by known biomarkers and their implicated TAAs can be found in the supplementary Tables 5–9.

QIAGEN’s Ingenuity®Pathway Analysis (IPA) was used to analyse the most significant interactions of 
differentially expressed proteins with special focus to the involvement of classifier proteins. Interaction 
networks like “cell death and survival, inflammatory response, cell to cell signalling and interaction” and 
“developmental disorder, hereditary disorder, neurological disease” network were implicated in Grade 
II (Supplementary Fig. 1a,b); “cell death and survival, cancer, cellular assembly” and “organization and 
cancer, gastrointestinal diseases, cellular growth and proliferation” were among the significant interac-
tions in Grade III (Supplementary Fig. 1c,d); and “cellular movement, inflammatory response” and “cell 
morphology, cellular movement, cell to cell signalling and interactions”, were amongst the most impor-
tant networks in Grade IV when differentially expressed proteins were studied with respect to healthy 
controls in the above cases (Supplementary Fig. 1e,f).

Classifiers.  As the lists of all significant differentially expressed proteins together could discriminate 
the diseased samples from healthy ones with good efficiency and efficacy; we elucidated panels of 10 
proteins for this purpose using Support Vector Machine (SVM) (Supplementary Fig. 2). SVM is known 
to be an extremely useful tool for deducing smaller sets of proteins that can distinguish any two desired 
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cohorts from a larger set of significant differentially expressed proteins13. Such a panel of 10 proteins 
could differentiate the healthy controls from Grade II samples with 88% sensitivity and 87% specificity 
with Area Under Curve (AUC) value of 0.9 and classification accuracy of 87%. This panel included 5 
up-regulated proteins which were SNX1, MYLK, VDAC1, IGHG1 and CCDC32, and 5 down-regulated 
proteins like EYA1, CD44, NOL3, PQBP1 and EXOSC7 (Table 1).

Another panel of 10 proteins was elucidated which differentiated healthy samples from Grade III sam-
ples with 89% sensitivity and 100% specificity at an AUC value of 1 and classification accuracy of 93%. 
This panel included 9 up-regulated proteins such as C14orf80, GCK, HSD17B14, LYPLAL1, MAGEA4, 
MLX, RTN4, SNX1 and TEX264 and 1 down-regulated protein, ARHGAP17 (Table 1).

Similarly, another set of 10 proteins, was found to differentiate the healthy samples from Grade IV 
samples with 94% sensitivity, 73% specificity, AUC value of 0.975 and classification accuracy of 88%. The 
panel included proteins like SNX1, IGHG1 and C11orf74, which were up-regulated and down-regulated 
proteins like C17orf57, CIB1, RCSD1, CDH26, PQBP1, EYA1 and ZHX3 (Table 1).

Through the intra-grade analysis of Grade IV i.e. SVZp versus SVZn, we identified a set of 10 classifier 
proteins which helped distinguish SVZp samples from SVZn with 77% sensitivity and 95% specificity 
and with an AUC value of 0.975. These classifier proteins included 6 proteins, PGM2, DR1, HIBADH, 

Figure 3.  Enriched Pathways emerging from TAAs in each grade. Figure 3 schematically represents 
the enriched pathways emerging from deregulated TAAs in each grade. The proteins attributed to these 
pathways are highlighted in colour-coded panels. The pathways common between grades have also been 
represented in the above panels. Blue coloured panels denote proteins from Grade II, red coloured panels 
represent proteins from Grade III and green coloured panels signify proteins from Grade IV in any given 
pathway. These images were created from the data generated by GeneGoMetacore.
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Symbol Full name AUC
Sensitivity 

(%)
Specificity 

(%) PPV NPV

HC vs Grade II

  SNX1 sorting nexin 1

0.9 88 87 0.88 0.87

  MYLK myosin light chain kinase

  VDAC1 voltage-dependent anion channel 1

  IGHG1 immunoglobulin heavy constant gamma 1 (G1m 
marker)

  CCDC32 coiled-coil domain containing 32

  EYA1 EYA transcriptional coactivator and phosphatase 1

  CD44 CD44 molecule (Indian blood group)

  NOL3 nucleolar protein 3 (apoptosis repressor with CARD 
domain)

  PQBP1 polyglutamine binding protein 1

  EXOSC7 exosome component 7

HC vs Grade III

  C14orf80 chromosome 14 open reading frame 80

1 89 100 1 0.88

  GCK glucokinase (hexokinase 4)

  HSD17B14 hydroxysteroid (17-beta) dehydrogenase 14

  LYPLAL1 lysophospholipase-like 1

  MAGEA4 melanoma antigen family A, 4,

  MLX MLX, MAX dimerization protein

  RTN4 reticulon 4

  SNX1 sorting nexin 1

  TEX264 testis expressed 264

  ARHGAP17 Rho GTPase activating protein 17

HC vs Grade IV

  SNX1 sorting nexin 1

0.975 94 73 0.89 0.85

  IGHG1 immunoglobulin heavy constant gamma 1 (G1m 
marker)

  C11orf74 chromosome 11 open reading frame 74

  C17orf57 EF-hand calcium binding domain 13

  CIB1 calcium and integrin binding 1 (calmyrin)

