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Abstract
Interactions among cellular components forming a mesoscopic scale brain network (microcircuit) display characteristic neural
dynamics. Analysis of microcircuits provides a system-level understanding of the neurobiology of health and disease. Causal
discovery aims to detect causal relationships among variables based on observational data. A key barrier in causal discovery is the
high dimensionality of the variable space. A method called Causal Inference for Microcircuits (CAIM) is proposed to reconstruct
causal networks from calcium imaging or electrophysiology time series. CAIM combines neural recording, Bayesian network
modeling, and neuron clustering. Validation experiments based on simulated data and a real-world reaching task dataset dem-
onstrated that CAIM accurately revealed causal relationships among neural clusters.
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Introduction

Increasing experimental and computational evidence supports
the existence of a specific pattern of connectivity among ad-
jacent neurons during cognition and emotion (Yoshimura and
Callaway 2005; Yoshimura et al. 2005; Song et al. 2005; Ko
et al. 2013; Litwin-Kumar and Doiron 2012). Interactions
among cellular components forming a mesoscopic scale brain
network (microcircuit) display characteristic neural dynamics.
A microcircuit lies at the heart of the information processing
capability of the brain. It carries out a specific computation of
a region. Microcircuits have been shown to encode sensory
input (Luczak et al. 2007), motor function (Churchland et al.
2007), spatial maps in the entorhinal cortex (Hafting et al.
2005), and behavior choice (Harvey et al. 2012). Analysis of
microcircuits provides a system-level understanding of the
neurobiology of health and disease.

Calcium imaging (Kerr and Nimmerjahn 2012; Ghosh
et al. 2011; Scott et al. 2013) and electrophysiology with elec-
trodes are powerful ways to study microcircuits, leading to an
understanding of network architecture of behavior, cognition,

and emotion (Ko et al. 2013; Barbera et al. 2016). In contrast
to the experimental advances in neural recording techniques,
computational analysis of ensemble neural activities is still
emerging. A fundamental problem in microcircuit analysis is
causal discovery. Causal discovery aims to reveal causal struc-
tures by analyzing observational data. Several computational
methods have been developed to infer causal networks from
ensemble neural activity, including Granger causality (Chen
et al. 2006; Hu et al. 2018) and conditional independence
inference based on dynamic Bayesian networks (DBNs)
(Eldawlatly et al. 2010).

A key barrier in causal discovery from multiple time series
is high dimensionality. For example, calcium imaging can
observe ensemble neural activity of hundreds of neurons.
Naively applying causal discovery algorithms to such high-
dimensional data causes several problems. First, this naïve
approach ignores the intrinsic hierarchical structure of the mi-
crocircuit. Neurons often form clusters and neurons in the
same cluster have similar functional profiles. For example,
D1- and D2-medium spiny neurons (MSNs) in the dorsal stri-
atum are grouped into spatially compact clusters (Barbera
et al. 2016). In the visual cortex, highly connected neurons
in a cortical column receive similar visual input (Yoshimura
et al. 2005). These studies suggest that neurons in a microcir-
cuit form clusters (or modules, communities). Second, con-
structing a model from such high-dimensional data with a
cluster structure often leads to overfitting (Hastie et al.
2009), an unstable model (Sauerbrei et al. 2011; Chen and
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Herskovits 2007), and poor parameter estimation (Chen and
Herskovits 2007).

The proposed method, called Causal Inference for
Microcircuits (CAIM), aims to reconstruct causal
mesoscopic-scale networks from observational calcium
imaging or electrophysiology time series. CAIM com-
bines neural recording, Bayesian network modeling, and
neuron clustering. To address the high-dimensionality
problem, CAIM utilizes clustering to group neurons into
clusters. To solve the causal discovery problem, CAIM
uses DBNs to identify conditional independence. CAIM
enables us to move toward a circuit-based approach to
understand the brain, in which a behavior is understood
to result from specific spatiotemporal patterns of circuit
activity related to specific neuronal populations.

This paper is organized as follows. "Background and
Related Work" describes the background and related work.
"Method" provides the CAIM algorithm, including neuron
clustering and causal network inference. In "Results", valida-
tion experiments on simulated neural activity data and appli-
cation of CAIM to a real-world dataset are presented.
"Discussion" includes the discussion and issues requiring fur-
ther investigation are provided, which are followed by
conclusions.

Background and Related Work

Network analysis (or connectivity analysis) methods for neu-
ral signals can be classified as synchrony analysis and causal
discovery. In synchrony analysis, an undirected graph is gen-
erated. Synchrony has been extensively studied in neurosci-
ence (Averbeck et al. 2006). Correlation, partial correlation,
and mutual information have been used to measure the asso-
ciation between a pair of neurons.

