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Vocal learning is an important behavior in oscines (songbirds). Some songbird species learn heterospecific sounds as well as

conspecific vocalizations. The emergence of vocal mimicry is necessarily tied to the evolution of vocal learning, as mimicry requires

the ability to acquire sounds through learning. As such, tracking the evolutionary origins of vocal mimicry may provide insights

into the causes of variation in song learning programs among songbirds. We compiled a database of known vocal mimics that

comprised 339 species from 43 families. We then traced the evolutionary history of vocal mimicry across the avian phylogeny

using ancestral trait reconstruction on a dataset of oscine passerines for which vocalizations have been described. We found

that the common ancestor to oscines was unlikely to mimic sounds, suggesting that song learning evolved with mechanisms to

constrain learning to conspecific models. Mimicry then evolved repeatedly within the songbird clade, either through relaxation of

constraints on conspecific learning or through selection for active vocal mimicry. Vocal mimicry is likely ancestral in only a handful

of clades, and we detect many instances of independent origins of mimicry. Our analysis underscores the liability of vocal mimicry

in songbirds, and highlights the evolutionary flexibility of song learning mechanisms.
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Impact statement
Naturalists have long been fascinated by the ability of certain

birds to imitate a wide range of sounds such as environmental

noises and the vocalizations of other animals, including hu-

mans. This ability, often called vocal mimicry, is well known

in some species (e.g., parrots, mockingbirds, lyrebirds). How-

ever, this ability is more widespread than often recognized,

and provides clues to the diversity of song learning strate-

gies within birds. Here, we built a database of 339 known

flexible vocal mimics within the oscine passerines, known as

‘songbirds’. Using phylogenetic analysis on data from song-

birds with described vocalizations, we traced the evolutionary

origins of vocal mimicry. We show that vocal mimicry was

probably not ancestral to songbirds, suggesting that the first

songbirds likely sang only their own species’ song. This con-

straint to conspecific learning must have lifted in many clades

through relaxation of learning constraints or selection for vo-

cal mimicry for some beneficial function. Our study clearly

demonstrates the evolutionary flexibility of vocal mimicry and

song learning within songbirds.

Acoustic communication often plays a role in species recog-

nition in animals (e.g., Emlen 1972; Claridge 1985; Hauber et al

2001; Seddon 2005; Percy et al. 2006). For many species, acoustic

signals are genetically encoded; individuals can produce species-

specific sounds without the need for learning (Jang and Gerhardt

2006; Jarvis 2006; Janek and Slater 2000). In others, species-

specific vocalizations are learned by first perceiving acoustic in-

formation, and then practicing imitating these acquired sounds

(Marler 1976). Such vocal learning is a behavior found in select

mammals (humans, bats, cetaceans, and elephants; e.g., Jarvis

2006, Crockford et al. 2004; Prat et al. 2015) and birds (hum-

mingbirds, parrots, and songbirds; e.g., Bolhuis and Gahr 2006).

Within birds, this ability evolved independently multiple times

(Tyack 2007; Jarvis 2007; Slater 1989).

Roughly half of the world’s avian species are oscine passer-

ines (songbirds) that learn their song. In many species, young

birds listen to the songs of adults (gain an acoustic template),

fine-tune their imitation by comparing their practice songs to the

acoustic template, and eventually produce a characteristic song of

their own (much simplified; see Marler 1970a,b; Konishi 1965;

Marler 1976; Soha 2017). However, there is striking variation
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in the oscine learning program (e.g., Nottebohm 1972; Soha

2017). Brenowitz and Beecher (2005) identified five dimensions

of variation that cause complexity in song learning: timing of

learning, number of songs learned, fidelity of imitation, type

of exposure, and level of constraint to species-specific models.

The last dimension, level of constraint, ranges from species that

learn only species-specific song elements (highly constrained) to

species that incorporate heterospecific and environmental sounds

(unconstrained). In other words, a species can be discriminatory

or permissive about what sounds it learns and incorporates into

vocalizations.

