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ABSTRACT: Recent research shows that energy metabolism can strongly influence proteostasis and thereby 

affect onset of aging and related disease such as Parkinson’s disease (PD).  Changes in glycolytic and proteolytic 

activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing 

deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and 

glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG). It is proposed that triose 

phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms. 

MG can induce many of the macromolecular modifications (e.g. protein glycation) which characterise the aged-

phenotype. MG can also react with dopamine to generate a salsolinol-like product, 1-acetyl-6,7-dihydroxy-

1,2,3,4-tetrahydroisoquinaline (ADTIQ), which accumulates in the Parkinson’s disease (PD) brain and whose 

effects on mitochondria, analogous to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), closely resemble 

changes associated with PD. MG can directly damage the intracellular proteolytic apparatus and modify 

proteins into non-degradable (cross-linked) forms. It is suggested that increased endogenous MG formation may 

result from either, or both, enhanced glycolytic activity and decreased proteolytic activity and contribute to the 

macromolecular changes associated with PD.  Carnosine, a naturally-occurring dipeptide, may ameliorate MG-

induced effects due, in part, to its carbonyl-scavenging activity. The possibility that ingestion of highly glycated 

proteins could also contribute to age-related brain dysfunction is briefly discussed.          
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The objective of this opinion piece is to offer possible 

answers to the question “why is ageing a risk factor for 

Parkinson’s disease?” It is suggested that (i) excessive 

glycolysis accelerates aging onset caused in part by 

increased generation of the triose phosphates 

dihydroxyacetone-phosphate and glyceraldehyde-3-

phosphate, and their decomposition product methylglyoxal 

(MG), (ii) MG causes mitochondrial dysfunction and 

provokes a compensatory, but eventually deleterious, 

increase in glycolysis, (iii) the developmentally-related 

decline in proteostasis (cytosolic and mitochondrial) 

synergistically induce a self-reinforcing deleterious cycle 

of dysfunction which increase the risk of aging generally 

and PD in particular, and (iv) increased MG accumulation 

     Volume 8, Number 3; 334-345, June 2017                       

http://dx.doi.org/10.14336/AD.2016.1030
mailto:alanandjill@lineone.net


 Hipkiss A.R., et al                                                                                Energy metabolism, Parkinson’s disease and aging 

 

Aging and Disease • Volume 8, Number 3, June 2017                                                                               335 

 

in substantia nigra promotes formation of a neurotoxin 

found in the brains of PD patients and diabetics.   

 

Glycolysis is a risk factor  

 

It is becoming increasingly apparent that the glycolytic 

pathway is not a benign sequence of reactions [1,2]. There 

is considerable evidence showing that aging, in many 

species, can be delayed by dietary interventions which 

impact particularly on glycolysis. Studies in various 

organisms show that lifespan can be increased when 

glycolytic flux is partially inhibited [3], due to either 

permanent caloric restriction [4] or every-other-day feeding 

(i.e. intermittent fasting) [5,6], deficiency in insulin-

signalling [3,7], and treatment with either a non-

metabolisable glucose analogue (2-deoxyglucose) [8] or the 

mTOR inhibitor rapamycin [9-11]. Although the 

mechanism(s) responsible for these effects is/are still 

debated, there is increasing evidence that decreased 

generation of methylglyoxal (MG), arising because of 

lowered glycolytic activity, could, at least in part, explain 

the beneficial effects on lifespan and onset of much age-

related dysfunction and pathology [2,12-15]. 

MG is a by-product of glycolysis, formed 

predominantly by the spontaneous decomposition of the 

triose-phosphates glyceraldehyde-3-phosphate and 

dihydroxyacetone-phosphate, both of which are normal 

glycolytic intermediates; MG can also arise from 

catabolism of the amino acids serine and threonine and 

from lipid peroxidation. Animal studies have shown that 

tissue levels of MG are strongly raised following high 

glycemic-index meals [16,17], hyperglycaemic episodes 

[18] and intake of high levels of fructose [19]. Furthermore, 

MG levels in erythrocytes from diabetic patients have been 

shown to be increased at least 15-fold compared to controls, 

possibly due to decreased glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) activity [20,21]. It is also 

possible that catalytic function of the glycolytic enzyme 

triose-phosphate isomerase (TPI) may decline due to 

activity-induced asparagine deamidation; insufficient TPI 

activity could cause accumulation of dihydroxyacetone 

phosphate and contribute to increased MG generation 

following spontaneous decomposition of the triose 

phosphate [22,23]. Given that protein synthesis cannot 

occur in human erythrocytes, the possibility arises that 

excessive and persistent glycolysis due to constant 

hyperglycemia consequent upon almost continuous 

carbohydrate intake could lower TPI activity to such a 

degree that MG accumulates. This proposal therefore 

suggests that erythrocytes could be a major source of MG 

[24] during persistent hyperglycemia.   