The gold standard of establishing a causal relationship is
performing planned or randomized experiments (Fisher
1970). Pearl proposed an intervention-based framework for
causality analysis (Pearl 2009) and distinguished the observa-
tional conditional probability P(Y|X) and interventional condi-
tional probability P(Y|do(X)) where the do(.) operator is an
intervention. The notion of intervention by Pearl implies that
if we manipulate X and nothing happens, then X is not the
cause of Y; otherwise, X is one of the causes of Y. However,
in many scenarios, experiments are too expensive, or not fea-
sible or ethical to carry out. Causal discovery (or effective
connectivity analysis) aims to infer cause-effect relations
among variables based on observational data. Granger pro-
posed a framework to infer causality based on prediction im-
provement (Granger 1969). An important framework of caus-
al discovery is based on conditional independence (Spirtes
et al. 2001). This framework considers the dependence be-
tween two variables X and Y given a set of variables Z. Let

X ⫫ Y | Z denote that X and Y are conditionally independent
given Z. X is not the cause of Y if Xt ⫫ Yt + 1 | Zt. For a set of
variables V = {X1,…, Xp}, a causal graphical model isG = (V,
E), where an edge Xi → Xj represents Xi is a direct cause of Xj
relative to variables in V, and G is a directed acyclic graph.
The assumptions which often are used to relate causal struc-
tures to probability densities are the causal Markov assump-
tion, the causal faithfulness assumption, and the causal suffi-
ciency assumption (Spirtes et al. 2001). Under these assump-
tions, a remarkable result according to Geiger and Pearl
(Geiger and Pearl 1990) and Meek (Meek 1995) is the
Markov completeness theorem: for linear Gaussian and for
multinomial causal relations, an algorithm that identifies the
Markov equivalent class is complete (that is, it extracts all
information about the underlying causal structure).

There are many studies of causal discovery from multiple
time series from problem domains which are not neurosci-
ence-related, such as inferring gene regulatory networks using
time-series gene expression data (Bar-Joseph et al. 2012). A
kind of inference framework is growth-shrink. Such methods
first calculate pairwise associations between st + 1 and st; and
then remove redundant or spurious connections (Meyer et al.
2007). An example of a growth-shrink based method is
MRNET (Meyer et al. 2007), which uses mutual information
between variables and minimum-redundancy-maximum-
relevance to infer networks. Another kind of inference frame-
work considers network inference as a regression problem and
uses ensemble learning to construct the network. BTNET
(Park et al. 2018) is an ensemble learning-based method that
uses a boosted tree to construct the predictive model.

Method

CAIM aims to infer causal relationships based on observation-
al calcium imaging or electrophysiology time series. In
CAIM, microcircuits are DBNs (Koller and Friedman 2009)
representing causal relationships. In a DBN, nodes are vari-
ables of interest, and edges (links) represent interactions
among variables. If a set of nodes, πi, causally affects the
activity of node i, then there exists a link from the nodes in
πi to node i. πi is referred to as the parent set of node i. Each
node is associated with a binary variable which represents
whether the node is activated. Each node is associated with
an updating rule that specifies how its state changes over time
due to the activation of the parent set. Network dynamics are
determined by these updating rules. DBNs can characterize
system dynamics, handle noisy data, describe locally
interacting processes, and support causal inference (Chen
et al. 2012).

CAIM infers causal networks from neural ensemble activ-
ities. Neural activities can be recorded by calcium imaging or
electrophysiology with electrodes. Preprocessing algorithms
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generate binary neuronal events (spike trains or calcium tran-
sient events). A preprocessing pipeline (Barbera et al. 2016)
can be used to preprocess calcium imaging data, including
image registration, cell mask detection, and neuronal event
detection. However, preprocessing is not the focus of
CAIM. Let P and T denote the number of neurons and the
number of time points, respectively. The preprocessing step
results in s1:T. For neuron i, si,t = 1 indicates a neuronal event
of neuron i at time point t, while si,t = 0 indicates no event. s-

t = [s1,t, …, sP,t] is a P-dimensional vector representing neural
events of all neurons at time point t. s1:T = (s1, …, sT) repre-
sents neural activity for all time points.

