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ABSTRACT: Exposure to airborne nanoparticles contributes to many chronic pulmonary diseases.
Nanoparticles, classified as anthropogenic and natural particles, and fibers of diameters less than 100
nm, have unrestricted access to most areas of the lung due to their size. Size relates to the deposition
efficiency of the particle, with particles in the nano-range having the highest efficiencies. The deposition
of nanoparticles in the lung can lead to chronic inflammation, epithelial injury, and further to
pulmonary fibrosis. Cases of particle-induced pulmonary fibrosis, namely pneumoconiosis, are mostly
occupationally influenced, and continue to be documented around the world. The tremendous growth
of nanotechnology, however, has spurred fears of increased rates of pulmonary diseases, especially
fibrosis. The severity of toxicological consequences warrants further examination of the effects of
nanoparticles in humans, possible treatments and increased regulatory measures.
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INTRODUCTION
The majority of existing research on particulate

causes of pulmonary fibrosis focuses generally on the
micron-scale. This review focuses more specifically on
nano-scale particles (particles and fibers with diameters
less than 0.1 µm), or nanoparticles. In vitro and in vivo
studies support that nanoparticles are significant
contributors to pulmonary fibrosis, a debilitating
condition often leading to death (1). These particles are
present in occupational and environmental settings at
concentrations dependent upon location, season, and
time of day.

Clinical cases of particle-induced pulmonary fibrosis
are nearly all occupational in origin. An
epidemiological study in Mongolia from 1967-2004
showed that 67.8% of cases involving occupational
diseases were diagnosed as dust-induced chronic
bronchitis and pneumoconiosis (2). Developing
countries continue to be plagued with such cases of
pulmonary fibrosis and other chronic pulmonary
diseases caused by particles. Recently, China has
experienced 10,000 to 15,000 new cases of
pneumoconiosis per year, which has increased yearly
since 1949. Between 1949 and 2001, China has

recorded 569,129 confirmed cases of pneumoconiosis
(3). Canada and the U.S. have seen decreasing trends in
both diagnosis and mortality rates involving
occupational cases of particle-induced pulmonary
fibrosis (4). In the U.S., an epidemiological study from
1968-2000 showed that 124,849 deaths were attributed
to pneumoconiosis (5). Developed nations experience
decreasing trends as a result of improved hygiene
conditions in mines, superior dust control, and better
use of respiratory protective measures (4). The rapid
increase in nanotechnology worldwide has the potential
to dramatically increase the exposure of humans to
uncharacterized particles and cause an increase in
pulmonary disease in many developed areas. For
example, engineered nanoparticles, such as carbon
nanotubes, have been shown to cause fibrosis in rats (6).
The severity of nanoparticle effects warrants further
elucidation and increased regulatory measures to
protect against human exposure.

EXPOSURE TO AIRBORNE NANOPARTICLES
Exposure to airborne nanoparticles is an unavoidable

consequence of the technological advances of
combustion engines and engineering and the natural
occurrence of dusts, forest fires, and volcanic activity.
As the most toxic component of airborne particulate
matter, nanoparticles have uncontrolled access to the
cells of the airway and even intracellular components
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because of their size (7-9). Central to pulmonary
toxicity is nanoparticle deposition in the alveolar spaces
of the lung. Nanoparticles have high deposition
efficiencies in the lungs of healthy individuals, and even
higher efficiencies in individuals with asthma or chronic
obstructive pulmonary disease (10, 11).

When inhaled, nanoparticles deposit dispersedly
upon the alveolar surface, which likely leads to a
scattered chemoattractant signal, resulting in lower
recognition and alveolar macrophage responses (12).
The deposition of 20 nm particles is 2.7 times greater
than 100 nm particles and 4.3 times greater than 200 nm
particles (13). Higher deposition efficiencies occur in
patients with asthma or chronic obstructive pulmonary
disease than in healthy subjects, possibly due to
decreased clearance ability (11). Kreyling et al. found
that there was less than 25% clearance of 50- and 100-
nm particles during the first 24 hours after inhalation
(12). The biopersistence of an inhaled particle is an
important characteristic dictating the level of
inflammation and tissue injury.