Some highly permissive species, termed vocal mimics,

readily learn not only species-specific sounds but also sounds

produced by other species or inanimate objects (Marshall 1950;

Kaplan 2003; Kelley et al. 2008). There are many potential func-

tions and definitions of vocal mimicry, which have been the focus

of study (reviewed in Marshall 1950; Dobkin 1979; Baylis 1982;

Hindmarsh 1986; Kelley et al. 2008; Dalziell et al. 2015; Jamie

2017; see also Dalziell and Welbergen 2016). However, little is

known about the roots of mimetic ability in songbirds. Here, we

focused on the evolutionary origins of the predilection to mimic

heterospecific sounds, combined with the ability to imitate them

(‘descriptive definition’ of vocal mimicry; Baylis 1982). Because

very little is known about differences in the extent of mimicry

across conspecifics, we assumed that mimicry is a species-level

trait to allow us to investigate the evolution of vocal mimicry.

The emergence of vocal mimicry is necessarily tied to the

evolution of vocal learning, as mimicry requires the ability to ac-

quire sounds through learning. Therefore, we assume that vocal

mimicry could not have evolved before vocal learning. However,

there are two broad scenarios in which vocal mimicry could have

arisen relative to the emergence of vocal learning. First, if vocal

learning evolved due to selection for increased song repertoire

(e.g., Nottebohm and Liu 2010), mimicry could have evolved as

a mechanism to acquire more song elements or as a by-product

of a broad acoustic template. The ability to mimic heterospe-

cific sounds could then have been lost in lineages that evolved

a narrow predisposition to learn only conspecific sounds. In this

case, we would expect mimicry to align with the emergence of

vocal learning and to be ancestral to all songbirds. Second, in an

alternative scenario, vocal learning may have originally evolved

with a strong bias toward acquisition of strictly species-specific

sounds. Over time, the perceptual window for sound acquisition

could have become more permissive in some lineages, allowing

vocal mimicry. The emergence of permissiveness in song learn-

ing could have arisen through relaxation of selection for narrow

predispositions during song learning, or through strong selection

for newly acquired functions (Dalziell et al. 2015).

To determine which of these two scenarios was more likely,

we traced the evolutionary history of vocal mimicry across the

avian phylogeny using ancestral trait reconstruction. First, we

compiled a database of known mimetic species to better under-

stand global patterns of mimicry. Second, we focused on the

phylogenetic pattern of the emergence of mimicry. By tracing the

history of vocal mimicry on the songbird phylogeny, we deter-

mined when the trait is likely to have emerged. Third, we used

our phylogenetic approach to suggest the types of questions about

mimicry that should be tackled in the future.

Methods
DEFINITION OF VOCAL MIMICRY

For the purposes of this study, we use a general definition of

vocal mimicry, which encompasses imitation of all types of non-

conspecific sounds: other animals, anthropogenic (e.g., dog whis-

tle, chainsaw), and environmental (e.g., water drip, leaves rustling)

noises. We chose this definition to allow analysis of the evolu-

tion of the ability to learn and produce ‘mimicked’ sounds. While

information on vocalizations is available for many species, de-

termining the functions of mimicry requires careful experimental

studies that have only been conducted on a few species. Here, we

focused on the evolution of mimicry in species that utilize imitated

sounds frequently and extensively, regardless of function.

COMPILING THE DATABASE

Data were compiled from a variety of primary and secondary

sources. A preliminary search was done on Google Scholar. We

then expanded the search to various websites using search terms

“mimic-”, “imitate-”, and “copy-”. Field guides and handbooks,

including all volumes of the Handbook of the Birds of the World,

were browsed manually for mention of vocal imitation or copy-

ing behavior. Sources without peer-review were verified whenever

possible with an extensive search for corroborative scientific pub-

lications on each species on Google Scholar. If an account could

not be verified, the species in question was not included in anal-

ysis. Scientific and common names were standardized using the

IOC Bird List version 5.4 (Gill and Donsker 2015).

We compiled data on 557 oscine species to create our

database of vocal mimicry (Supporting Information Table S1).