Figure 1 shows the architecture of CAIM. Figure 1a is the
conceptual framework of CAIM. In CAIM, neurons are
grouped into clusters. Neurons in the same cluster have similar
functional profiles. Each cluster is associated with a latent
variable (the cluster state variable) which represents whether
the cluster is activated or not. Let YA(t) denote the state vari-
able for cluster A at time point t. Yt = [YA(t), …, YZ(t)] is a
vector representing states of all clusters at time point t.
Y1:T = (Y1,…,YT) represents cluster states for all time points.
Interactions among clusters are described by a DBN. In this
DBN, nodes are cluster state variables. The directed temporal
interaction between two nodes is represented by a transition
probability table (Fig. 1b). For example, Pr(YB(t + 1) = active |
YA(t) = active, YC(t) = active) = 0.88 represents activation of
cluster A and activation of cluster C at time point t result in
the activation of cluster B at time point t + 1 with probability
0.88.

Neuron Clustering

The goal of neuron clustering is to group P neurons into K
homogeneous clusters. Coherence, which is pairwise func-
tional association, plays a key role in neural codes
(Averbeck et al. 2006; Zohary et al. 1994). Even weak
pairwise linear interactions can result in strongly correlated
network states in a neural ensemble (Schneidman et al.
2006). Therefore, our clustering algorithm centers on examin-
ing coherence. The objects in this clustering problem are

neurons. Neurons within each cluster are more similar to each
other than neurons assigned to different clusters. Input to neu-
ron clustering is s1:T. Clustering generates a partition of the
variable space. The partition Ω is a vector whose ith elements
Ω(i) is the group membership of neuron i.

Neuron clustering is based on the similarity between si,1:T
and sj,1:T, where si,1:T is the observed trajectory of neuron i.
Therefore, neuron clustering focuses on examining the instan-
taneous synchrony (the zero-lag synchrony) between neuron
pairs. There are many clustering algorithms (Wiwie et al.
2018). si,1:T is a trajectory with thousands of observation time
points. Each time point is a feature. In this clustering problem,
P is about several hundred and T is several thousand.
Therefore, the clustering algorithm needs to handle high-
dimensional data. Since we assume that an object belongs to
a single cluster, we don’t use fuzzy clustering such as c-Means
or probabilistic clustering such as Gaussian mixture models.

CAIM uses graph-based clustering. A graph is constructed
by using kd-trees to identify the approximate nearest neigh-
bors for each object (Arya et al. 1998). This graph construc-
tion algorithm is computationally efficient. Clusters are de-
tected by the walktrap algorithm (Pons and Latapy 2006) for
graph-based community detection. The walktrap algorithm
finds densely connected subgraphs based on random walks.
The algorithm starts by assigning each node to its own com-
munity and calculates the distance for every pair of commu-
nities. Communities are merged according to the minimum of
their distances and the process is repeated. The number of
clusters is estimated by the walktrap algorithm. The walktrap
algorithm uses the results of random walks to merge separate
communities in a bottom-up manner and creates a dendro-
gram. Then it uses the modularity score to select where to
cut the dendrogram. Therefore, the number of clusters is
automictically determined by the algorithm.

After generating the partition, cluster state variables are
inferred by voting. For cluster A, the percentage of neurons
in state 1 at time point t is calculated. If this percentage is
greater than a threshold, then YA(t) = 1; otherwise, YA(t) = 0.
Higher threshold results in sparser cluster activation. If the
majority voting is adopted, the threshold is 50%.

Fig. 1 The architecture of CAIM
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Given binary cluster state variables, a loadingmatrix can be
calculated to assess the association between cluster state var-
iables and neurons. The loading matrix has P rows and K
columns. The element (i, j) in this loadingmatrix is the relative
mutual information (Pregowska et al. 2015) between neuron i
and cluster j. The relative mutual information is in [0, 1].
Higher relative mutual information indicates a stronger asso-
ciation between two binary random variables.

Causal Network Construction

Causal network construction infers a DBN based on Y1:T,

which is the dataset including cluster states for all time points.
A DBN is defined as a pair, (B1, B→), where B1 is a Bayesian
network defining the baseline probability distribution; and B→

defines the transition probability P(Yt + 1 |Yt). That is, B→ is a
two-slice temporal Bayesian network (2TBN). The state of
node i at time point t + 1 is determined by the states of its
parent set before t + 1, and is independent of the states of any
other nodes.We use πi to denote the parent set of node i. πi is a
subset of Yt. For example, in Fig. 1b, YAt and YCt determine
YBt + 1, then πB = (YAt, Y

C
t).

