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Abstract

Background: Hepatocellular carcinoma (HCC) is a highly malignant tumor with a particularly

poor prognosis. The tumor microenvironment (TME) is closely associated with tumorigenesis,

progression, and treatment. However, the relationship between TME genes and HCC patient

prognosis is poorly understood.

Methods: In this study, we identified two prognostic subtypes based on the TME using data from

The Cancer Genome Atlas and Gene Expression Omnibus. The Microenvironment Cell

Populations-counter method was used to evaluate immune cell infiltration in HCC.

Differentially expressed genes between molecular subtypes were calculated with the Limma

package, and clusterProfiler was used for Gene Ontology and Kyoto Encyclopedia of Genes

and Genomes functional enrichment analyses to identify genes related to the independent sub-

types. We also integrated mRNA expression data into our bioinformatics analysis.

Results: We identified 4227 TME-associated genes and 640 genes related to the prognosis of

HCC. We defined two major subtypes (Clusters 1 and 2) based on the analysis of TME-associated

gene expression. Cluster 1 was characterized by increased expression of immune-associated

genes and a worse prognosis than Cluster 2.

Conclusions: The identification of these HCC subtypes based on the TME provides further

insight into the molecular mechanisms and prediction of HCC prognosis.
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Introduction

Hepatocellular carcinoma (HCC) is the
fifth most common malignant tumor world-
wide and the third leading cause of cancer-
related death.1 The burden of HCC is
expected to increase continuously over the
next few years.2,3 HCC mainly occurs in the
background of liver cirrhosis, which is
closely related to chronic infections by hep-
atitis B virus or hepatitis C virus and
alcohol-associated, nonalcoholic fatty, or
drug-associated disease.3–6 As a result,
HCC remains one of the most difficult
malignancies to treat. Although several
studies have demonstrated the effectiveness
of systemic and immune therapies in HCC,
specifically for patients who have not
received sanative resection or liver trans-
plantation,7,8 the success of these therapies
is limited by low response rates. Therefore,
treatment strategies for liver cancer need to
be further improved.

The tumor microenvironment (TME) is
an essential part of cancer, and it is a com-
plex ecosystem that supports tumor growth
and metastasis while weakening immune
surveillance.9–11 The TME is composed of
a variety of immune and non-immune cell
types, which secrete cytokines that synergis-
tically promote chronic inflammation,
immunosuppression, and angiogenesis.12

Cancer cells can adapt and grow in this
environment, and it becomes difficult to
monitor and eradicate them by host immu-
nosurveillance. Recently, increasing evi-
dence has demonstrated that cancer cells
closely interact with stromal cells and the

extracellular matrix.13 Dendritic cells
(DCs) have a dual function in the TME,

and DC dysfunction weakens immune sur-
veillance and prevents the elimination of
tumor cells.14 This leads to the functional
impairment of natural killer cells that have
infiltrated solid tumors.15 It was previously
demonstrated that the tumor-immune
microenvironment of advanced ovarian
cancer is intrinsically heterogeneous, and
local immune activation could be induced

by chemotherapy.16 Therefore, researching
the role of the TME in the pathogenesis of
tumors and the potential mechanisms
underlying the interactions of the TME
with tumor cells is essential.

Several studies revealed that the TME
plays an essential role in oncogenesis,
tumor metastasis, and liver fibrosis.17,18

Hepatic stellate cells stimulate liver cancer
growth and may reduce the extent of central
necrosis by activating extracellular regulato-
ry kinase and nuclear factor-ŒB path-
ways.19,20 Other types of cells in the TME
of HCC, such as cancer-associated fibro-

blasts, lymphocytes, Kupffer cells, and
endothelial cells, are considerably important
and require in-depth study. At present, sys-
tematic studies on the relationship between
TME-related genes and the prognosis of
HCC patients are limited. Therefore,
researching the landscape of HCC based
on the TME to recharacterize its molecular
subtypes and predict which subtypes have a

poor prognosis is of great importance.
In this study, we identified two indepen-

dent prognostic subtypes based on the
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TME using data from The Cancer Genome
Atlas (TCGA) and Gene Expression
Omnibus (GEO). The molecular character-
istics of the TME were used as prognostic
indicators of clinical outcomes. Cluster 1
was characterized by increased expression
of immune-associated genes and a worse
prognosis than Cluster 2. The identification
of these HCC subtypes base on the TME
enables the prediction of HCC prognosis
and is a cornerstone for immunotherapy.