We divided these species into three classifications corresponding

to different extents of vocal imitation: “flexible”, “incidental”,

and “unknown”. Under our classification scheme, “flexible

mimics” were species that frequently imitate a wide variety of

sounds, often having plastic repertoires and an extended period of

song learning. In these species, mimetic ability is found in most

individuals and is readily observed under natural conditions. In

contrast, species that mimic on specific or rare occasions were

classified as “incidental mimics”. This “incidental mimic” desig-

nation was also applied to mimicry in brood parasites that learn
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the calls or songs of their host species (17 species of Vidua finches;

e.g., DaCosta and Sorenson 2014). Although brood parasites are

flexible in which species they imitate (Langmore et al. 2008;

Madden and Davies 2006), in this case, they have merely shifted

their learning template from a conspecific to heterospecific tutor,

and do not imitate a wider range of sounds (Kelley et al. 2008;

DaCosta and Sorenson 2014). Other species considered “inciden-

tal mimics” were species of which individuals may have imitated

a heterospecific in unnatural circumstances, such as when kept in

captivity (e.g., bullfinches, zebra finches). Any accounts of a sin-

gle individual imitating heterospecific song were also considered

incidental mimicry, as this imitation most likely resulted from

a learning mistake. The classification of “unknown mimic” was

used for species reported to mimic but for which we found no

details as to extent of imitation. In total, we classified 339 species

as “flexible”, 120 as “incidental”, and 98 as “unknown” mimics.

We then classified oscine species for which we had found no

accounts of mimicry as “non-mimics”. However, to avoid scoring

unstudied, potentially mimetic species as “non-mimics”, we did

not include species for which there were no data on vocalizations

(based on accounts in the Handbook of the Birds of the World).

Of the 5004 oscine species described, we found no information

on the vocalizations of 594 species, and excluded these from all

analyses. We therefore had a final dataset of 4410 oscine species

(557 mimics and 3853 non-mimics) for analysis.

To explore the robustness of our classification scheme, we

treated each species as mimic or non-mimic based on two alter-

native criteria (Supporting Information Figure S1). First, under

our more conservative interpretation, we only considered flexible

mimics as mimics, and treated incidental and unknown mimics as

non-mimics. We refer to this as the “flexible mimics” dataset. Sec-

ond, we repeated our analyses using a more relaxed interpretation

in which all three mimic classifications were treated as mimics.

We refer to this as the “all mimics” dataset. We considered the

first, more conservative, definition of mimicry (flexible mimics

dataset) to be more reliable for evolutionary analysis of the use

of mimicked sounds in vocal communication. However, using the

second, more relaxed definition of mimicry (all mimics dataset)

allowed us to test the robustness of our conclusions. In total, 339

flexible mimic species were considered mimics in the flexible

mimic analysis, and an additional 218 species (for a total of 557

species) were scored as mimics in the analysis of all mimics.

DESCRIPTIVE ANALYSIS

We calculated proportions of mimetic species within each avian

family, as well as a global proportion, using the flexible and

all mimics datasets. We were especially interested in patterns

of mimicry within families, and determined whether mimics

were clumped within, or dispersed throughout, a family. As we

used published accounts of mimicking species, we expected

under-sampling of certain regions (Asia, Africa, and South Amer-

ica) compared to well-studied ones (North America, Europe,

and Australia). To investigate this further, we also calculated

proportions of mimics based on geographic region. We used bird

checklists from Avibase (excluding all accidental and introduced

species) as the source for the total number of resident oscine

species to allow comparison between regions (Lepage 2017).

PHYLOGENETIC ANALYSIS

We conducted phylogenetic analyses using our compiled database

to estimate the probability of mimicry being the ancestral state of

songbirds. We first conducted analyses using alternate methods

to assign species as vocal mimics. We downloaded the global

phylogeny of birds accompanying Jetz et al. (2012). The tree

source was Hackett All Species: a set of 1000 trees with 9993

operational taxonomic units (OTUs) each. As these trees included

all avian species, we first pruned the trees by removing non-oscine

species. We then removed the 594 oscine species for which we

found no song data in the Handbook of the Birds of the World.