  RCSD1 RCSD domain containing 1

  CDH26 cadherin 26

  PQBP1 polyglutamine binding protein 1

  EYA1 EYA transcriptional coactivator and phosphatase 1

  ZHX3 zinc fingers and homeoboxes 3

SVZp vs SVZn

  NEDD9 neural precursor cell expressed

0.975 77 95 0.91 0.87

  PGM2 phosphoglucomutase 2

  DR1 down-regulator of transcription 1

  FAM120B family with sequence similarity 120B

  TMOD4 tropomodulin 4 (muscle)

  HIBADH 3-hydroxyisobutyrate dehydrogenase

  GPBP1 GC-rich promoter binding protein 1

  GMEB1 glucocorticoid modulatory element binding protein 1 
eukaryotic translation elongation factor 1 alpha 1

  EEF1A1 Eukaryotic Translation Elongation Factor 1 Alpha

  LOC339685 LOC339685

Table 1.   Panels of classifiers. This table shows the sensitivities, specificities and the corresponding AUC values 
for various comparisons (AUC: Area under curve; PPV: positive predictive value; NPV: negative predictive value).
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GPBP1, EEF1A1 and LOC339685, which were overexpressed in SVZp and 4 proteins, TMOD4, FAM120B, 
NEDD9 and GMEB1, which were overexpressed in SVZn (Table 1).

The multidimensional scaling (MDS) plots of healthy samples versus different grades of gliomas 
revealed a separation of samples albeit with some mis-classification error (Fig. 4a,b&c). Similarly, separation  
of SVZp samples from SVZn samples could be observed with few samples being mis-classified (Fig. 4d).

A robust classifier panel could not be deduced to distinguish IDH1p and WT subjects in any grade 
while maintaining stringent statistical thresholds; however few of the significant proteins exhibited inter-
esting trends in the IDH1p and WT cohorts (Supplementary Fig. 2).

Discussion
Glioma is one of the most common and aggressive types of primary brain tumours1 in which early con-
firmatory diagnostic examinations of subjects involve highly invasive techniques like biopsies14. Although 
surgery is the first line of therapy in most cases, sometimes, when surgery is not possible or when only 
a biopsy is required14, alternative diagnostic confirmation may be preferable. In clinical trials, espe-
cially those where the intervention being assessed is surgery (for example comparison of two different 
adjuncts), it is also desirable to know a priori the possible histological type in order to ensure homoge-
neity of the sample15. Another possible application is to ascertain tumour transformation during imaging 
surveillance of untreated low-grade gliomas. Further, in the post-treatment setting, there is often a lot 
of diagnostic dilemma between true progression or recurrence and treatment related changes. Presently 
MRI is the only clinically available diagnostic modality. Though it has tremendously improved the diag-
nostic capabilities, it has its limitations. In such scenarios, serum markers which reflect disease biology 
may be a very useful option. In this context, production of autoantibodies is one of the first reactions 
that the immune system elicits in response to an establishing tumour16. Being produced in abundance 
not only makes autoantibody detection an ideal aid for early diagnosis of the disease, but it could also 
help in confirming the histotype of the tumour depending on the nature of proteins that present aberra-
tion in that histotype. This may be because, the number of glial antigens exposed to the immune system 
increases with the extent of breach of the blood-brain barrier as the disease progresses, which should 
ideally unveil some unique signatures. A panel of autoantibody markers thus, has the potential of com-
plementing the existing conventional diagnostic techniques for gliomas. It could also possibly address the 
problem of heterogeneity within grades and sub-types, allowing for individualized therapeutic decisions 

Figure 4.  Multidimensional scaling (MDS) using classifiers. The top panel in (a) denotes the MDS plot 
of healthy controls versus Grade II samples. Similarly, panels (b,c) represent the separation of the healthy 
controls versus Grade III and Grade IV using MDS, respectively. (d) represents the MDS plot corresponding 
to SVZp versus SVZn. The boxplot showing the expression pattern of NEDD9 across SVZp and SVZn 
samples is represented in panel (e).
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rather than blanket protocols in clinics. Our study fits in as a foundation to realize these goals of early 
diagnosis, minimal invasive diagnosis and identification of autoantibody signatures within each grade. 
Low-grade gliomas could potentially progress into the more aggressive grades and it is, therefore, of 
prime importance to find a set of early diagnostic markers. Although our panel of early diagnostic mark-
ers separates Grade II subjects and healthy controls, there is a lack of clear distinction between the two 
cohorts which can be attributed to the fact that the blood brain barrier is not breached at an early stage 
of the disease, due to which we can expect relatively few glial self-antigens to be exposed to the humoral 
system thereby eliciting a poor response. As the severity of the disease increases, we find that the number 
of TAAs detected is substantially higher than that of the low-grade gliomas which also reflects on this 
breach of the blood brain barrier and therefore, the autoantibody response. This can be seen from the 
extent of differentiation between high-grade gliomas (Grade III and Grade IV) from healthy individuals.