Materials and methods

Tumor samples and gene expression
datasets

TCGA (https://gdc-portal.nci.nih.gov/) and
GEO (https://www.ncbi.nlm.nih.gov/geo/)
datasets have been reported previously.21

GEO is a widely available repository of
multi-dimensional clinical datasets and
cancer genomics information, including the
clinical characteristics, gene expression pro-
files, and patient prognosis of 445 HCC
samples (GSE14520). The datasets for 423
HCC samples from the TCGA-Liver
Hepatocellular Carcinoma (LIHC) collection
were used for further validation. Genes were
removed if they had missing data.

Cancer-specific survival was defined
as the period from the date of surgery to
the date of cancer-associated death.
Progression-free survival was identified as
the period between the therapeutic interven-
tion and tumor progression. Disease pro-
gression was defined as an increase in
stages from T1 or T2 to T3 or T4. Ethical
approval was not required as this study
used publicly available datasets and was
an analytical study of bioinformatics.

Unsupervised clustering analysis for
subtype discovery

According to an unsupervised learning
approach, the non-negative matrix

factorization (NMF) clustering algorithm
was used to discover subtypes. Then, we
used the K-medoids clustering algorithm.
Our optimal number of clusters (k¼ 2–10)
was set in accordance with previously
described protocols.22 The optimal
number of gene clusters was determined
by indicators, such as the cophenetic coef-
ficient, residual sum of squares, and disper-
sion. The cophenetic coefficient is obtained
based on the consistency matrix and is used
for the stability of the cluster obtained from
NMF. The residual sum of squares is used
to reflect the clustering performance of the
model. The smaller the value, the better the
clustering effect of the model. In theory,
when each sample is clustered into a class,
the value is the smallest, but the residual
sum of squares cannot be applied alone.
Therefore, this parameter needs to be used
together with other indicators.

Microenvironment Cell Populations
(MCP)-counter method

The MCP-counter method was used to reli-
ably quantify the absolute abundance of
different immune cell subsets and stromal
cell populations in heterogeneous tissues
using transcriptomic data,23 as described
previously. The MCP-counter tool was
used to validate the differences in immune
scores of cell populations within each sub-
group.24 We also assessed the significance
of the variation in expression levels for all
genes among the two subtypes.

Identification of differentially expressed
genes (DEGs) between subtypes

Based on the RNA seq dataset, the gene
with zero value was identified as the missing
value after log2 transformation. If the data
were missing in more than 30% of the sam-
ples, they were removed. The quantiles were
normalized, and the gene expression levels
in each data set were independently
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normalized to a mean of 0 and standard

deviation of 1 and then combined to pro-

duce a large, pooled sample composed of

RNA-seq validation queues. The Limma

R package was used to screen DEGs

based on the negative binomial distribution

model. The expression profile centers the

median of all samples and uses a classifier

to classify the data set. The molecular char-

acteristics of the genes were analyzed in

both a discovery and validation cohort.

Then, the well-trained clusters were used

to identify the different subgroups accord-

ing to the heat maps. The significance of

DEGs was analyzed.

KEGG and GO analysis

The Kyoto Encyclopedia of Genes and

Genomes (KEGG) (https://www.kegg.jp/)

is a public database for understanding

DEGs in biological systems (such as cells,

organisms, and ecosystems) at the molecu-

lar level (especially large-scale molecular

datasets generated by genome sequencing

and other high-throughput experimental

techniques). The functions and applications

of enrichment analysis were described

previously.25

Gene ontology (GO) is a method for

standardizing the description of gene prod-

ucts to simply annotate gene products. GO

enrichment analysis describes the biological

processes, cell component pathways, and

molecular functions.