Our final phylogeny therefore included 4410 species. In the first

analysis, we used the flexible mimics dataset and assigned a vocal

mimic score of 1 to only the flexible mimic species, treating the

incidental and unknown mimics as non-mimics (score of 0). In our

second analysis, we used our all mimics dataset in which flexible,

incidental, and unknown mimics were all treated as vocal mimics

(given a score of 1).

We compared the probability of mimicry being ancestral to

oscines, and to each oscine family, based on these two anal-

yses. The discrete character of mimicry was mapped onto the

phylogeny as a basic binary value (present or absent). We then re-

constructed the ancestral state for the basal ancestor of all species

in the phylogeny, as well as the basal ancestor of each family.

We reconstructed discrete ancestral states using the equal rates

model, which estimates the marginal ancestral states based upon

Bayesian likelihood. We also used stochastic character mapping

to estimate the number of state changes across the phylogeny, also

using the equal rates model. All analyses were done on the set of

1000 pruned trees using the R package phytools version 0.5-38

(Revell 2012; Supporting Information).

We supplemented our phylogenetic analysis with two addi-

tional analyses to further explore the robustness of our results

(see Supporting Information Methods for details). Both supple-

mentary analyses incorporated only flexible mimics as mimics.

One analysis restricted our dataset to the 817 oscines from regions

with a long history of birdsong research (USA, Canada, Europe,

Australia, and New Zealand). This regional analysis was meant to

ensure that no species were mistakenly categorized as mimics or

non-mimics, as the vocalizations of every oscine from these re-

gions have been described. The other analysis was on a dataset of

3550 avian species, including 65 non-oscines and 3485 oscines.
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Figure 1. Phylogenetic tree of songbirds. (A) Presence of mimicry overlaid on phylogeny. Mimicry is represented by white marks in

the dark ring. (B) Stochastic character mapping of estimated emergence and loss of mimetic ability. Mimicry is represented in red. Vocal

mimicry evolved independently at least 237 times and was lost at least 52 times.

We included this analysis as a relatively unrestricted comparison

that incorporated representatives from all avian orders.

Results
DESCRIPTIVE ANALYSIS

Of the roughly 5004 extant species and 115 families in the sub-

order Passeri (songbirds), 339 species (6.8%) from 43 families

(37.4%) were classified as flexible mimics (Supporting Informa-

tion Table S2). When considering only those 4410 oscine species

for which we had vocalization data in the total, the percent-

age of mimetic oscine species becomes 8.9%. Songbird fami-

lies vary greatly in mimetic ability and number of mimicking

species (Fig. 1A and B). Using our dataset of flexible mimics,

mimicry was rare (i.e., proportion of flexible mimics � .10) in

95 of the 115 (82.6%) songbird families. In contrast, 16 families

(13.9%) had a proportion of mimetic species between 0.1 and

0.5, while four songbird families (3.5%; Dicruridae, Nicatori-

dae, Ptilonorhynchidae, Menuridae) had a proportion higher than

0.5. In all cases, mimicry was spread across a family such that

mimetic and non-mimetic species were often each other’s closest

living relatives.

When using our more relaxed definition of mimicry (includ-

ing incidental mimics and mimics with unknown extent of imita-

tion), thirteen additional oscine families had at least one mimetic

species, bringing the total to 56 families (48.7%). The number of

families with proportions of mimicry between 0.1 and 0.5 jumped

to 24 (20.9%), and the proportion of mimicking species in two

additional families—Viduidae and Atrichornithidae—were above

0.5. The estimated global percentage of mimics based on this less

restrictive analysis ranged from 11.0% (of the number of extant

oscines) to 14.5% (of the pruned number of oscines included in

analysis).

The proportion of oscine species that mimic varied region-

ally as well. In Europe, 31.6% of oscine species were flexi-

ble mimics, while other regions had 4–9% mimicking species

(Table 2). These numbers nearly doubled when including all mim-

ics, with percentages of mimics in North America, Australasia,

and Africa rising to 10–15%, Europe rising to 60%, and other

regions reaching 7%.