The DBN-based causal discovery assumes causal suffi-
ciency, the causal Markov condition, and faithfulness
(Spirtes et al. 2001). Under these conditions, the causal rela-
tionship can be discovered by machine learning algorithms.
Our algorithm generates a directed weighted graph G model-
ing the linear/nonlinear interactions among cluster state vari-
ables. We use a random forest-based method to find the parent
set of a node. For a node YAt + 1, we construct a random forest
model to predict YAt + 1 based on variables in Yt = [YA(t), …,
YZ(t)]. The implementation is similar to that in (Huynh-Thu
et al. 2010). A random forest ensemble is generated to predict
YAt + 1 based on variables in Yt. In the model ensemble, each
tree model is constructed based on a bootstrap sample from
the original sample and, at each test node, a subset of variables
is selected at random among all candidate variables in Yt

before determining the best split (to divide a node in a tree
into two daughter nodes). To quantify the variable impor-
tance, for each test node in a tree, we compute the reduction
of variance of the output variable due to the split. For a single
tree, the importance of a variable is computed by summing the
variance reduction values of all tree nodes where this variable
is used to split. For a tree ensemble, the importance score of a
variable is the average over all trees. Variable importance of
YBt is used as the weight for the link YBt → YAt + 1. Higher
weights represent stronger relationships. Random forests have
the capability to model nonlinear and combinational interac-
tions (interactions involving multiple nodes, instead of
pairwise) and handle high-dimensional data. In our implemen-
tation, we adopt the parameter tuning process of random forest
described in (Huynh-Thu et al. 2010).

Results

We evaluated CAIM on simulated spike trains, data from a
biophysics-based simulation, and real-world neural activity
data for a delayed reaching task. All experiments were con-
ducted in a workstation with Intel Core i7-4720HQ CPU
@2.6GHz (4 cores and 8 virtual cores) and 16G memory.

Simulated Spike Trains

In this experiment, we used simulated binary spike trains to
evaluate CAIM. The interactions among clusters were de-
scribed by a ground-truth DBN G*. An example of the struc-
ture of G* is depicted in Fig. 2a. Parameters in G* were set to
represent additive effects. The transition probability table for
node 5 is depicted in Fig. 2b. The data generation process
included sampling and neural data generation. In the sampling
step, we sampled G* and generated simulated data for cluster
states. Let Yi1:T be the trajectory of cluster i. In neural data
generation, the trajectory of a neuron in cluster i is generated
by flipping the binary state of Yi1:T with a probability λ. λ
represented noise level and 1-λ characterized the within-
cluster homogeneity. We evaluated CAIM for various noise
level (subtask 1), cluster similarity (subtask 2), and number of
clusters (subtask 3).

To evaluate neuron clustering, we compared CAIM clus-
tering with other clustering methods including K-means, clus-
tering by density peaks, and the Fuzzy c-means (FCM) based
method in (Fellous et al. 2004; Toups et al. 2011). K-means
defines a cluster as a sphere around the cluster centroid. The
number of clusters was estimated by the Calinski-Harabasz
index. K-means was randomly initialized 100 times.
Clustering by density peaks is based on the idea that cluster
centers are characterized by a higher density than the neigh-
bors of centers and by a relatively large distance from objects
with higher densities. To detect the cluster structure, we need
to manually specify two parameters. In the FCM-based meth-
od, we first calculated a P× P distance matrix where the (i, j)
element of this matrix is the Manhattan distance between neu-
rons i and j. Then we applied FCM on the columns of distance
matrix. The number of clusters was determined by the gap
statistic. Neuron clustering performance was evaluated by
two cluster validity indexes: the Silhouette score and Rand
index (Ye 2003). Higher Silhouette score or Rand index rep-
resents better clustering. The Silhouette score has a range of
[−1, 1]. A score near 1 indicates that the sample is far from
neighboring clusters, a score of 0 indicates that the sample is
on or very close to the decision boundary, and negative values
indicate poor assignment. The Rand index determines the sim-
ilarity between the estimated label and the ground-truth label
as a function of positive and negative agreements in pairwise
cluster assignments; when two labels agree perfectly, the
Rand index is 1.
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For causal discovery, we compared our causal network
discovery algorithm to Bayesian network structure learning
(BNS), Bayesian network structure learning with resampling
(BNSR) (Chen et al. 2017), and GLMNET. In BNS, we used
the algorithm in (Chen et al. 2012) to detect the parent set of
YAt + 1. The association among nodes by the Bayesian
Dirichelet score (Chen et al. 2012), which is the marginal
likelihood or evidence P(G |D), whereD is the observed data.
The Bayesian Dirichelet score is decomposable. That is, we
can maximize this score node by node. For each node Yit + 1,
we used the algorithm in (Chen et al. 2012) to search for a set
of nodes inYtwhichmaximizes the Bayesian Dirichelet score.
This set of nodes is the parent set of Yit + 1. Based on these
parent sets, we can generate a graph describing causal inter-
actions. In BNSR, bootstrap resampling was used to stabilize
the Bayesian network learning process. We resampled the
original dataset 1000 times and utilized BNS to generate a
DBN model for each resampled dataset. For an edge YBt→
YAt + 1, the edge strength was measured by the frequency of
this edge appearing in the model ensemble. In GLMNET, for
YAt + 1, variables in Yt which were most predictive of YAt + 1