It is interesting to note that when the relative activities 

of the glycolytic enzymes are compared, TPI activity in 

erythrocytes is almost 4-fold greater than any other 

glycolytic enzyme [25]. Such elevated TPI activity may 

reflect an evolutionary adaptation to the likelihood of 

metabolically-induced decline in TPI activity during the 

erythrocyte lifespan, prior to its eventual removal after 120 

days (in humans). However, as a result increased reliance 

upon carbohydrate, especially in the so-called Western diet, 

it can be argued that human diets have radically changed 

compared to food intake during the majority of human 

evolution.  Consequently, it is possible that the initial 

excess of TPI within human erythrocytes is insufficient to 

compensate for the enhanced rate of TPI inactivation 

induced by the overall increase in glycolysis which occurs 

because of the Western diet. Such a proposal could 

contribute to the increased incidence of metabolic disease 

in which MG appears to play a predominant role.     

It has been shown that fibroblasts obtained from PD 

patients possess defects in energy metabolism and 

proteostasis [26] and it is possible that increased MG 

generation contributes to both deficiencies. While an in-

depth review of MG’s reactivity and biological effects is 

beyond the scope of this brief opinion piece, one can safely 

state that MG is a reactive bicarbonyl [27], whose action on 

cells and tissues mimics many of the effects of aging 

[24,28,29], and is therefore increasingly regarded as causal 

to much age-related dysfunction including 

neurodegeneration [30,31]. The effect of MG on proteins is 

the formation of advanced glycation end-products (AGEs) 

following its reaction with lysine, arginine, histidine and 

cysteine residues [32]; the resultant glycated proteins 

become resistant to intracellular proteolysis if they become 

cross-linked [33]. Not only can MG promote formation of 

undegradable proteins but the bicarbonyl can also inhibit 

intracellular proteolytic activity towards other aberrant 

proteins [34,35,36]. MG can directly compromise ubiquitin 

function by reacting with lysine residue 78, thereby 

inhibiting attachment of further ubiquitin molecules [17]. 

MG can also react with mitochondria to provoke organelle 

dysfunction accompanied by increased ROS generation 

[13,28,37,38]; one likely effect is a compensating increase 

in glycolysis in order to maintain sufficient ATP synthesis, 

but which exacerbates the situation by increasing MG 

formation.      

 

Methylglyoxal and PD 

 

There is increasing evidence to suggest that excess 

carbohydrate catabolism may be causal to PD [39,40], 

possibly due to raised levels of MG. Dunn et al. proposed 

that an early event in spontaneous PD is dysregulation of 

glucose metabolism [41]. There are also reports that diets 

which are of low glycemic index may decrease PD risk [42-

46]. Interestingly, the protein Parkin, a mutation in which 

increases PD risk, strongly affects energy metabolism: 

overexpression of Parkin inhibits glycolysis and stimulates 



 Hipkiss A.R., et al                                                                                Energy metabolism, Parkinson’s disease and aging 

 

Aging and Disease • Volume 8, Number 3, June 2017                                                                               336 

 

mitochondrial activity, whilst loss of Parkin function results 

in decreased mitochondrial activity and increased 

glycolysis [47,48,49,50]. Additionally, it has been found 

that PINK1 deficiency (implicated in familial PD onset) 

stimulates glycolysis via stabilization of hypoxia-inducible 

factor-1alpha (HIF1-alpha) [51].   

It is also interesting to note that PD is frequently 

associated with increased protein glycation [28,31,52,53] 

especially of α-synuclein which accumulates in PD brain as 

Lewy bodies [30,49,54,55]. Additionally, it has been shown 

that mutation in the DJ-1 gene is a PD risk factor: a study 

by Shi et al. has shown that DJ-1 deficiency activates 

glycolysis in muscle by inducing a Warburg-like metabolic 

reprogramming [56]; while another recent study showed 

that loss of DJ-1 function disrupts mitochondrial function, 

whereas DJ-1 activity represses glycolysis [57]. 

Interestingly a member of the DJ-1 superfamily (Hsp-31) 

has been reported to repair proteins modified by MG [58].  