Statistical analysis

All statistical analyses were performed

using IBM SPSS Statistics for Windows,

Version 22 (IBM Corp., Armonk, NY,

USA) and GraphPad Prism 7.0

(GraphPad Software, La Jolla, CA, USA).

The Chi-squared test was used to analyze

the relationship between DEGs and clinico-

pathological characteristics. Student’s t-test

was performed to analyze the differences

between the two groups. The Kaplan–

Meier method was used to establish survival

curves, and the survival differences were

compared using the log-rank test. All statis-

tical results with p<0.05 were considered

significant.

Results

Two subgroups of HCC were identified

based on the analysis of TME-associated

gene expression

The characteristics of the 365 TCGA-

LIHC samples and 221 GSE14520 sam-

ples selected for analysis are shown in

Table 1. To investigate the relationship

between the TME and the malignant pro-

gression of HCC, the genomic sequence of

HCC subtypes was obtained from TCGA.

Log2 transformation and quantile normal-

ization were applied to gene expression

analyses. Before clustering, we identified

4227 genes (148 genes had no expression

profile) related to the TME. Coxph func-

tions in R were used for survival analysis,

resulting in the identification of 640 TME-

related genes associated with the progno-

sis of HCC. Then, unsupervised hierarchi-

cal clustering analysis was applied to

classify the different HCC subgroups

based on the TME molecular expression

profile rather than clinicopathological fac-

tors, such as tumor stages and grades.

Clustering analysis was used to classify

the two subgroups.
The 640 genes associated with the prog-

nosis of HCC based on the TME were used

to determine the optimal number of clusters

according to indicators, such as the cophe-

netic, dispersion, and silhouette values.

Analysis of the consensus summary statis-

tics indicated that the optimal number of

gene clusters was two (Figure 1a, b). The

heat map of TME-related genes associated

with prognosis in the two subgroups is
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shown in Figure 1d. Further, we analyzed
the prognostic relationship between the two

groups, and the results showed that Cluster

1 and Cluster 2 were significantly different

(Figure 1c, d; log-rank p< 0.0001).

Specifically, we found that Cluster 2 had a
longer median overall survival than Cluster

1. Based on the two subtypes, tumors with

higher TME-associated gene expression

showed a worse prognosis.

Estimation and comparison of

immune cells

Immune cells that infiltrate solid tumors

can have a profound effect on the clinical

behavior of cancer. Estimating tumor-

infiltrating immune cells and researching

the interactions between the host immune
system and tumors are essential to identify

prognostic biomarkers and develop novel

therapies. We estimated the abundance of

specific immune cell subsets and found sig-

nificant differences in various immune cell

types (CD8 T cells, cytotoxic T cells, lym-

phocytes, B cell lineage, monocytic lineage,
myeloid DCs, fibroblasts, and neutrophils;

all p<0.05) between Cluster 1 and Cluster 2.

There was no significant difference in the

scores of endothelial cells (Figure 2).

These results illustrate that the immune sig-

nature of different subgroups might provide
a prognostic signature. The low immune

cell infiltration associated with Cluster 2

may indicate a less invasive tumor pheno-

type, whereas the poor prognosis of Cluster

1 is associated with increased immune cell

infiltration.

Identification of DEGs between subtypes

To further demonstrate which genes were

related to the two subtypes, we integrated

mRNA expression data into our bioinfor-

matics analysis. The Limma package was

used to calculate the DEGs between
Cluster 1 and Cluster 2 molecular subtypes.

The results showed that 152 subtype-

specific signature genes were downregu-

lated, and the differentially expressed

subtype-specific signature genes between

Cluster 1 and Cluster 2 were mainly upre-
gulated. The volcano map of the DEGs

between Cluster 1 and Cluster 2 molecular

Table 1. Characteristics of TCGA-LIHC and
GSE14520 cohorts.