PHYLOGENETIC ANALYSIS

Based on our conservative phylogenetic analysis constrained to

flexible mimics, the most recent common ancestor of all songbirds

most likely did not mimic (probability of presence = 0.129 ±
0.002; Table 1). When we use our more relaxed classification for

mimics (all mimics dataset), our estimate of ancestral mimetic

ability increases but remains unlikely (probability of presence =
0.220 ± 0.002). Our results remain qualitatively similar in two

other versions of the phylogenetic analysis. The probability that
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Table 1. Probability of mimicry as the ancestral trait in oscines based on classification scheme.

Dataset
Classifications
scored as mimic

Number of
mimics

Total number
of species

Probability of
ancestral mimicry

Flexible mimics Flexible 339 4410 0.129 ± 0.002
All mimics Flexible,

incidental,
unknown

557 4410 0.220 ± 0.002

Regional Flexible 339 817 0.167 ± 0.39
Unrestricted Flexible 339 3550 0.185 ± 0.003

Table 2. Proportion of mimics on each continent.

Region
Total oscine
species

Number of flexible mimics
(proportion of total)

Number of all mimics
(proportion of total)

North America 762 54 (0.071) 85 (0.112)
Europe 215 68 (0.316) 129 (0.600)
Australasia 778 58 (0.075) 87 (0.112)
Asia 2004 90 (0.045) 137 (0.068)
Africa 1442 132 (0.092) 222 (0.154)
South America 825 32 (0.039) 61 (0.074)
Central America 531 26 (0.049) 41 (0.077)

the common ancestor of songbirds was mimetic is low when we

constrain our analysis to geographic regions in which birdsong has

been particularly well-studied (probability of presence = 0.167 ±
0.39), and when we include all songbirds (probability of presence

= 0.185 ± 0.003).

When using our flexible mimic dataset, we estimate that

vocal mimicry evolved independently at least 237 times across

oscine taxa (Fig. 1B) and was lost 52 times on average. These val-

ues become 401 and 100, respectively, when using the all mimics

database. The ancestors of three songbird families—Mimidae,

Dicruridae, Menuridae—were likely vocal mimics (probability

� 0.75 or greater; Table 3). It is unclear whether mimicry was

ancestral to Atrichornithidae, Ptilonorhynchidae, and Nicatoridae

(probability � 0.5). All other oscine families did not have ances-

tors that actively mimicked (P < 0.05, Supporting Information

Table S2). Results were similar in the analysis using all mimics,

although under this relaxed definition mimicry was likely ances-

tral to Atrichornithidae and Ptilonorhynchidae as well.

Discussion
With high likelihood, mimetic ability was not ancestral to song-

birds. Instead, vocal mimicry evolved numerous times within

oscines and is currently widespread among extant species. One-

third of songbird families contain at least one mimicking species,

and there are a few families in which most species are mimetic.

Our phylogenetic analysis indicates that mimicry may have

emerged at the base of some families, multiple times within other

families, or never emerged in still other families. Mimicry appears

to have been ancestral to two families (Dicruridae and Menuri-

dae), with probabilities of presence greater than 0.75. These

families include species in which functions of mimicry have been

well studied. For example, greater racket-tailed drongos, Dicrurus

paradiseus, may use mimicked alarm calls of heterospecific flock

members to demonstrate aggressive intent or to steal food (e.g.,

Satischandra et al. 2010). In superb lyrebirds, Menura novae-

hollandiae, mimetic accuracy may be used by females to choose

between males (Dalziell and Magrath 2012; Coleman et al. 2007).

However, although mimicry clearly serves a function in certain

clades, it is unclear whether such functions alone can account for

the widespread emergence of vocal mimicry across oscines.