Glyoxalase-1 is an important enzyme for MG 

destruction [59,60] and glyoxalase-1 activity has been 

found to decline with age in rodent tissues [61], during 

senescence of cultured human fibroblasts [62] and in the 

human brain [63], while changes in glyoxalase-1 activity in 

C. elegans has been shown to strongly influence both 

mitochondrial function and organism lifespan [64].  

Not only can MG directly damage mitochondria 

[65,66] and may be associated with age-related cognitive 

decline [67], but the bicarbonyl can also react with 

dopamine [68,69] to form 1-acetyl-6,7-dihydroxy-1,2,3,4-

tetrahydro-isoquinaline (ADTIQ), which is a salsolinol-like 

compound [69]. ADTIQ not only accumulates in PD brains 

but also mimics the effects of MPTP (1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine) whose effects on mitochondria 

resemble the changes associated with PD [69]. Further 

evidence supporting the proposed link between MG, 

dopamine and generation of the neurotoxin ADTIQ is 

shown by the increased levels of glycolytic enzymes, MG 

and ADTIQ in the brains of diabetic rats [70]. It may be 

relevant to note that another group of nigrostriatal 

neurotoxins, N-methylated-beta-carboline and 2,9-

dimethyl beta-carboline, whose structures resembles 

MPTP, not only inhibit mitochondria respiration but are 

also potent inhibitors of triosephosphate isomerase (TPI) 

[71]. Inhibition of TPI provokes accumulation of 

dihydroxyacetone-phosphate which is not only a strong 

glycating agent but spontaneously decomposes into MG 

and has been proposed to contribute to neurodegeneration 

associated with Alzheimer’s disease [72,73]. As outlined 

above, it is also possible that TPI activity could decline due 

to over-use of the enzyme inducing deamidation of two 

asparagine residues in the enzyme (a wear and tear 

phenomenon) [22,23], ultimately resulting in 

dihydroxyacetone-phosphate accumulation and increased 

MG formation. 

In a study using mice fed a high glycemic-index diet, it 

was found that protein damage was increased in the retina 

and in the substantia nigra (presumed to be induced by MG 

or other endogenous glycating agents) up to 34-fold 

compared to animals fed a low glycemic-index diet [17]; 

however, this remarkable observation has been neither 

confirmed nor refuted in other laboratories studying the 

effect of dietary glycemic-index on brain protein 

modification. Notwithstanding this caveat, it reasonable to 

at least consider whether metabolic changes which 

influence aging via a raised potential for MG accumulation 

will, by reacting with dopamine, not only decrease 

dopamine levels in the substantia nigra but also increase the 

likelihood of further mitochondrial dysfunction and 

enhance the generation of those changes which characterise 

PD.   

Although MG is regarded as a potential source of 

protein dysfunction, principally via glycation, it is uncertain 

whether direct MG ingestion can result in its survival and 

transport across the gut wall in sufficient quantities to 

provoke dysfunction [74,75]. In contrast, however, other 

studies have shown that diets containing high levels of 

glycated proteins (produced by MG treatment) can not only 

suppress the lifespan-extending effects of dietary restriction 

in mice [76], but also deleteriously affect memory in older 

humans [77,78].  

Interestingly, there are hints in the literature suggesting 

a link between PD and AGE receptors (RAGEs): RAGE 

ablation or deficiency is protective towards murine 

dopaminergic neurons in a MPTP model of PD [79,80], and 

certain RAGE polymorphisms are associated with either 

susceptibility or protection against PD in Chinese Han 

populations [52]. The flavenoid myricitrin, which has been 

claimed to exert anti-PD activity, also alleviates MG-

induced mitochondrial dysfunction, AGE formation and 

RAGE expression [81]. These findings support the present 

contention that MG may play an important role in PD 

causation.   

That dietary glycated proteins, but not, perhaps, free 

dietary MG [74,75], are reported to be deleterious, raises 

the controversial possibility that intact glycated proteins 

could bind to RAGEs present on cells of digestive tract, 

thereby traverse the gut wall, to enter the enteric nervous 

system and then transfer to the CNS [82,83]. Furthermore, 

it is known that certain misfolded proteins, such as α-

synuclein, can undergo cell-to-cell tranmission, analogous 

to prion proteins [84,85,86]. Whilst such a scenario may be 

regarded as somewhat speculative, these observations raise 

important and possibly alarming questions regarding the 

presence of highly glycated proteins in human diets with 

respect to neurodegenerative conditions, especially given 

recent findings of the effects of dietary glycated proteins on 

memory in elderly humans [78].                
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Aging, proteostatic dysfunction and PD. 