were identified by Lasso and elastic-net regularized general-
ized linear models (Friedman et al. 2010). Parameters in
GLMNET were tuned based on internal cross-validation. To
improve model stability, we used bootstrap resampling to re-
sample the raw dataset 1000 times and generated models for
resampled datasets. The model ensemble included 1000

models. For a directed link YBt→ YAt + 1, the link strength
was measured by the frequency of this link appearing in the
model ensemble. CAIM, BNSR,GLMNET generated weight-
ed directed graphs. The higher edge weight of YBt→ YAt + 1

represents a stronger relationship between YBt and Y
A
t + 1. BNS

generated an unweighted graph.
For causal discovery, we used area under the ROC Curve

(AUC) to evaluate algorithms’ performance. AUC was calcu-
lated based on the generated graph and the ground-truth DBN.
Higher AUC indicated an algorithm achieved better perfor-
mance in detecting the ground-truth DBN structure.

In subtask 1, we evaluated CAIM with different noise
levels. In this subtask, 60 neurons were grouped into 6 clus-
ters. Each cluster had 10 neurons. In the simulation, T = 5000
and P = 60. The structure ofG* is depicted in Fig. 2a. Datasets
for three noise levels, 0.1 (low noise level), 0.2 (medium noise
level), and 0.3 (high noise level), were generated. The first 100
observations of all neurons for noise level 0.1 are depicted in
Fig. 2c. In subtask 2, we evaluated CAIM with different clus-
ter similarity levels. In this subtask, 60 neurons were grouped
into 6 clusters (each cluster had 10 neurons). T = 5000 and
P = 60. The structure of G* is depicted in Fig. 2a. Noise level
was 0.2. We varied parameters of the ground truth DBNs and
generated datasets with different cluster similarity levels. For a
dataset, cluster similarity was quantified by the average
Hamming distances across all cluster pairs. We generated
three datasets: low similarity (Hamming distance = 2696),

Fig. 2 The simulated spike train data. a The ground-truth DBN model which describes temporal interactions among cluster state variables. b The
transition probability table for cluster 5. c Spike trains of 60 neurons. Noise level is 0.1
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middle similarity (Hamming distance = 1461), and high simi-
larity (Hamming distance = 862). Higher similarity is more
challenging for neuron clustering. In subtask 3, we evaluated
CAIM with different cluster numbers. In this subtask, each
cluster had 10 neurons. We generated datasets with 3 clusters
(30 neurons), 6 clusters (60 neurons), and 9 clusters (90 neu-
rons). The structure of G* was randomly generated. Noise
level was 0.2.

Neuron clustering results for subtask 1 are summarized in
Table 1. Figure 3 depicts the loading matrix of neuron clus-
tering for noise level 0.3. For all noise levels, CAIM achieved
the best clustering performance. CAIM always detected the
correct number of clusters and identified the correct cluster
structure (Rand index = 1). Neuron clustering results for sub-
task 2 are summarized in Table 2. For different cluster simi-
larity levels, CAIM consistently detected the corrected num-
ber of clusters and identified the correct cluster structure.
Neuron clustering results for subtask 3 are summarized in
Table 3. For varying cluster numbers, CAIM detected the
corrected number of clusters and identified the correct cluster
structure. For all experimental conditions, CAIM and FCM
consistently achieved higher Silhouette score and Rand index
than did K-means and clustering by density peaks. Overall,
CAIM achieved the highest Silhouette score and Rand index.

Figures 4, 5 and 6 depict the AUCs of BNS, BNSR, CAIM
and GLMNET for subtasks 1, 2, and 3, respectively. CAIM
achieved the highest AUC in most combinations of experi-
mental setups and thresholds. For threshold = 0.5, CAIM’s
AUCs were 1 for all scenarios. CAIM was robust to the
threshold to infer binary cluster states. CAIM and BNSR con-
sistently achieved higher AUCs than did BNS and GLMNET.
The typical execution time of BNS, BNSR, CAIM and
GLMNET were 0.23 s, 13.73 s, 8.28 s, and 1571.92 s.
CAIM and BNSR had similar execution time while
GLMNET had a much longer execution time. Both AUCs
and execution times of BNSR and CAIM were similar,

although the AUC of CAIM was consistently higher.
Relative to BNS, BNSR achieved significantly higher AUC.
This is because BNSR is an ensemble learning based method
and achieves consistent estimates by combining solutions
from different bootstrap resampled training data sets.