A holistic observation of this analysis revealed four proteins, IGHG1, EYA1, SNX1 and PQBP1, which 
were found to be significantly dysregulated in all the grades compared to the healthy individuals. Of 
these four proteins, SNX1 contributed to the classification of healthy controls and all the three grades of 
gliomas. On the other hand IGHG1, EYA1 and PQBP1 were found to help in the classification of Grade 
II and Grade IV from healthy individuals. The expression of IgG heavy region has been reported in 
various cancerous cell lines. However, the reasons for its expression are still not very clear17. Contrary to 
the popular belief that the immunoglobulins are produced only in mature B lymphocytes, some studies 
have reported carcinoma cells and nervous cells to produce immunoglobulins18–20. In a study conducted 
by Li et al.21, IGHG1 was found to be up-regulated in human pancreatic carcinomas and the blockage 
of IGHG1 was correlated with retarded tumour development and better survival. Through this study the 
authors have, also, hypothesized that IGHG1 might play a role in immune evasion mechanisms, thus 
making IGHG1 an interesting classifier candidate. EYA1 which was a classifier protein for separating 
healthy controls with subjects in Grade II and Grade IV belongs to eyes absent (EYA) family of evolu-
tionarily conserved proteins and is known to have putative role in innate immunity, DNA damage repair, 
angiogenesis and cancer metastasis, etc.22. EYA1 has shown ambiguous expression profiles across a num-
ber of known cancers. Over-expression of EYAs has been observed in ovarian and breast cancers23 while 
on the other hand, Nikpour et al.24 have reported down-regulation of EYA1 in gastric cancer. SNX1 is a 
member of sorting nexin proteins subfamily and the members of this subfamily and is known to interact 
with epidermal growth factor receptor (EGFR). Earlier studies have shown that the over-expression of 
SNX1 leads to the degradation of EGFR25. Our studies have shown that the SNX1 protein is up-regulated 
in gliomas and we could not find differential expression of EGFR in gliomas. PQBP1 binds to BRN2, 
a POU-III class of neural transcription factors. PQBP1 inhibits the transcription activation of BRN226. 
BRN2 is known to be expressed in glioblastoma and is associated with the development of neural and 
glial cells27. Although these 4 proteins collectively failed to differentiate the healthy samples from various 
grades of glioma, these 4 proteins in combination with other grade specific differentially expressed pro-
teins did separate healthy samples from gliomas with reasonably good classification accuracy.

Differentiating sub-categories of a given grade of cancer is extremely important in order to under-
stand underlying mechanisms in the manifestation of the disease. In this study, we tried to identify 
differentially expressed proteins between the sub-categories of Grade IV i.e. SVZp and SVZn. NEDD9 
has been known to cause invasiveness in lung cancer and melanoma28,29. Such invasiveness can be attrib-
uted to its role in the regulation and activation of transcriptional pathways that are associated with 
cancer progression and metastasis. In the context of GBM, NEDD9 increases the migration capacity by 
acting as a downstream effector of FAK30. The interactions of NEDD9 with Src, FAK and Crk results 
in tyrosine phosphorylation which help in the formation of binding sites for effector proteins contain-
ing SH2 domains and such complexes triggers cell migration31. In this study, we found NEDD9 to be 
up-regulated in the SVZn samples (Fig.  4e). Studies have shown that SVZ involvement is an adverse 
prognostic factor in GBMs32. There is a lot of speculation that the SVZ region is the site of origin of 
most GBMs. Thus, a subset of GBMs that express NEDD9 could be the ones which migrate away from 
the SVZ. This migration may in some way alter the biology and make SVZn tumours more favourable in 
terms of prognosis. Thus, NEDD9 expression could serve as a useful marker for a favourable subgroup 
and may be further validated for targeted therapeutic potential. In addition to the SVZ subtyping, we 
tried to distinguish the WT cohorts against the IDH1p cohorts to understand any significant patterns 
in the autoantibody signature (Fig. 2). The mutation in IDH1 gene is widely associated with good prog-
nosis of glioma patients. One of the primary reasons for a prolonged survival is that the lower levels of 
NADPH found in the IDH1p patients. The lower levels of NADPH make the tumour more responsive 
to irradiation and chemotherapy7. Also, it is widely accepted that, IDH1 mutation is more frequent in 
younger patients, compared to that of older33. The median age of IDH1p patients, in our study, was 29 
years (standard deviation ± 9 years), while the median age of WT patients was found to be 46 years 
(standard deviation ± 16 years) (Supplementary Table 5). In this study, we could identify set of 22 pro-
teins, which were dysregulated in the Grade II gliomas when the IDH1p samples were compared to 
that of WT. Among these 22 proteins, YWHAH34 and STUB135 (also known as CHIP) are known to be 
involved in proliferation of glioma cells and were found to be significantly upregulated in the WT cohort 
when compared with the IDH1p cohort. This dysregulation may attribute to the poor prognosis of WT 
patients. Although, few differentially expressed proteins for IDH1p and WT among Grade II and Grade 
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IV samples were identified but due to small sample size a set of stringent classifier protein from the WT 
versus IDH1p analysis could not be deduced.