 

Changes in protein quality control (via the 

ubiquitin/proteasomal, autophagic and mitophagic systems, 

together with chaperone proteins etc.) contribute to both 

aging generally and PD in particular [87-90]. Vulnerability 

to proteostatic dysfunction may increase with age due to the 

following scenario. As growth ceases when adulthood is 

approached, the rate of protein biosynthesis declines. It is 

suggested that the synthesis of the many necessary 

proteases, chaperone proteins and other factors required to 

ensure maintenance of protein quality [91], is likely to 

decline co-ordinately with ribosome numbers and overall 

protein biosynthesis rates [92]. (This has been observed in 

the bacterium Escherichia coli – see below). The nascent 

polypeptide-associated complex (NAC) is a eukaryotic 

chaperone protein complex which recognises misfolded 

proteins while still associated with the ribosome; NAC 

normally exists in equimolar levels with ribosomes, binding 

in a 1:1 ratio [93]. Consequently, any decline in the 

synthesis of NAC and other necessary chaperones etc. will 

lead to a decrease in the maximum available activity for the 

recognition and proteolytic elimination of aberrant proteins 

of any origin i.e. those arising because of biosynthetic 

errors, as well as those damaged post-synthetically by ROS 

or glycating agents such as MG. That chaperone proteins, 

e.g. hsc70 and hsp27, can become increasingly glycated 

with age or under hyperglycemic conditions [94,95], as also 

can ubiquitin [17], are further complicating factors which 

will contribute to proteostatic decline [96]. Thus, the 

developmentally-induced relative deficit of proteostatic 

capacity may well explain the increased vulnerability of 

adult organisms to age-related dysfunction, including 

accumulation of altered protein species, as well as increased 

PD risk. This condition would be further exacerbated 

should the homeostatic proteases and chaperone proteins 

themselves be inactivated by endogenous toxic agents such 

as MG. It is interesting to note that the naked mole-rat, a 

rodent which can live for over 30 years, unlike most rodents 

whose maximum lifespan is between 3 and 5 years, does 

not show an age-related decline in intracellular proteolytic 

activity [97].  

Changes in cytosolic proteolytic activity can also 

impact energy metabolism. The enzyme 6-phospho-2-

kinase 2,6-bisphosphatase (Pfkfb3) generates fructose-2-6-

bisphosphate; this enzyme is normally subject to 

continuous proteolytic degradation mediated by the 

ubiquitin/proteasome system, but if proteolysis of Pfkfb3 is 

inhibited, in neurones for example, glycolysis is stimulated 

and oxidative stress is increased, resulting in 

neurodegeneration [98,99]. Explanations of this 

phenomenon include decreased glutathione synthesis and 

increased MG formation due to the increased triose-

phosphate generation [23,100]. Thus, the decline in the 

ubiquitin/proteasomal system, which characterises PD may 

also contribute to increased MG formation in the PD brain. 

Furthermore, in the substantia nigra increased MG 

generation would (as previously mentioned) following 

reaction with dopamine, increase the likelihood of 

formation of ADTIQ, which has been detected in diabetic 

brains, which in turn will damage mitochondria etc. and 

further exacerbate the condition, to promote a self-

reinforcing deleterious cycle of dysfunction [70,101]. 

Changes in mitochondrial proteostasis could play a role 

in both PD and aging [87,88]. Again, developmental 

changes may impact on mitochondrial proteostatic 

function, especially should the rate or frequency of intra-

mitochondrial protein synthesis decline as organism or 

organelle growth rate decreases. It has been clearly 

demonstrated that the Lon protease is partly responsible for 

the selective elimination of damaged proteins within 

mitochondria and whose expression is linked with 

mitogenesis. However, the activity of this protease has been 

shown to decline with age in a variety of model aging 

systems and the Lon protein is itself subject to oxidant-

induced inactivation [102,103]. It has also been claimed 

that loss of mitochondrial proteolytic activity can have 

deleterious effects upon cytosolic proteasomal activity 

[104,105], thereby illustrating the interdependence of the 

components of the cellular proteostatic apparatus, although 

details of the mechanism responsible are not fully 

understood. Dysfunction or knock down of Hsc70-

5/mortalin, which plays a role in mitogenesis and 

mitochondrial proteostasis, is lethal to dopamine-producing 

neurones in a Drosophila model of PD [106]. A possible 

relationship between mitochondrial ribosome numbers and 

proteostasis is shown by the protein humanin, a putative 

translation product of mitochondrial 16S ribosomal RNA, 

which appears to suppress apoptosis, delay diabetes and 

inhibit amyloid-beta peptide toxicity [see 107 and refs 

therein].           