Collectively, these experiments demonstrate that CAIM
can detect the cluster structure and achieve the optimal perfor-
mance balance (high AUC and short running time). We found
that CAIM accurately inferred the causal relationships.

Biophysics Based Simulation

In this experiment, a biophysics-based simulation was used to
assess CAIM. The simulation modeled interactions among a
set of integrate-and-fire (I&F) neurons with noise. Such a
neuron model can represent virtually all postsynaptic poten-
tials or currents described in the literature (e.g.α-functions, bi-
exponential functions) (Brette et al. 2007). The neuron model
(Gütig and Sompolinsky 2006) is as follows:

dV
dt

¼ Vrest−Vð Þ
τ

þ σ� τ � −0:5ð Þ � ε ð1Þ

where V is the membrane potential, Vrest is the rest potential, ε
is a Gaussian random variable with mean 0 and standard de-
viation 1, τ is the membrane time constant, and σ is a param-
eter controlling the noise term. Spikes received through the
synapses trigger changes in V. A neurons fires if V is greater
than a threshold. This neuron cannot generate a second spike
for a brief time after the first one (refractoriness).

Our simulation included 160 neurons in four groups: A, B,
C, and D. Each group had 40 neurons. The ground-truth caus-
al graph is depicted in Fig. 7a. Neurons in group A had no
parent nodes. They all received a stimulus. Neurons in group
B had two or three neurons in group A as parent nodes.
Neurons in group C had two or three neurons in group A as

Table 1 Clustering results for the
simulated spike trains with
different noise levels

Noise level Method Detected number of clusters Silhouette score Rand index

0.1 CAIM 6 0.268 1.000

K-means 6 0.268 1.000

Clustering by density peaks 7 0.075 0.594

FCM 6 0.268 1.000

0.2 CAIM 6 0.113 1.000

K-means 2 0.062 0.259

Clustering by density peaks 4 0.039 0.488

FCM 6 0.113 1.000

0.3 CAIM 6 0.043 1.000

K-means 2 0.024 0.259

Clustering by density peaks 6 0.013 0.502

FCM 10 0.015 0.748
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Table 2 Clustering results for the
simulated spike trains with
different cluster similarities

Cluster
similarity

Method Detected number of
clusters

Silhouette
score

Rand
index

Low CAIM 6 0.145 1.000

K-means 2 0.117 0.259

Clustering by density
peaks

5 0.119 0.631

FCM 6 0.145 1.000

Middle CAIM 6 0.108 1.000

K-means 2 0.065 0.259

Clustering by density
peaks

4 0.038 0.488

FCM 6 0.108 1.000

High CAIM 6 0.075 1.000

K-means 4 0.058 0.550

Clustering by density
peaks

4 0.020 0.414

FCM 10 0.027 0.748

Fig. 3 The loading matrix of
neuron clustering for subtask 1.
Noise level is 0.3
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parent nodes. If a parent node fired, the membrane potential of
the target node increased by w. The w of connections between
A and B was different from that of A and C. Firing of neurons
in groups B and C caused firing of neurons in group D. The
simulated spike trains are depicted in Fig. 7b.

CAIM accurately detected the cluster structure with the
RAND score 0.98. This weighted graph was robust to the
threshold to infer binary cluster states and remained stable
for the threshold in [0.3 0.7]. We chose threshold = 0.5.
The edge weight had a bimodal distribution. The edge
weights of YAt→ YBt + 1, Y

A
t→ YCt + 1, Y

B
t→ YDt + 1, and

YCt→ YDt + 1 were 0.90, 0.90, 0.50, and 0.47, respectively.
Other edges had very low weights. The strong links char-
acterize the strong causal relationship in Fig. 7a. Overall,
CAIM was able to identify the causal relationship be-
tween these neuron groups.

Real-World Neural Activity Data for a Delayed
Reaching Task

CAIMwas evaluated based on a spike dataset acquired during
the delay period in a standard delayed reaching task

Fig. 4 AUCs of BNS, BNSR, CAIM, and GLMNET for the simulated spike train data with varying noise levels

Table 3 Clustering results for the
simulated spike trains with
varying numbers of clusters