Our global estimate of flexible mimics ranges from approx-

imately 7 to 9%. However, there is strong geographic variation

in the prevalence of vocal mimicry. For example, while 31.6% of

European oscines were categorized as flexible mimics, all other

regions only had an average of 6% flexible mimetic species. Fur-

thermore, the pattern changes within regions. While the percent-

age of flexible mimics in Australia and New Zealand was 14.9%

(see also Chisholm 1932; Marshall 1950), this percentage became

7.5% for all Australasian islands. Similarly, the percentage of

North American mimics increases from 7.1 to 14.2% when ex-

cluding Mexican species. Part of this difference may be explained

by a dearth of publications on the vocalizations of understudied

avifauna in certain regions. However, although we expect that

EVOLUTION LETTERS AUGUST 2018 4 2 1



M. GOLLER AND D. SHIZUKA

T
a

b
le

3
.

Pr
o

b
ab

ili
ti

es
o

f
th

e
p

re
se

n
ce

o
f

vo
ca

lm
im

ic
ry

in
th

e
an

ce
st

o
r

o
f

se
le

ct
so

n
g

b
ir

d
fa

m
ili

es
.

O
sc

in
e

fa
m

ily
Sp

ec
ie

s
(i

n
an

al
ys

is
)

Sp
ec

ie
s

(t
ot

al
)

Pr
op

or
tio

n
of

sp
ec

ie
s

(i
n

an
al

ys
is

)
M

im
ic

sp
ec

ie
s

(f
le

xi
bl

e)

Pr
op

or
tio

n
fl

ex
ib

le
m

im
ic

(o
f

to
ta

l)
M

im
ic

sp
ec

ie
s

(a
ll)

Pr
op

or
tio

n
al

l
m

im
ic

(t
ot

al
)

Pr
ob

ab
ili

ty
an

ce
st

or
w

as
m

im
ic

(f
le

xi
bl

e)

Pr
ob

ab
ili

ty
an

ce
st

or
w

as
m

im
ic

(a
ll)

A
tr

ic
ho

rn
ith

id
ae

2
2

1
1

0.
5

2
1

0.
57

4
±

0.
00

5
0.

92
±

0.
00

3
D

ic
ru

ri
da

e
21

25
0.

84
13

0.
52

17
0.

68
0.

85
4

±
0.

00
6

0.
83

1
±

0.
00

5
M

en
ur

id
ae

2
2

1
2

1
2

1
0.

94
9

±
0.

00
2

0.
92

6
±

0.
00

3
M

im
id

ae
34

34
1

16
0.

47
17

0.
5

0.
74

2
±

0.
00

4
0.

63
5

±
0.

00
3

N
ic

at
or

id
ae

3
3

1
2

0.
67

2
0.

67
0.

41
7

±
0.

00
7

0.
48

±
0.

00
6

Pt
ilo

no
rh

yn
ch

id
ae

17
20

0.
85

14
0.

7
17

0.
85

0.
57

6
±

0.
00

8
0.

74
8

±
0.

00
5

our knowledge of mimics is more complete for certain regions,

this cannot fully explain the difference. For example, although

our number of mimicking North American species is relatively

small, we believe this number to be accurate, as North American

oscines have been studied extensively. Although we have no

reason a priori for expecting Europe to have a large percentage

of mimics, further study is needed to understand this pattern.

There has long been debate over the definition of vocal

mimicry (reviewed in Dalziell et al. 2015). Here, we focused on

evidence for flexible use of imitated sounds (e.g., heterospecific,

anthropogenic, environmental) based on existing literature. How-

ever, we acknowledge that there is uncertainty associated with

how to categorize and define mimetic species. To account for

this uncertainty, we also assessed the prevalence of species with

records of incidental mimicry (e.g., evidence of heterospecific

copying in captivity or other limited contexts) as well as species

for which accounts of vocal mimicry did not specify the extent

of flexibility. Many of these species are unlikely to be considered

vocal mimics under any definition, but including incidental mim-

ics provided a maximum estimate of vocally mimicking species.

When including these putative mimics (‘all mimics’ in Tables 1

and 2), we estimate that approximately 11–15% of oscine species

imitate non-conspecific sounds.

However, we (and most others to date) have treated vocal

mimicry as a species-level trait. Our literature review revealed

little information on within-species variation in vocal mimicry.