Surface Area and Reactivity
The surface area of inhaled nanoparticles favors the

formation of free radicals (i.e. superoxide anions or
hydroxyl radicals), which drive oxidative stress, an
underlying mechanism that promotes inflammatory
responses (14, 15). The ratio of surface atoms to total
atoms or molecules increases exponentially with
decreasing particle size, contributing to the surface
reactivity (10). Oberdörster confirmed this by
examining a difference in toxicities from nano-sized
versus micron-sized titanium dioxide particles of the
crystalline type, anatase, when instilled at the same
mass dose. The nano-sized particles were more reactive
than the micron-sized particles. The data was linearly
correlated when the same experiments were performed
at the same surface area dose (1).

The lung inflammatory response induced by particles
is also dictated by shape, crystallinity, charge, surface
modifications, and weathering (10). Many
nanoparticles, such as combustion derived
nanoparticles, agglomerate readily and move as an
aggregate, which decreases particle number, but leaves
surface area dosage unaffected. As particles undergo
chemical interactions with components of the ambient
air pollution cloud, there can be aging of the particles
which may change their chemistries (14).

Other constituents of particle clouds also play a large
role in pulmonary inflammation and fibrosis. Metals
only need to be present in trace quantities to cause
inflammatory effects, through the generation of reactive
oxygen and nitrogen species (16). Additionally, the
capacity of diesel exhaust particles to cause oxidative

reactions in vivo has been attributed to their content of
metals (17), polyaromatic hydrocarbons (18) and
quinones (19). The component responsible for oxidative
stress and subsequent pro-inflammatory signaling in
diesel exhaust particles is principally the organic
fraction (14). The organic fraction contains or can
metabolize to components such as quinones, which
readily produce reactive oxygen species (19). The
surface area of the particle is important in the retention
of these constituents, as they remain on or among the
airborne particles.

NANOPARTICLE-INDUCED PULMONARY
FIBROSIS

A complex set of tissue reactions must occur for the
formation and accumulation of fibrous connective
tissue that defines pulmonary fibrosis. Traditionally,
fibrosis has been viewed as an irreversible process
which varies from a restrictive ventilatory defect
causing hypoxemia, pulmonary hypertension, and cor
pulmonale, to the distortion of lung anatomy inducing
bronchiectasis and chronic respiratory infection (20,
21). The pathogenesis of pulmonary fibrosis begins as
an inflammatory response to injury when immune cells
are excessively or inappropriately activated. These
immune cells include macrophages and neutrophils that
release toxic mediators, compromising epithelial
integrity and promoting tissue injury. The normal repair
process involves the recruitment and activation of
mesenchymal cells resulting in extracellular matrix
deposition, re-epithelialization and restoration of
normal lung architecture. In certain patients, however,
aberrant tissue remodeling and excessive matrix
deposition leads to progressive scarring and fibrosis
(22). In the context of particle inhalation it is likely that
the inability to clear toxic particles from the lungs via
mucociliary clearance or phagocytosis, as well as
sustained exposure, may drive an exaggerated
inflammatory response that leads to irregular tissue
remodeling and fibrosis. Initiation of this cascade may
occur due to interactions with alveolar macrophages,
epithelial cells, or direct interactions with interstitial
fibroblasts.

Nanoparticle exposure activates a number of
cytokine/growth factor cascades via an increase in
reactive oxygen species. The activation of receptor
tyrosine kinases, mitogen-activated protein (MAP)
kinases, and transcription factors, such as nuclear factor
(NF)-κB and STAT-1, drive transcriptional activation
and the expression of genes involved in inflammation
and fibrosis (15, 23). Interleukin (IL)-1β and tumor
necrosis factor (TNF)-α stimulation increase the
expression of pro-fibrotic growth factors and their
receptors. TNF-α causes an increase in the production
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of transforming growth factor (TGF)-β1, a major
stimulator of collagen deposition in fibroblasts (24). IL-
1β increases the expression of platelet-derived growth
factor (PDGF)-AA and its receptor, PDGF receptor-α,
on lung fibroblasts (25). The coordinated secretion of
PDGF-AA and PDGF receptor-α attracts fibroblasts
from the interstitium and induces proliferation of
myofibroblasts. The myofibroblasts form and organize
immature collagenous tissue within the lung (15).