The number of
clusters

Method Detected number of
clusters

Silhouette
score

Rand
index

3 CAIM 3 0.124 1.000

K-means 3 0.124 1.000

Clustering by density
peaks

5 0.008 0.293

FCM 3 0.124 1.000

6 CAIM 6 0.109 1.000

K-means 2 0.062 0.259

Clustering by density
peaks

4 0.043 0.363

FCM 6 0.109 1.000

9 CAIM 9 0.147 1.000

K-means 8 0.138 0.876

Clustering by density
peaks

9 0.106 0.823

FCM 10 0.131 0.966
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(Santhanam et al. 2009). A male rhesus monkey performed a
standard instructed-delay center-out reaching task. Animal
protocols were approved by the Stanford University
Institutional Animal Care and Use Committee. The dataset
contains spike trains recorded simultaneously by a silicon
electrode array (Cyberkinetics, Foxborough, MA) from 61

neurons in the right premotor cortex. The reaching task dataset
contained two experimental conditions (conditions 1 and 2).
Each condition had 56 trials. The spike train had a length
between 1018 ms and 1526 ms. Spike trains are binned using
a non-overlapping bin with a width of 20ms. This bin size was
found to work well for population activity recorded in the

Fig. 5 AUCs of BNS, BNSR, CAIM, and GLMNET for the simulated spike train data with varying cluster similarity levels

Fig. 6 AUCs of BNS, BNSR, CAIM, and GLMNET for the simulated spike train data with varying cluster numbers
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motor cortex (Cowley et al. 2012). Among 61 neurons, 16
neurons had a low firing rate (<5 spikes/s) and were excluded
from the analysis. Excluding these low firing neurons from
causal discovery doesn’t exclude the possibility that they con-
tributed to the observed ensemble activity. We excluded them
because these low firing neurons had too few active states
needed to firmly establish causal relationships (Chen et al.
2008).

CAIM found 4 clusters. Figure 8a depicts the loading ma-
trix of neuron clustering. The average within-cluster relative
mutual information was 0.187, while the average between-
cluster relative mutual information was 0.016. These results
demonstrated good cluster separation.

The detected causal networks are depicted in Fig. 8b and c
which are the networks for two different conditions, respec-
tively. Strong links (edges with weights greater than the me-
dian weight) are shown. Both causal graphs demonstrated
persistence. That is, for a cluster, Yt + 1 is driven by Yt.
Persistence may reflect continuous firing. The causal graphs
for these two conditions also had significant structural differ-
ences. In condition 1, YAt + 1 was strongly driven by YAt and
YCt. Such a pattern was changed in condition 2. In condition 2,

YAt + 1 was driven by Y
A
t and Y

B
t. Y

B
t + 1 is driven by Y

B
t and Y

D
t

in condition 1, while YBt + 1 is driven by YAt, Y
B
t and YCt in

condition 2. YDt + 1 is driven by YBt and YDt in condition 1,
while YDt + 1 is driven by YDt in condition 2. In this analysis,
the conditions were predetermined by the experimental de-
sign. Our analysis of the reach-task data demonstrated that
CAIM can be used for differential causal graph analysis.

Discussion

We propose a causal discovery method called CAIM that is
based on DBNs. It’s capable of revealing causal interactions
among neural dynamics. Relative to static network analysis,
CAIM can model complex spatiotemporal patterns of circuit
activity related to a cognitive process or behavior.

We validated CAIM based on two simulated studies and a
real-world spike dataset acquired during the delay period in a
standard delayed reaching task. In the simulated spike train
experiment, we demonstrated that CAIM accurately detected
causal relationships among neuron clusters. We compared

Fig. 7 Causal discovery results for the biophysics-based simulation. a The ground-truth causal graph. b The spike trains of cluster states (the first 200
frames)

Fig. 8 Causal discovery results for the reach-task dataset. a The loading matrix for neuron clustering. Rows are neurons (split by the cluster label); and
columns are clusters. b and c are DBNs for condition 1 and 2. In DBNs, edge weights represent strength of connectivity
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CAIM with other methods. For neuron clustering, CAIM
achieved a higher Rand index than k-means and clustering
by density peaks. For causal discovery, compared to BNS,
BNSR, and GLMNET, CAIM achieved the optimal perfor-
mance balance in AUC and running time. In the biophysics-
based simulation, we generated simulated data for a set of
integrate-and-fire neurons with noise. These neurons formed
four clusters. CAIM accurately identified cluster structure and
causal relationship between these neuron clusters. For the de-
layed reaching experiment, 45 neurons formed 4 clusters. The
causal graphs for two different experimental conditions were
different. The parent sets of nodes A, B, and D were different
between two conditions. Collectively, these experiments dem-
onstrated that CAIM is a powerful computation framework to
detect causal relationships among neural dynamics.

The network generated by CAIM is different from that
generated from synchrony analysis. Synchrony analysis cen-
ters on calculating the cross-correlation between two neural
temporal courses. CAIM focuses on modeling the transition
dynamics among neural temporal courses. Synchrony analysis
and CAIM provide complementary information about a cog-
nitive process.