Clinical Features TCGA-LIHC GSE14520

OS

0 235 136

1 130 85

T Stage

T1 180

T2 91

T3 78

T4 13

TX 3

N Stage

N0 248

N1 4

NX 113

M Stage

M0 263

M1 3

Mx 99

Stage

I 170

II 84

III 83

IV 4

X 24

Grade

G1 55

G2 175

G3 118

G4 12

GX 5

Gender

Male 246

Female 119

Age

�60 173

>60 192

TCGA-LIHC, The Cancer Genome Atlas-Liver

Hepatocellular Carcinoma; OS, overall survival.
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subtypes is shown in Figure 3a, and the heat

map of the DEGs between Cluster 1 and

Cluster 2 molecular subtypes is shown in

Figure 3b.

Differences in upregulated genes

between subtypes

To explore the underlying molecular mech-

anisms contributing to the differences in

gene expression, KEGG and GO functional

enrichment analyses of 640 upregulated
signature-specific genes were performed.
Biological processes, including the regula-
tion of the mitotic cell cycle, cell division,
negative regulation of cell cycle, cell cycle
phase transition, and DNA repair, were sig-
nificantly enriched (Figure 4a). Cellular
component (microtubule organizing
center, nuclear chromosome, nuclear chro-
mosome part, chromosomal region, and
spindle) enriched pathways were mainly

Figure 1. Two subgroups of HCC were identified based on the TME. a. The consensus map of NMF was
used for subtype analysis. b. The optimal cluster number was two according to the indicators of the
cophenetic coefficient, residual sum of squares, and dispersion. c. Kaplan–Meier analysis showing that the
overall survival of subtype C1 is significantly worse than that of C2. d. Heat map of TME-related genes
between the two molecular subtypes (C1 and C2).
HCC, hepatocellular carcinoma; TME, tumor microenvironment; NMF, non-negative matrix factorization;
C1, Cluster 1; C2, Cluster 2; rss, residual sum of squares.
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annotated (Figure 4b). The annotated
results for molecular functions were also
analyzed (Figure 4c). In addition, the
enriched KEGG pathways were mainly
focused on cellular senescence,
microRNAs in cancer, cell cycle, oocyte
meiosis, progesterone-mediated oocyte
maturation, and others (Figure 4d).

Pathway enrichment analysis of the

functions of downregulated genes

between subtypes

Further, the 152 subtype-specific signature

downregulated genes were enriched by

KEGG and GO function analysis. Genes

with significant differences were annotated

Figure 2. Estimation and comparison of the abundance of specific immune cell subsets.
The Microenvironment Cell Populations-counter method was used to quantify the abundance of different
immune cell subsets. a. The abundance of CD8 T cells in C1 is higher than in C2. b. The abundance of
cytotoxic lymphocytes in C1 is higher than in C2. c. The abundance of B lineage cells in C1 is higher than in
C2.d. The abundance of monocytic lineage cells in C1 is higher than in C2. e. The abundance of myeloid
dendritic cells in C1 is higher than in C2. f. The abundance of neutrophils in C1 is higher than in C2. g. The
abundance of endothelial cells in C1 is higher than in C2. h. The abundance of fibroblasts in C1 is higher than
in C2. i. The abundance of T cells in C1 is higher than in C2.
C1, Cluster 1; C2, Cluster 2.

Wang et al. 7



Figure 3. The differentially expressed genes between C1 and C2. a. The volcano map shows an increased
number of differentially expressed genes in C1 compared with C2. b. The differentially expressed genes in
C1 and C2 are also shown in a heat map.
C1, Cluster 1; C2, Cluster 2; FDR, false discovery rate.

Figure 4. GO and KEGG pathway enrichment analyses of the upregulated genes in HCC subtypes. a. GO
analysis of biological processes. b. GO analysis of cellular components. c. GO analysis of molecular functions.
d. KEGG analysis.
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; HCC, hepatocellular carcinoma;
FDR, false discovery rate.
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in biological processes, such as small mole-

cule biosynthetic processes, monocarboxyl-

ic acid metabolic processes, organic acid

biosynthetic processes, and others (Figure

5a). For the cellular component, the anno-

tation results of the top 10 genes focused on

the extracellular matrix, collagen-

containing extracellular matrix, blood

microparticles, and others. (Figure 5b).