The organization of the immature fibrinous tissue with
neovascularization, proliferation of myofibroblasts,
deposition of increasing amounts of extracellular matrix
components and the development of scarring contribute
to a loss of tissue function corresponding to the extent
of the fibrotic response (26). The removal of the
airborne nanoparticle exposure causing lung injury
could allow re-epithelialization, dependent upon the
state of the basement membrane, collagen and elastic
structure of the alveoli. The elimination of immature
intra-lumenal collagenous tissue by the fibrinolytic
system and apoptosis of the myofibroblasts are
important for the re-epithelialization. However, the
extent of lung injury may not preserve lung function
(27).

The radiographic features of pulmonary fibrosis show
patchy ground-glass opacities and numerous
centrilobular nodules measuring 2 to 4 mm in diameter.
Honeycombing may be seen in advanced fibrotic stages.
A progressive decline in diffusion capacity and
worsening gas exchange abnormalities with exercise are
sensitive indicators of worsening pulmonary fibrosis.
Pulmonary function tests show restrictive ventilatory
impairment with a reduction in lung volumes, increased
elastic recoil and decreased diffusion capacity (28).

CLINICAL CASES OF PARTICLE-INDUCED
PULMONARY FIBROSIS

Most cases of particle-induced pulmonary fibrosis are
classified as pneumoconioses. Pneumoconiosis, by
definition, is an occupational lung disease caused by the
inhalation of mineral and metallic particles and
nanoparticle dusts. Pneumoconiosis is broken into two
forms, fibrotic and nonfibrotic. Fibrotic
pneumoconiosis includes silicosis (silica particles), coal
worker’s pneumoconiosis (washed coal particles),
asbestosis (asbestos fibers), berylliosis (beryllium
particles), and talcosis (magnesium silicate processing).
Nonfibrotic pneumoconioses include siderosis (iron
oxide particles), stannosis (tin oxide particles) and
baritosis (barium sulfate particles). The most common
forms of pneumoconioses are fibrotic, including
silicosis, coal worker’s pneumoconiosis, and asbestosis
(29). In the US, death rates among males in 1968-1981
compared with 1982-2000 have shown a 36% decline in

coal worker’s pneumoconiosis, 70% decline for
silicosis, but a 400% increase in asbestosis (5).

These clinical conditions are not solely influenced by
the particle type after which they are named, but by
multiple types of particles, varying in size and
concentrations. In vivo and in vitro studies suggest that
nano-sized particles are the most toxic particle
component of particulate clouds, contributing most
heavily to fibrogenicity (8, 30). Particle fibroses
reviewed here are categorized according to the source of
particles, which includes mineral dusts, combustion-
derived particles, and engineered nanoparticles. It is
important to note that mineral and combustion-derived
particle fibroses are occupational diseases mostly
prevalent in developing nations. While there have been
no documented cases of engineered nanoparticle-
induced pulmonary fibrosis in humans, possibly due to
exposure levels, exposure to engineered nanoparticles,
such as carbon nanotubes, continues to increase as they
become more integrated into technology (31, 32). The
rest of this review is focused on clinical conditions of
particle-induced pulmonary fibrosis, which supports
nanoparticles as the most significant particle portion.

MINERAL DUSTS
Mineral dust composition varies by location, and can

contain particles of crystalline silica, asbestos, carbon
black and other molecules (33). These particles are the
most common causes of particle-induced pulmonary
fibrosis. For this reason, silicosis and asbestosis are
examined in further detail.

Silicosis
Silicosis is caused by the inhalation of crystalline

silica particles for extended periods of time. Silica is
present in many different crystalline forms that vary in
levels of fibrogenicity according to the degree of
crystallization. Fibrogenicity increases from the less
organized crystal structure of amorphous silica to the
more organized crystal structures of quartz, cristobalite,
and tridymite (33). As crystallinity plays a role in
fibrogenicity, the large surface area per mass of silica
nanoparticles allows for a greater production of reactive
oxygen species catalyzed by the crystalline surface. The
inhalation of silica can also lead to the development of
bronchogenic carcinoma (34).