Biochemical pathways form the framework, which leads the molecular and biological processes in a 
system to function optimally36. Tracing potential TAAs to biochemical pathways may give us an under-
standing of pathways which are more aberrant and could be the likely targets of the immune system 
to generate an autoimmune response which in turn reflects on the disease pathobiology37. If studied in 
greater depths, pathway analysis can also help in developing generalized therapies if core pathways are 
targeted. Many of the pathways traced from our list of potential TAAs have highlighted pathways which 
are known to have a pronounced role in tumourigenesis38. Pathways regulating nucleocytoplasmic trans-
port of CDK/Cyclins in cell cycle signalling, NOTCH signalling, EGFR signalling, ERK1/2 signalling, 
JAK/STAT signalling, cytoskeletal remodelling pathways involving TGF and WNT etc. are few amongst 
them38. While the escalation from low grade to high grade glioma were pronounced in pathways involv-
ing cell migration and cytoskeletal remodelling, the high grade gliomas were found to be more enriched 
in immunoregulatory pathways. IL-4 signalling pathway is one such pathway which was found to be 
enriched and has been implicated to show aberrations in glioma cell lines39. In glioma cells, IL-4 signal-
ling involves aberrant activation of STAT3 instead of STAT6 which are known to lead to enhanced cell 
proliferation, cell survival and angiogenesis in a number of human cancers40. Genetic alterations in PI3K 
pathway has been found to be one of the critical signalling pathways resulting in the manifestation of 
gliomas and is also one of the pathways stringently regulated by the IL-4 signalling pathway36,39,41 which 
leads us to consider the upstream effectors of such critical pathways which may be deregulated due to 
autoimmune responses in addition to known genetic mutations. HSP60 and HSP70/TLR signalling path-
way was another immune-regulatory pathway, which was enriched in high grade glioma patients. TIRAP 
(MAL) is one of the adaptor proteins which transmits signals from TLRs42. TLR stimulation results in 
activation of NF-κ B, MAPKs, JUN N-terminal kinases (JNKs), p38, ERKs which normally regulate the 
host immune responses43. TLR signalling pathways have also been associated with enhanced cell sur-
vival by over-expression of anti-apoptotic proteins like Bcl-2 related protein A1 (BCL2A1), inhibitors of 
apoptosis 1 (cIAP1), cIAP2, XIAP and Bcl-2 family members through PI3K-Akt signaling43,44. Certain 
proteins in the TLR family have been implicated in the pathogenesis of infectious, chronic inflamma-
tory and autoimmune disorders45,46. Heat shock proteins (Hsp) have been reported to bring about TLR 
mediated pro-inflammatory cytokine production in macrophages and maturation of dendritic cells47. 
It is interesting to note that Hsps like Hsp70 are known to help in the TLR mediated accumulation of 
Aβ  peptides in microglia resulting in downstream activation of p38 MAPKase and NF-κ B activation in 
case of neurodegenerative disorders like Alzheimer’s disease47. Proteins like Hsp70, MAPKase/ERK1/2 
and TIRAP were found to be amongst the TAAs in our study. Apart from immunoregulatory pathways, 
integrin mediated cell adhesion and migration was one of the significant pathways, which emerged in 
the high-grade gliomas. Integrins are also involved in the regulation of intracellular signalling pathways, 
which in turn control the cytoskeletal organization and survival, thus playing a major role in tumour-
progression48. A cytoplasmic protein kinase known as focal adhesion kinase (FAK) co-localizes with 
the integrins and form focal adhesions. Higher levels of expression of FAK are known to be observed 
in aggressive forms of tumours compared to the benign tumours49 and FAK is linked to promote cell 
survival50 and integrin mediated cell migration51. Further, FAK is also linked to the activation of RAS–
extracellular-signal-regulated kinase (ERK). FAK activates ERK through the recruitment of adaptor pro-
teins like GRB2 and CAS52. GRB2, ERK, CRK etc. were TAAs from these pathways were detected in 
our study. About 15–20% of the CNS space is taken up by the extra cellular space which is made up of 
the extra cellular matrix (ECM)53. ECM has high levels of glycosaminoglycan (GAG). Hyaluronan (HA) 
which is one of the principal components of the GAG, binds to CD44, enhancing cell motility which cor-
relates with the invasive nature of the disease54. In a histopathological study, it was also established that 
CD44 expression was found to be correlating with the invasiveness and aggressiveness of glioma which 
is attributed due to its enhanced ability of migrating through the ECM55. Although many of the proteins 
implicated in the above pathways have been individually reported in glioma, it is indeed interesting to 
investigate if these pathways have any crucial role in the pathobiology of glioma on the whole. In this 
light, it is also interesting to find that the most significant pathways, especially from the high-grade 
glioma data, were those which regulate essential activities of the immune system itself. This therefore, 
necessitates further study to understand the underlying reasons for immune system to target its own key 
components to elicit an autoimmune response under diseased conditions.