Molecular functions, including cofactor

binding, carboxylic acid binding, iron ion

binding, lipid transporter activity, oxidore-

ductase activity, acting on paired donors,

incorporation or reduction of molecular

oxygen, and others, were annotated

(Figure 5c). The enrichment of 152 down-

regulated genes in KEGG pathways

revealed that complement and coagulation

cascades, biosynthesis of amino acids, bile

secretion, PPAR signaling pathway,

chemical carcinogenesis, metabolism of

xenobiotics by cytochrome P450, drug

metabolism, and other pathways were sig-

nificantly enriched (Figure 5d).

Discussion

HCC is associated with a high mortality

rate. Although systemic and immune thera-

pies have demonstrated efficacy in HCC

therapy, only a few patients respond to

these treatments. The substantial heteroge-

neity in HCC suggests that the identifica-

tion of independent prognostic subtypes is

necessary to improve HCC treatments.
In the present study, using the unsuper-

vised learning approach NMF, we investi-

gated a method to divide HCC patients into

two main categories based on the TME

with distinct molecular characteristics.

Figure 5. GO and KEGG pathway enrichment analyses of the downregulated genes in HCC subtypes. a.
GO analysis of biological processes. b. GO analysis of cellular components. c. GO analysis of molecular
functions. d. KEGG analysis.
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; HCC, hepatocellular carcinoma;
FDR, false discovery rate.
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Several molecular subtypes of HCC have
been proposed. In contrast to the subtypes
identified in this study, the HCC subclasses
reported by Lee et al.26 were highly associ-
ated with patient survival, and the genes
most highly correlated with survival were
identified using Cox proportional hazards
survival analysis but not epigenomic analy-
sis. Llovet et al.27,28 suggested that HCC
can be divided into two major groups,
including “proliferative and non-prolifer-
ative” or “progressive and less progressive”,
but the heterogeneity of HCC and the clin-
ical and pathological features are not well
understood.

Considering the limitations of previous
research, investigations based on the TME
have received increasing attention.29,30

Yuting et al.21 developed a new model
based on immune-related genes for predict-
ing prognosis in HCC. Tekpli et al.31 estab-
lished a novel six-gene signature in both
GEO and TCGA HCC cohorts for HCC
prognosis prediction. A similar observation
of three patient clusters with increasing
levels of immune cell infiltration in breast
cancer has been reported. Additionally, Ma
et al.32 established a molecular subtyping
method for Asian HCC to evaluate progno-
sis. Therefore, the importance of conduct-
ing a systematic analysis of the molecular
subtypes of HCC is evident. In our study,
we successfully established two different
subtypes. Cluster 1 showed higher immune
cell infiltration and a worse prognosis than
Cluster 2.

Our study revealed that gene signatures
were correlated with immune cell infiltra-
tion and the prognosis of HCC. Xu
et al.33 reported a similar conclusion in
renal cell carcinoma. Additionally, a prom-
ising prognostic signature was developed to
evaluate immunotherapy responsiveness
based on an immune gene set in ovarian
cancer.34 Various molecular subtypes of
immune checkpoint inhibitor-based thera-
peutic responses were also classified in

early-stage bladder cancer patients.35

Elucidating gene signatures associated

with the TME of different subgroups

might provide a prognostic signature and

contribute to improvements in immuno-

therapies.36 Although our research

describes a gene signature that can predict

the prognosis of different HCC subtypes,

the molecule mechanisms by which these

biomarkers affect the progression of HCC

require further investigation.
In summary, our research redefined an

independent poor-prognosis subtype of

HCC based on the TME. Importantly, the

indentation of different subtypes might

help improve treatment strategies for

advanced HCC.
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