The pathology caused by silica particles involves their
phagocytosis by alveolar macrophages. Silica uptake
seems to be initiated by MARCO (macrophage receptor
with collagenenous structure) as seen in mice by
Hamilton et al. (35). Alveolar macrophages are
damaged or activated and release cytotoxic oxidant or
proteases and inflammatory cytokines such as TNF-α,
IL-1 and arachidonic acid metabolites, which provoke
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recruitment of inflammatory cells into the alveolar wall
and alveolar epithelial surface (22, 36). The generation
of oxidants by silica nanoparticles and silica-activated
immune cells results in additional macrophage
apoptosis, lung damage, inflammation, and cell
transformation. The pro-inflammatory cytokines
released during inflammation by macrophages and
potentially by neutrophils, mast cells and B-
lymphocytes participate in the exaggerated deposition
of matrix protein and the persistence of transformed
cells characterizing silicosis (22). Direct interaction of
fibroblasts with silica has also been shown to drive
cyclooxygenase-2 and prostaglandin E2 expression,
creating a pro-fibrotic cytokine milieu (37). Silicotic
nodules caused by silica inhalation consist of fibrotic
lesions and are distributed in the upper part of the lungs.
The nodule is termed an “onion skin lesion” with
collagen fibers concentrically arranged, and dust-laden
macrophages surrounding the mature collagen (34, 29).
Thin-film computed tomography show numerous
bilateral centrilobular nodular ground-glass opacities,
multifocal patchy ground-glass opacities and
consolidation (29, 38). Figure 1 shows a chest
radiograph and CT scan from a male with silicosis who
worked in stonecutting for twenty-five years.

Asbestosis
Asbestosis is induced by the inhalation of asbestos

fibers. Asbestos is a fibrous silicate mineral used in
industry for its heat resistance and tensile strength. The
inhalation of asbestos can also lead to the development
of other pulmonary diseases, such as benign pleural
effusion and plaques, mesothelioma and bronchogenic
carcinoma (39).

Deposition of asbestos is based upon its aerodynamic

diameter, and the ability of the fiber to align with the
airway. The biopersistence and accumulation of
asbestos is important in dictating the level of fibrotic
response (16). The inhalation of asbestos fibers
damages alveolar macrophages and epithelial cells,
causing them to release inflammatory mediators and
growth factors (38). NF-κB-, protein kinase C- and
MAPK-dependent inflammatory pathways are activated
as a result. The MAPK ERK1/2 is selectively
phosphorylated in lung epithelium after the inhalation
of asbestos. The duration of ERK1/2 activation dictates
the toxic response to asbestos and related production of
reactive oxygen and nitrogen species. ERK1/2 is linked
to TNFα and TGF-β1 expression, resulting in
inflammation and fibrogenesis (39). Asbestosis appears
to be histologically and radiographically similar to
idiopathic pulmonary fibrosis with honeycombing
being a common feature of late stage asbestosis (29).

COMBUSTION-DERIVED PARTICLES
Combustion-derived nanoparticles cover a large

variety of nanoparticles, including diesel exhaust
particles, welding-fume particles, fuel oil ash, and coal
fly ash (14). These nanoparticles are largely
nonfibrogenic, except occupational exposure to coal fly
ash, oil fly ash, and welding fume nanoparticles in the
cases of boilermakers (40). Diesel exhaust particles
have been found to cause fibrotic events in rats as a
result of lung overload, but humans are unlikely to ever
experience high levels comparable to those issued to
experimental rats (14, 41). Combustion-derived
nanoparticles may be soluble and release transition
metals or organics as their primary pro-inflammatory
mechanism. Both transition metals and organics can
undergo complex cyclical chemical reactions in the

Figure 1: Silicosis in a 56-year-old male who worked in stonecutting for 25 years. (A) Chest radiograph shows multiple variable-sized nodular
lesions in both lungs, predominantly in the upper and middle zones. (B) Axial thin-section CT scan (1.0-mm-thick section) obtained at the level
of the azygos arch shows multiple small nodules with a perilymphatic (centrilobular plus subpleural) distribution in the upper lobe of both lungs.
Note the tendency toward coalescence of the nodules in the lung periphery (arrows). With copyright permission from RSNA and Dr. Kyung Soo
Lee (29).
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milieu of the lungs that lead to the production of free
radicals such as superoxide anion or hydroxyl radical
(19). Fibrosis induced by welding fumes and oil fly ash
(OFA) are examined in this section.