The findings from our data point towards the potential lists of classifiers, which are differentially 
expressed in various grades of gliomas compared to that of healthy control samples. To the best of our 
knowledge, this is a first study of its kind where more than 17,000 proteins were screened for their 
autoantigenicity using glioma serum samples on a protein microarray platform. The pathway analysis 
from potential TAAs opens a new avenue, which needs to be pursued in depth as to how and why these 
proteins are targeted by the immune system. This also gives us an understanding of the likely function-
alities to be compromised depending on the targeted biochemical pathways. The findings from our study, 
thus, lay the foundation for early diagnosis of gliomas and prognostics.
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Materials and Methods
Ethics Statement.  The tumour serum samples collected and experiments conducted in this study 
were approved as part of an institutional review board approved study (ACTREC-TMC IEC No. 15, 
Advanced Centre for Treatment, Research and Education in Cancer and Tata Memorial Centre) in 
accordance with approved guidelines. Patients with radiologically suspected gliomas were enrolled after 
giving written informed consent.

Serum sample collection.  Blood was collected prior to the first surgery and before patients receiving 
any kind of treatment. The collected serum samples were aliquoted into smaller volumes and stored at 
− 80 °C until further use. Prior to the assay, the serum samples were thawed on ice. For the evaluation of 
serum samples from Glioma grades II (n =  17), III (n =  18) and IV (n =  34) patients and healthy individu-
als (n =  15) we used Human Proteome arrays (HuProt arrays) (Johns Hopkins University). The median 
age of the patients with Grade II, III and IV were 32, 32.5 and 57 years with a standard deviation of 15, 12 
and 11 years, respectively. Further patient details are enlisted in the Supplementary Tables 1, 2, 3 and 4.  
The grade IV samples comprised of 21 SVZp and 13 SVZn samples.

For the comparison of WT versus IDH1p, in Grade II, the IDH1 status for 8 out of 17 patients were 
known, where 4 patients were profiled IDH1p while 4 were WT. In grade III, off 18 patients, the IDH1 
status of 10 patients was known where, 7 patients were IDH1p while 3 were WT. In case of Grade IV 
patients, off 34 patients, 3 patients were IDH1p mutated while 4 were WT. The IDH1 statuses for these 
patients were determined by sequencing the IDH1 gene (Supplementary Table 5).

Microarray fabrication.  The HuProt arrays comprised of ~17000 unique full-length proteins 
printed in duplicates. The expression of these 17000 GST-tagged proteins was done in Saccharomyces 
cerevisiae expression system. In addition to these full-length proteins, positive controls (H2A, H2B, H3, 
H4 and GST in various concentrations) and negative controls (BSA, HeLa cell lysates, p300-BHC) were 
spotted in duplicates on the microarrays56.

Microarray assay.  Prior to the screening of the serum samples for the detection of autoantibody 
signatures (Fig.  1a), the quality of the Glutathione S-transferase (GST) tagged recombinant proteins 
immobilized on the microarray slide surface was checking using anti-GST antibody. The GST purified 
proteins spotted on the microarray slide were of varying concentrations (Fig.  1b). In this experiment, 
the microarray slides were incubated with anti-GST antibody. Later, secondary antibody conjugated with 
Cy3 was used to check the quality of the printing on the slide.

In order to obtain a high signal-to-noise ratio one needs to optimize the assay. We used 3% non-fat 
milk powder in TBST (tris-buffered saline with 0.1% tween20), 3% BSA in TBST, SuperBlock (Pierce) 
and 3% BSA in SuperBlock. Similarly, various dilutions of serum and secondary antibody were tried.

Finally, the protocol which gave us the best intrachip and interchip reproducibility and low back-
ground and high signal-to-noise ratio was used to further evaluate the serum samples. For deducing 
the intrachip reproducibility, we used the signal intensities from the duplicate spots of the same protein, 
while the interchip reproducibility was calculated using the signal intensities from the identical spots 
on two different microarray slides processed using same serum sample on different days (Fig. 1c). The 
protocol is as follows: The microarray was blocked using 3% BSA in SuperBlock for 2 hours on a gentle 
shaker. Then the serum sample was diluted 1:500 in 2% BSA in TBST and incubated for 2 hours on a 
shaker. To this diluted serum, 1:5000 rabbit anti-GST antibody was also added. Later, a cocktail of sec-
ondary antibody, containing 1:1000 dilution of anti-human IgG conjugated with Cy5 and 1:5000 dilution 
anti-rabbit antibody conjugated with Cy3, was applied onto the microarray slide. All these incubation 
steps were followed by rinsing thrice with TBST, washing the slides for 4 ×  5 min with TBST, rinsing 
with distilled water and drying at 900 rpm for 2 min. All the steps were performed at room temperature. 
After the final wash and drying of the slides, scanning was performed using GenePix 4000B Microarray 
Scanner (Molecular Devices).

Statistical analysis.  The processed microarrays were scanned with GenePix 4000B Microarray 
Scanner (Molecular Devices). The image processing and the data acquisition of microarrays were done 
using GenePix Pro 7 (Molecular Devices). In order to identify differentially expressed proteins, the 
raw data needs to be pre-processed so as to adjust variation between arrays, thus adjusting for any 
effects not arising due to biological differences57. We make use of “limma58” package made available as a 
Bioconductor59 package for the R programming language (https://www.r-project.org/).