It may be relevant to note in the bacterium Escherichia 

coli (bacteria being evolutionary precursors to 

mitochondria) it was found that organism growth rates 

strongly influenced constitutive ability to degrade aberrant 

polypeptide species in an exponential manner: constitutive 

proteolytic activity towards abnormal proteins 

approximately squared as growth rates doubled [108], as do 

ribosome numbers. Should this relationship hold for 

eukaryotic cells in either or both the cytosolic and 

mitochondrial compartments, it follows that, as growth 

rates or mitogenesis decline as adult size is approached, 

maintenance of proteostasis will be strongly influenced by 

previous cellular history (i.e. protein synthesis rate) and the 

half-lives of the components of the proteostatic apparatus, 

thereby creating a delayed decline in proteolytic activity. 

Such a hysteresis-like phenomenon could help to explain (i) 

the extended latency of many age-related conditions, 
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including PD, where altered proteins rarely accumulate 

during periods of rapid growth, but do so when growth has 

essentially ceased, and (ii) why increased aerobic activity 

which in turn induces mitogenesis is frequently beneficial 

by delaying age-related dysfunction.  

 

Endogenous control of MG-mediated damage  

 

It is argued above that MG may play important causal roles 

in both aging and PD, and that increased MG formation 

may occur as a consequence of chronic excessive glycolysis 

resulting from intake of high glycemic-index diets and/or 

compromised mitochondria-mediated ATP synthesis 

inducing a compensatory increased glycolytic flux to 

maintain ATP levels. In the event of increased MG 

formation, cells normally possess a defence apparatus, the 

glyoxalase system, which eliminates the reactive 

bicarbonyl converting it to d-lactate [see 28 for 

authoritative review]. However, it has been shown that 

glyoxalase activity declines with age [20,109], while 

lowered glyoxalase activity promotes mitochondrial 

dysfunction, accelerates aging and decreases lifespan in C. 

elegans, whereas upregulation is protective towards 

mitochondria and increases lifespan [64]. Defects in the DJ-

1 gene are known PD risk factors, and a member of the DJ-

1 superfamily whose expression is controlled by DJ-1, has 

recently been shown to catalyse the deglycation of MG-

modified proteins [58]. 

Another possible and naturally-occurring protective 

agent may be the dipeptide carnosine (beta-alanyl-L-

histidine). Not only can carnosine protect proteins against 

MG-mediated modification and inhibit the cross-linking of 

MG-modified protein with a normal polypeptide in model 

systems [110,111], but it can delay senescence in cultured 

cells [112], and inhibit growth of tumour cells [113] most 

likely by interfering with glycolysis [114]. Other studies 

suggest that carnosine exerts anti-oxidant activity 

[115,116], chelates toxic metal ions [117,118] and is 

protective towards a number of reactive sugars and 

aldehydes such as glucose, fructose, ribose, 

malondialdehyde, acetaldehyde, formaldehyde, 

dihydroxyacetone [119-122] and 4-hydroxy-nonenal [123]. 

By scavenging MG carnosine could also conceivably 

suppress generation of the neurotoxin ADTIQ [124]. 

Carnosine is subject to degradation into its constituent 

amino acids by serum and cellular carnosinases, CNDP1 

and CNDP2 respectively [125-128]. However, it is 

interesting to note that brain carnosinase activity increases 

with age [129] while in PD brains overexpression of 

substantia nigra CNDP2 has been reported, compared to 

normal controls [130].      

Animal studies indicate that carnosine is beneficial 

towards senescence-accelerated mice [131] and may have 

therapeutic potential where deleterious aldehydes such as 

MG appear to be important in age-related pathologies [132] 

such as diabetes [127,133,134], diabetic kidney disease 

[134-136], atherosclerosis [137-139] and cataractogenesis 

[140-144] as well as models of stroke [145-148], 

Alzheimer’s disease [149-151] and PD [152-154].   