Given the evolutionary lability of this trait, it is likely that the

extent of vocal mimicry varies within some species. Although

we cannot account for any within-species variation in our anal-

ysis, understanding the variation in extent and function of vocal

mimicry within species would yield further understanding of the

evolutionary origins of vocal mimicry.

Our phylogenetic analysis indicates that vocal mimicry was

likely not ancestral to oscines. As song learning probably evolved

at some point early in the evolution of oscines (Nottebohm 1972;

Nottebohm and Liu 2010), this implies that mimetic ability did

not evolve concurrently with the origin of song learning. Instead,

our analysis supports the hypothesis that the ancestral songbird

had a restricted song template that excluded non-species-specific

sounds. Vocal flexibility may have been limited by constraints

on template acquisition facilitating the learning of only con-

specific sounds, and/or by restrictive sound production mecha-

nisms. These restrictions and constraints on vocal mimicry would

have lessened repeatedly and independently within the songbird

clade.

Given our results, the question becomes why and how re-

strictions on sensory recognition (song template) and/or sound

production (syringeal function) became relaxed in some lineages.

Here, we propose two hypotheses. In the first hypothetical sce-

nario, species-specificity in both song recognition and production
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slowly relaxed over time in the absence of selection. At some

point after song learning evolved, mimicry became possible and

the imitation of heterospecific sounds became commonplace in

many species, eventually gaining functional significance. Alterna-

tively, permissiveness in imitation may have undergone repeated

positive selection after the evolution of song learning. A proposed

mechanism driving the evolution of vocal learning is mate choice

based on song complexity or novelty (Nottebohm 1972; Jarvis

2004) as females of many species appear to prefer males singing

more complex repertoires (e.g., canaries, Draganoiu et al 2002;

starlings, Mountjoy and Lemon 1996; Gentner and Hulse 2000;

chaffinches, Leitao et al 2005), and learning enhances complexity

(Nottebohm 1972; Jarvis 2006). Similarly, Laiolo et al. (2011)

suggest that mimicry increases song complexity and serves as an

honest signal. As such, selection for vocal repertoire complexity

or plasticity in vocal performance may have led to a less restricted

song learning template. As imitation became increasingly plastic,

vocal learning would have broadened to include mimicry. Of the

mimicking species used in our analysis, more than 90% are likely

using mimicry solely in song. It therefore seems likely that sexual

selection played a role in the emergence of mimicry.

Vocal mimicry requires both a broadly permissive song tem-

plate (or lack of template) and the morphological ability to pro-

duce imitations. Yet, the imitation of heterospecific sounds has

evolved frequently, suggesting that relatively simple mechanisms

may separate non-mimetic and mimetic species. This also sug-

gests that some species may have the capability to mimic but

only express the trait under certain circumstances. Social context

may be one important factor driving incidental mimicry of het-

erospecifics, at least in captive conditions (as with starlings, West

and King 1990; bullfinches, Nicolai 1959; budgerigars, Gramza

1970). In our database, the incidental mimic classification in-

cludes species that imitated when kept without conspecific social

partners, but are not known to imitate in the wild (e.g., zebra

finch and Oregon junco, Bertram 1970; house sparrow, Conradi

1905). Similarly, another factor influencing incidental mimicry

could be similarity between vocalizations of conspecifics and

heterospecifics, such that learning of heterospecific song can oc-

cur by accident (Kelley et al. 2008; e.g., short-toed and Eurasian

treecreepers, Garamszegi et al. 2007; Thielcke 1962, 1972). These

examples underscore the diversity of forms vocal mimicry can

take, suggesting that mimicry is not a discrete trait, but rather

a continuum within the spectrum of vocal flexibility. Therefore,

one further way to explore the evolution of vocal mimicry may

be to study transitions between incidental and flexible mimics.

Similarly, studying pairs of sister species, one mimetic and one

non-mimetic, may improve our understanding of vocal mimicry.

More generally, we suggest that phylogenetic and comparative

approaches to vocal flexibility can continue to provide insights

into the evolution of avian song learning programs.
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