Pre-processing the data involves two steps: background correction and normalization. Background 
correction was performed using the ‘nec’ method present in ‘limma’. ‘nec’ performs ‘normexp-by-control’ 
background correction utilizing the negative controls only. An offset of 100 is added to the final adjusted 
values in order to reduce the variability of the log ratios. This data is then normalized across arrays using 
‘normalizebetweenarrays’ method with the ‘quantile normalization’ function in limma. Quantile normal-
ization normalizes the value in two or more data sets by making the distribution of the probe intensities 
identical, statistically by extending the concept of Q-Q plots to n-dimensions, where n is the number of 
proteins, in our case n =  17000.

https://www.r-project.org/


www.nature.com/scientificreports/

1 1Scientific Reports | 5:13895 | DOI: 10.1038/srep13895

The data having been pre-processed is then analysed for selecting differentially expressed genes. 
‘limma’ makes use of moderated t-statistic to test the null hypothesis that the genes are not differentially 
expressed. These tests are adjusted for multiple hypothesis testing using the ‘Benjamin-Hochberg’(BH) 
correction method. Though limma was primarily developed for DNA microarrays, it has been used for 
analysing protein microarrays60.

The proteins with a Log-fold change more than 0.5 or less than − 0.5 and with an adjusted p value 
less than 0.05 were selected to be potentially differentially expressed. The chosen cut off values essen-
tially focuses on genes with higher fold changes which are also significant statistically. Thus, in grade II 
versus control comparison the threshold was maintained at p value less than 0.05. For grade III versus 
healthy and Grade IV versus healthy comparisons the threshold was maintained at adjusted p value less 
than 0.05. The shortlisted proteins were then put to pathway analysis to determine if they were a part of 
a pathway that might have strong implications for tumourigenesis. By applying recursive feature elim-
ination using SVMs with k-fold cross-validation we elucidated a panel of 10 classifier proteins, which 
enable differentiation of healthy samples from glioma samples. For visualization of the samples being 
discriminated using these panels, we used MDS. The 10 dimensional classifier space was mapped to a 3 
dimensional space using a non-isometric MDS algorithm.

Pathway analysis.  After identifying the significant proteins from various comparisons, we proceeded 
further for the identification of enriched pathways and gene ontology terms using GeneGoMetacore™  
software (Thomson Reuters). The significance level of 0.05 was used for this analysis and FDR corrected 
values at p <  0.05 were used as a threshold for these analysis. We, further, wanted to investigate the 
protein-protein interactions among the significant proteins identified from various grades of gliomas 
for which we used QIAGEN’s Ingenuity®Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.
com/ingenuity).

References
1.	 Louis, D. N. Molecular pathology of malignant gliomas. Annu. Rev. Pathol. 1, 97–117 (2006).
2.	 Furnari, F. B. et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007).
3.	 Claes, A., Idema, A. J. & Wesseling, P. Diffuse glioma growth: a guerilla war. Acta Neuropathol. 114, 443–458 (2007).
4.	 Boots-Sprenger, S. H. et al. Significance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in 

gliomas: use with caution. Mod. Pathol. 26, 922–929 (2013).
5.	 Jafri, N. F., Clarke, J. L., Weinberg, V., Barani, I. J. & Cha, S. Relationship of glioblastoma multiforme to the subventricular zone 

is associated with survival. Neuro. Oncol. 15, 91–96 (2013).
6.	 Kappadakunnel, M. et al. Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the 

subventricular zone. J. Neurooncol. 96, 359–367 (2010).
7.	 Bleeker, F. E. et al. The prognostic IDH1( R132 ) mutation is associated with reduced NADP+  -dependent IDH activity in 

glioblastoma. Acta Neuropathol. 119, 487–494 (2010).
8.	 Yin, L. & Zhang, L. Correlation between MRI findings and histological diagnosis of brainstem glioma. Can. J. Neurol. Sci. 40, 

348–354 (2013).
9.	 Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).

10.	 Norden, A. D. & Wen, P. Y. Glioma therapy in adults. Neurologist. 12, 279–292 (2006).
11.	 Casiano, C. A., Mediavilla-Varela, M. & Tan, E. M. Tumor-associated antigen arrays for the serological diagnosis of cancer. Mol. 

Cell Proteomics. 5, 1745–1759 (2006).
12.	 Kobold, S., Lutkens, T., Cao, Y., Bokemeyer, C. & Atanackovic, D. Autoantibodies against tumor-related antigens: incidence and 

biologic significance. Hum. Immunol. 71, 643–651 (2010).
13.	 Zhang, X. et al. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC. 