The network model generated by CAIM is explainable; it is
a graphical model and has excellent interpretability. CAIM is
expandable. The computational framework in CAIM can be
used for other applications such as modeling cortical traveling
waves (Muller et al. 2018). Using the CAIM framework, we
can detect clusters that have neurons with zero-lag synchrony;
then model information propagation in a pathway and focus
on the pattern that activation of cluster A at time point t leads
to activation of cluster B at time point t + 1. The biophysics-
based simulation provides an example of information propa-
gation in the pathway A→ B→D.

We have developed algorithms called dynamic network
analysis to model interactions among neural signals at a mac-
roscopic scale (Chen et al. 2012; Chen et al. 2017; Chen and
Herskovits 2015). CAIM and dynamic network analysis han-
dle different kinds of temporal data. Dynamic network analy-
sis is designed to generate a network model from longitudinal
MR data. Longitudinal MR data are short temporal sequences.
For most longitudinal image data, the number of visits for
each subject is small, often less than ten. Therefore, dynamic
network analysis requires data frommany subjects to generate
a stable model, assuming that the brain network model is
invariant across subjects. CAIM is designed to generate a
network model from data streams which include thousands
of data points. Therefore, CAIM does not assume that the
brain network model is invariant across subjects.

Bayesian methods have been used to model neural activity
data. Ma et al. proposed a Bayesian framework to describe
how populations of neurons represent uncertainty to perform
Bayesian inference (Ma et al. 2006). The probabilistic rela-
tionship between stimuli and response is formalized as

P(response | stimuli). A two-layer feed-forward neural net-
work is used for decoding. In this neural network, neurons
in the output layer compute the product of input likelihood
functions. Friston suggested a strong correspondence between
the anatomical organization of the neocortex and hierarchical
Bayesian generative models (Friston 2003). In (George and
Hawkins 2009), a Bayesian model for cortical circuits is pro-
posed. This method describes Bayesian belief propagation in a
spatio-temporal hierarchical model, called hierarchical tempo-
ral memory (HTM). An HTM node abstracts space as well as
time. HTM graphs use Bayesian belief propagation for infer-
ence. Deneve proposed a Bayesian neuron model in which
spike trains provide a deterministic, online representation of
a log probability ratio (Deneve 2005). However, the above
studies about Bayesian analysis of neural activity data don’t
center on causality inference.

The causal sufficiency assumption is widely used in causal
discovery in order to make the causal discovery process com-
putationally tractable. However, if there is an unmeasured
time series Z that influences the observed time series Y, then
the approach based on the causal sufficiency assumption can
lead to incorrect causal conclusions. This is one of the limita-
tions of CAIM. Our future research will address this limita-
tion. We will introduce latent variables which represent un-
measured time series, then use the expectation maximization
(EM) to infer properties of partially observedMarkov process-
es (Geiger et al. 2015).

In CAIM, we assume that the causal structure is invariant
across time points. If the dependencies in the underlying pro-
cess change over time, the generated model is an average over
different temporal dependency structures. In the future, we
will extend CAIM to handle time-varying causal graphs. In
this new framework, we will generate a causal graph for each
time point and aggregate these causal graphs.

In the current framework, we generated a ranking of poten-
tial causal interactions. In some real-world applications, we
need to determine a threshold on this ranking to obtain a
binary causal graph. In future work, we will develop algo-
rithms to overcome this challenge. One method is based on
the likelihood function. For a generated binary graph, we can
calculate a score to represent the likelihood that observed data
is generated from the binary graph; and choose a threshold to
maximize the likelihood (Chen and Herskovits 2015). This
process should be inside a cross-validation procedure to avoid
overfitting.

In this paper, the interactions among neural activities
are represented by a 2TBN. The 2TBN represents a first-
order time-invariant Markov process. We adopted the
2TBN representation to simplify the computation. In
CAIM, we group neurons into clusters, effectively reduc-
ing the dimensionality of model space. An alternative ap-
proach for dimension reduction is projecting variables in-
to a low-dimensional space and modeling dynamics
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among latent variables. In the future, we will develop
such algorithms.

In conclusion, CAIM provides a powerful computational
framework to infer causal graphs based on high-dimensional
observational neural activity data. We envisage that CAIM
will be of great value in understanding spatiotemporal patterns
of circuit activity related to a specific behavior.

Information Sharing Statmement

The data of the delayed reaching task is available at https://
users.ece.cmu.edu/~byronyu/software/DataHigh/get_started.
html. The simulated data and the software package are freely
available for academic purposes on request.
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