Welding-Induced Pneumoconiosis
Welding involves the use of electrical currents in

excess of 200 amperes and a space-filling metal rod to
join two metal objects together. In the process, some of
the liquefied metal is aerosolized (42). Most welding
materials are alloy mixtures of metals characterized by
different steels that may contain iron, manganese, silica,
chromium and nickel (43).

Exposure to welding fume nanoparticulate matter in
humans is associated with inflammatory cytokine
increases in the bronchoalveolar lavage fluid (44). Rats
exposed to welding fumes have shown marked
pulmonary inflammatory responses and lipid
peroxidation indicative of oxidative stress (45). In
addition, epithelial cells exposed to welding fumes or
the transition metals associated with them exhibited
oxidative stress which caused MAPK-dependent NF-κB
and AP-1 activation leading to IL-8 upregulation (46).
Thus, the soluble transition metals appear to be the
primary mechanism of oxidative stress and
inflammation (14).

Hull and Abraham examined cases of aluminum-
welding particle-induced pneumoconiosis, and found
areas of severe dense fibrosis which were interspersed
with macrophages containing particles (42). The lung
parenchyma display focally dense fibrosis, more severe
in the upper lobes, with peripheral honeycombing
sparing the lung bases. Figure 2 shows dense fibrotic
tissue with alveolar macrophages encapsulating
welding particles from an aluminum welder (42).

Oil Fly Ash
Human exposure to oil fly ash (OFA), the inorganic

residue from burning carbonaceous materials, occurs
where workers, specifically boilermakers, are engaged
in the maintenance of oil-fired boilers. Boilermakers
that are exposed to OFA have shown dose-dependent
decreases in pulmonary function caused by pulmonary
inflammation (47).

In these cases of exposure to OFA, the most toxic
component appears to be the vanadium pentoxide on the
surface of the particle or among the particles. Vanadium
pentoxide, a transition metal derived from the burning
of petrochemicals, caused the rapid onset of fibrosis in
rats (48). In vivo studies by Bonner et al. have shown
fibrotic responses through the intratracheal instillation
of vanadium pentoxide (48-49). Vanadium compounds

Figure 2: Case 1, LM: (A) Dense fibrotic area of the lung with many aluminum-containing macrophages. (Original magnification x 10.) (B) Lung
parenchyma showing peribronchiolar and interstitial aluminum-containing macrophages. (Original magnification x 10.). (C) Aluminum-
containing macrophages in lymph node. (Original magnification x 180.) (42). With copyright permission from Elsevier and Dr. Jerrold Abraham.



caused significant increases in lung PDGF mRNA (30).
All documented in vivo studies of carbon nanotubes
have been by instillation, rather than inhalation. Thus,
the fibrogenic effects of the nanotubes could be a result
of the complexes formed during the instillation and may
not represent a respirable cloud (53).

Lam et al. showed that carbon nanotubes produce
profibrogenic lesions similar to those of toxic silica
particles (32). Human pulmonary fibrosis caused by
inhalation of carbon nanotubes may be very similar to
silicosis cases. Overall, in vivo studies point to the
induction of fibrosis in humans. Limiting exposure is
essential in containing the occurrence of pulmonary
fibrosis.

SUMMARYAND FUTURE OUTLOOK
We review particle-induced pulmonary fibrosis and

support that nanoparticles are a significant, if not the
most significant, particle component contributing to
pulmonary fibrosis. The two main factors that
contribute most heavily to particle-induced lung
diseases are particle surface area and the reactivity or
intrinsic toxicity of that surface. In addition, the size of
nanoparticles allows them to get deposited in lungs at a
greater efficiency than particles of larger sizes, yielding
a higher biopersistency.

The ability to produce free radicals is important in the
induction of inflammation and fibrosis. The inhalation
of nanoparticles can induce fibrosis, based upon the
time of exposure, exposure concentration, and ability to
produce free radicals. By providing insight into clinical
and experimental cases of particle-induced pulmonary
fibrosis, we hope to have shown the danger of
nanoparticle inhalation.
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