Bioinformatics. 7, 197 (2006).
14.	 Balana, C. et al. Clinical course of high-grade glioma patients with a “biopsy-only” surgical approach: a need for individualised 

treatment. Clin. Transl. Oncol. 9, 797–803 (2007).
15.	 Moiyadi, A., Syed, P. & Srivastava, S. Fluorescence-guided surgery of malignant gliomas based on 5-aminolevulinic acid: 

paradigm shifts but not a panacea. Nat. Rev. Cancer 14, 146 (2014).
16.	 Babel, I. et al. Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density 

protein microarrays. Mol. Cell Proteomics. 8, 2382–2395 (2009).
17.	 Chen, Z. et al. Immunoglobulin G is present in a wide variety of soft tissue tumours and correlates well with proliferation 

markers and tumourgrades. Cancer 116, 1953–1963 (2010).
18.	 Qiu, X. et al. Human epithelial cancers secrete immunoglobulin g with unidentified specificity to promote growth and survival 

of tumourcells. Cancer Res. 63, 6488–6495 (2003).
19.	 Chen, Z. & Gu, J. Immunoglobulin G expression in carcinomas and cancer cell lines. FASEB J. 21, 2931–2938 (2007).
20.	 Niu, N. et al. Expression and distribution of immunoglobulin G and its receptors in the human nervous system. Int. J. Biochem. 

Cell Biol. 43, 556–563 (2011).
21.	 Li, X. et al. The presence of IGHG1 in human pancreatic carcinomas is associated with immune evasion mechanisms. Pancreas 

40, 753–761 (2011).
22.	 Tadjuidje, E. & Hegde, R. S. The Eyes Absent proteins in development and disease. Cell Mol. Life Sci. 70, 1897–1913 (2013).
23.	 Pandey, R. N. et al. The Eyes Absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and 

invasion of tumourcells. Oncogene 29, 3715–3722 (2010).
24.	 Nikpour, P., Emadi-Baygi, M., Emadi-Andani, E. & Rahmati, S. EYA1 expression in gastric carcinoma and its association with 

clinicopathological characteristics: a pilot study. Med. Oncol. 31, 955 (2014).
25.	 Kurten, R. C., Cadena, D. L. & Gill, G. N. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 272, 

1008–1010 (1996).
26.	 Waragai, M. et al. PQBP-1, a novel polyglutamine tract-binding protein, inhibits transcription activation by Brn-2 and affects 

cell survival. Hum. Mol. Genet. 8, 977–987 (1999).
27.	 Fujii, H. & Hamada, H. A CNS-specific POU transcription factor, Brn-2, is required for establishing mammalian neural cell 

lineages. Neuron 11, 1197–1206 (1993).

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity


www.nature.com/scientificreports/

1 2Scientific Reports | 5:13895 | DOI: 10.1038/srep13895

28.	 Chang, J. X., Gao, F., Zhao, G. Q. & Zhang, G. J. Expression and clinical significance of NEDD9 in lung tissues. Med. Oncol. 29, 
2654–2660 (2012).

29.	 Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006).
30.	 Natarajan, M. et al. HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma 

cells. Oncogene 25, 1721–1732 (2006).
31.	 O’Neill, G. M., Seo, S., Serebriiskii, I. G., Lessin, S. R. & Golemis, E. A. A new central scaffold for metastasis: parsing HEF1/

Cas-L/NEDD9. Cancer Res. 67, 8975–8979 (2007).
32.	 Lim, D. A. et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal 

tumourphenotype. Neuro. Oncol. 9, 424–429 (2007).
33.	 Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).
34.	 Park, G. Y. et al. 14-3-3 eta depletion sensitizes glioblastoma cells to irradiation due to enhanced mitotic cell death. Cancer Gene 

Ther. 21, 158–163 (2014).
35.	 Xu, T. et al. Carboxyl terminus of Hsp70-interacting protein (CHIP) contributes to human glioma oncogenesis. Cancer Sci. 102, 

959–966 (2011).
36.	 Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).
37.	 Tang, L. et al. Autoantibody profiling to identify biomarkers of key pathogenic pathways in mucinous ovarian cancer. Eur. J. 

Cancer 46, 170–179 (2010).
38.	 Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).
39.	 Rahaman, S. O., Vogelbaum, M. A. & Haque, S. J. Aberrant Stat3 signaling by interleukin-4 in malignant glioma cells: involvement 

of IL-13Ralpha2. Cancer Res. 65, 2956–2963 (2005).
40.	 Rahaman, S. O. et al. IL-13R(alpha)2, a decoy receptor for IL-13 acts as an inhibitor of IL-4-dependent signal transduction in 

glioblastoma cells. Cancer Res. 62, 1103–1109 (2002).
41.	 Nelms, K., Keegan, A. D., Zamorano, J., Ryan, J. J. & Paul, W. E. The IL-4 receptor: signaling mechanisms and biologic functions. 

Annu. Rev. Immunol. 17, 701–738 (1999).
42.	 Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).
43.	 Rakoff-Nahoum, S. & Medzhitov, R. Toll-like receptors and cancer. Nat. Rev. Cancer 9, 57–63 (2009).
44.	 Salaun, B., Romero, P. & Lebecque, S. Toll-like receptors’ two-edged sword: when immunity meets apoptosis. Eur. J. Immunol. 

37, 3311–3318 (2007).
45.	 Liew, F. Y., Xu, D., Brint, E. K. & O’Neill, L. A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. 