A number of double-blind, placebo-controlled dietary, 

supplementation studies have shown that carnosine 

improves aspects of brain function in human subjects. For 

example, behaviour was improved in autistic spectrum 

children [155], cognition was improved in schizophrenic 

patients [156], exercise performance and quality of life 

were improved in chronic heart disease patients [157] and 

there was a significant improvement in cognition in Gulf 

war disease veterans [158]; elderly patients fed carnosine 

plus the related peptide ansererine also showed improved 

cognition [159].  These observations imply that the 

presence of serum carnosinase is not necessarily an 

impediment to carnosine’s potential efficacy, at least as far 

as the brain is concerned. Indeed, manipulation of cellular 

carnosine levels by either enhancing dipeptide synthesis or 

suppression of carnosinase activity could be fruitful areas 

of enquiry.                   

       

Concluding remarks. 

 

Homeostatic dysfunction (e.g. in proteostasis and 

mitochondrial maintenance) contributes causally to aging 

and related pathologies such as PD. Indeed, it has been 

shown that fibroblasts obtained from PD patients possess 

proteolytic and bioenergetic deficits [26].  It is possible that 

mitochondrial dysfunction (of any origin) may result in 

increased glycolytic activity to compensate for the decline 

in ATP generation, which will in turn increase the potential 

for generation of the triose-phosphates glyceraldehyde-3-

phosphate and dihydroxyacetone-phosphate and their 

decomposition product MG. Alternatively, excessive 

glycolytic activity, perhaps induced by high glycemic-

index diets, may increase MG formation, especially in 

erythrocytes, which then, following secretion, promotes 

mitochondrial dysfunction in various tissues thereby 

creating a deleterious self-reinforcing cycle of dysfunction, 

especially if glyoxalase activity is insufficient to eliminate 

the increased MG formation. Consequently, the rates at 

which endogenous toxins, such as MG and its triose-

phosphate precursors, as well as endogenous protective 

agents (e.g. glyoxalase and carnosine) are either generated 

or removed, need to be carefully regulated if organism 

viability is not to be compromised.   

The degree of age-related vulnerability varies 

somewhat between tissues and individuals, most probably 

due to differences in development and metabolism, 

environmental effects, including diet and life-style choices, 

as well as genetic influences, otherwise we would all 

submit to the same age-related disease at the same time. 
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And, as pointed out in the present piece, regulation of the 

common pathway for provision of energy and metabolic 

intermediates (i.e. glycolysis) and possibly the ingestion of 

glycated proteins, as well as any accompanying 

developmentally-related decrease in proteolytic activity, 

are important for maintenance of viability: homeostasis 

must be maintained to prevent accumulation of MG and 

other potential glycating agents (e.g. triose-phosphates) and 

their possible participation in the development of age-

related disorders such as PD. (See Table 1 for concise 

summary).  

 

Table 1. Summary of factors which may either provoke or ameliorate age-related changes which 

contribute to Parkinson’s disease onset 

 

Possible common causal factors or processes to Parkinson’s disease and aging 

 

Endogenous synthesis of methylglyoxal (MG): possible causes 

        Excessive glycolysis 

        High glycemic index diet 

        Inactivation of triose-phosphate isomerase 

        Decline of MG-scavenging or MG-eliminating processes 

 

Effects of MG include 

        Mitochondrial dysfunction 

        Proteostastic dysfunction 

        Protein cross-linking 

        Protein AGEs 

        Formation of ADTIQ (neurotoxin) 

 

Increased intake and possible effects of dietary protein-AGEs 

        Reaction with RAGEs in gut wall 

        Cell to cell transmission to CNS (??) 

        Induction of cognitive dysfunction (??) 

 

Possible ameliorative strategies towards aging and PD 

        Decreased glycolysis 

        Increased mitochondrial function 

        Low glycemic index diet 

        Increased intake or synthesis of carnosine (an anti-glycating/MG-scavenging agent). 

        Increased intake of leafy plant tissues containing anti-glycating/MG scavenging agents.  

        Raised glyoxalase activity. 

 

  

This idea, in a more general sense, was most certainly 

better put, more than a quarter of a century ago, by the 

eminent cell-biologist and gerontologist Leonard Hayflick 

[160], who made the following comments about aging and 

its causation. Hayflick wrote “Why do we age?” may be the 

wrong question. The right question may be “Why do we 

live as long as we do”? Hayflick also prefaced his piece by 

two quotations: “The constancy of the milieu interieur is 

the condition for a free life” – Claude Bernard” and “The 

inconstancy of the milieu interieur is the condition for the 

finitude of life –  George Sacher”.  Much recent research 

confirms Hayflick’s prescience. While there are many ways 

of “getting dead”, those processes which maintain 

homeostasis are likely to be important for delay of age-

related pathology and aging generally.          
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