Immunol. 5, 446–458 (2005).
46.	 Cook, D. N., Pisetsky, D. S. & Schwartz, D. A. Toll-like receptors in the pathogenesis of human disease. Nat. Immunol. 5, 975–979 

(2004).
47.	 Chen, K. et al. Toll-like receptors in inflammation, infection and cancer. Int. Immunopharmacol. 7, 1271–1285 (2007).
48.	 Hood, J. D. & Cheresh, D. A. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91–100 (2002).
49.	 Weiner, T. M., Liu, E. T., Craven, R. J. & Cance, W. G. Expression of focal adhesion kinase gene and invasive cancer. Lancet 342, 

1024–1025 (1993).
50.	 Frisch, S. M., Vuori, K., Ruoslahti, E. & Chan-Hui, P. Y. Control of adhesion-dependent cell survival by focal adhesion kinase. J. 

Cell Biol. 134, 793–799 (1996).
51.	 Sieg, D. J., Hauck, C. R. & Schlaepfer, D. D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. 

J. Cell Sci. 112 (Pt 16), 2677–2691 (1999).
52.	 Schlaepfer, D. D., Hauck, C. R. & Sieg, D. J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435–478 (1999).
53.	 Sykova, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol Rev. 88, 1277–1340 (2008).
54.	 Nikitovic, D., Kouvidi, K., Karamanos, N. K. & Tzanakakis, G. N. The roles of hyaluronan/RHAMM/CD44 and their respective 

interactions along the insidious pathways of fibrosarcoma progression. Biomed. Res. Int. 2013, 929531 (2013).
55.	 Yoshida, T., Matsuda, Y., Naito, Z. & Ishiwata, T. CD44 in human glioma correlates with histopathological grade and cell 

migration. Pathol. Int. 62, 463–470 (2012).
56.	 Jeong, J. S. et al. Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol. Cell 

Proteomics. 11, O111 (2012).
57.	 Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide 

array data based on variance and bias. Bioinformatics 19, 185–193 (2003).
58.	 Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. 

Appl. Genet. Mol. Biol. 3, Article3 (2004).
59.	 Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 

5, R80 (2004).
60.	 Gong, W. et al. The development of protein microarrays and their applications in DNA-protein and protein-protein interaction 

analyses of Arabidopsis transcription factors. Mol. Plant 1, 27–41 (2008).

Acknowledgements
This work is supported by the grant from Department of Biotechnology, Government of India (DBT) 
(Project number: BT/PR13562/MED/12/451/2010). We would like to thank A.Yeola and V.Vaibhav for 
their help in documentation of spot intensities for certain candidate proteins of interest.

Author Contributions
P.S. and S.S. have designed and conceived the study. P.S. performed the microarray experiments. S.C., 
S.B.N., N.G.P. and P.S. performed microarray data analysis. S.G., A.A., A.R. and M.K.P. performed 
pathway enrichment analysis. A.A., A.R. and M.K.P. cross-checked the spots on the microarray images 
for validating the findings in this study. A.M. and S.E. collected the serum samples and the clinical 
details of healthy individuals and glioma patients. H.Z. developed the human proteome arrays. P.S., S.G., 
S.C., A.M. and S.S. have written the manuscript. A.M., S.E., S.B.N. and S.S. have critically reviewed and 
provided expert advices for the improvement of the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.

http://www.nature.com/srep


www.nature.com/scientificreports/

13Scientific Reports | 5:13895 | DOI: 10.1038/srep13895

How to cite this article: Syed, P. et al. Autoantibody Profiling of Glioma Serum Samples to Identify 
Biomarkers Using Human Proteome Arrays. Sci. Rep. 5, 13895; doi: 10.1038/srep13895 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Autoantibody Profiling of Glioma Serum Samples to Identify Biomarkers Using Human Proteome Arrays

	Results

	Quality control and protocol optimization. 
	Protein microarray data normalization. 
	Differential expression analysis. 
	Enrichment Analysis. 
	Classifiers. 

	Discussion

	Materials and Methods

	Ethics Statement. 
	Serum sample collection. 
	Microarray fabrication. 
	Microarray assay. 
	Statistical analysis. 
	Pathway analysis. 

	Acknowledgements

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Experimental workflow and data preprocessing.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Differentially expressed proteins.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Enriched Pathways emerging from TAAs in each grade.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Multidimensional scaling (MDS) using classifiers.
	﻿Table 1﻿﻿. ﻿  Panels of classifiers.



 
    
       
          application/pdf
          
             
                Autoantibody Profiling of Glioma Serum Samples to Identify Biomarkers Using Human Proteome Arrays
            
         
          
             
                srep ,  (2015). doi:10.1038/srep13895
            
         
          
             
                Parvez Syed
                Shabarni Gupta
                Saket Choudhary
                Narendra Goud Pandala
                Apurva Atak
                Annie Richharia
                KP Manubhai
                Heng Zhu
                Sridhar Epari
                Santosh B. Noronha
                Aliasgar Moiyadi
                Sanjeeva Srivastava
            
         
          doi:10.1038/srep13895
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep13895
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep13895
            
         
      
       
          
          
          
             
                doi:10.1038/srep13895
            
         
          
             
                srep ,  (2015). doi:10.1038/srep13895
            
         
          
          
      
       
       
          True
      
   




