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Abstract: Irisin is a myokine with potential anti-obesity properties that has been suggested to increase
energy expenditure in obese patients. However, there is limited clinical information on the biology of
irisin in humans, especially in morbidly obese patients undergoing bariatric surgery. We aimed to
assess the association of circulating irisin concentrations with weight loss in obese patients undergoing
bariatric surgery. This was a pilot, single-centre, longitudinal observational study. We recruited
25 morbidly obese subjects who underwent Roux-en-Y gastric bypass surgery (RYGBP), and blood
samples from 12 patients were taken to measure serum irisin concentrations before, and one and nine
months after surgery. Their clinical characteristics were measured for one year. The preoperative
serum irisin concentration (mean 1.01 ± 0.23 µg/mL, range 0.73–1.49) changed bidirectionally one
month after RYGBP. The mean concentration at nine months was 1.11 ± 0.15 µg/mL (range 0.92–1.35).
Eight patients had elevated irisin levels compared with their preoperative values, but four did
not. Elevations of irisin levels nine months, but not one month, after surgery, were associated
with lower preoperative levels (p = 0.016) and worse weight reduction rates (p = 0.006 for the
percentage excess weight loss and p = 0.032 for changes in body mass index). The preoperative
serum irisin concentrations were significantly correlated with the percentage of excess weight loss
for one year (R2 = 0.612; p = 0.04) in our study. Our results suggest that preoperative circulating
irisin concentrations may be at least in part associated with a weight loss effect of bariatric surgery in
morbidly obese patients. Further large-scale clinical studies are needed to ratify these findings.
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1. Introduction

Obesity is one of the most concerning health problems in the world [1]. In addition to
causing type 2 diabetes mellitus, it triggers certain forms of cancer, respiratory complications, and
cardiovascular diseases, which lead to high rates of mortality and morbidity [2]. Obesity is a state of
excess adiposity coupled with adiposopathy, which provokes chronic inflammation and dysregulation
of energy homeostasis [3].
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Brown adipose tissue (BAT) and the browning process—white-to-brown adipocyte
transdifferentiation—are present in adult humans [4–8]. Adipocytes were formerly classified into
two types: fat-storing white adipocytes and thermogenic brown adipocytes. White adipocytes store
triglycerides and fatty acids with a very few mitochondria and secrete a variety of adipokines such
as leptin [9,10]. In contrast, brown adipocytes are active energy consumers containing many small
lipid droplets and abundant mitochondria [11,12]. BAT has been recognized as a potential target for
treating obesity and metabolic diseases by promoting energy expenditure. Prolonged thermogenic
stimulation, exercise, chronic adrenergic stimulation, cardiac peptides, adipokines, myokines, and
hepatokines have been identified as factors that can induce the browning process [13].

Irisin is a small peptide that is cleaved from the fibronectin type III domain 5 (FNDC5), a type I
transmembrane protein predominantly existing in skeletal and cardiac muscles, and is secreted into the
circulation [14]. As an exercise-regulated myokine, irisin is thought to play a role in exercise-induced
browning of white adipose tissue and in promoting mitochondrial biogenesis or metabolic gene
expression in skeletal muscle [14–19]. Although irisin has attracted more attention than other factors
because of its therapeutic potential as a direct signal to intramuscular fat, the role of circulating
irisin is equivocal, as it varies with different physiological or experimental conditions, particularly in
humans [20–24].

Bariatric surgery has shown effective body-weight reduction in morbidly obese patients along
with reduced mortality [25]. The effects of bariatric surgery are supposed to be associated with humoral
factors and molecular changes in multiple organs including the gastrointestinal tract and adipose
tissues, as well as improvements in body composition, energy expenditure, and even neuronal signals
controlling appetitive behaviour [26–28].

The aim of this work was to advance the clinical understanding of the role of irisin in patients
undergoing bariatric surgery through a prospective pilot study and to generate hypotheses for the
association between the circulating levels of irisin and weight reduction and/or the metabolic effects
of such surgery.

2. Materials and Methods

2.1. Study Design and Subjects

The eligible population of this prospective cohort study was obese patients who agreed to
participate in the research and who underwent standard laparoscopic Roux-en-Y gastric bypass
surgery (RYGBP) [29] from July 2011 to September 2013 at the Obesity Center, Inha University Hospital
in Incheon, South Korea. All agreed to surgical treatment for obesity and were informed about the
related morbidity. Informed consent was obtained from all individual participants included in the
study. Among the 25 patients, we had to exclude some because of missing routine follow-ups (n = 4),
lack of research samples taken at the determined time (n = 7), and spontaneous pregnancy after the
RYGBP (n = 2). Twelve patients were included in the final study. All procedures performed during this
study were in accordance with the ethical standards of the national research committee and with the
1964 Helsinki declaration and its later amendments. The Institutional Review Board of Inha University
Hospital approved the study (2009-1473).

2.2. Clinical Assessment and Collection of Research Samples

A trained nurse at the obesity center measured the anthropometric data. Computed tomography
(CT) scans and dual-energy X-ray absorptiometry (DEXA) were performed twice, before and one year
after RYGBP. Before surgery, blood samples were obtained from the patients following a 12 h fast
for the measurement of metabolic parameters. Patients visited the obesity center 2 weeks, 1, 3, 6, 9,
and 12 months after RYGBP. Anthropometric and metabolic parameters were measured every three
months. The blood samples were centrifuged at room temperature at 2000 xg for 10 min immediately
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after sampling, and the plasma samples were stored in microcentrifuge tubes at less than −20 ◦C
until analysis.

2.3. Assessment of Circulating Irisin

Serum concentrations of irisin (a fragment of FNDC5) were measured using commercial
enzyme-linked immunosorbent assay kits (RAG018R, BioVendor Inc., Candler, NC, USA) according to
the manufacturer’s instructions. The lowest level of irisin that can be detected by this assay is 1 ng/mL,
and the assay range is 0.001–5 µg/mL. The intra- and inter-assay coefficients of variance are 5–8% and
8–10%, respectively.

2.4. Statistical Analysis

Data are presented as the mean ± standard error, and nonparametric methods were applied. The
Mann–Whitney U test was used for comparing mean values between groups. The Wilcoxon matched
pairs signed-rank test, Friedman’s F test, or two-way repeated measures analysis of variance (RM
ANOVA) were used to compare anthropometric variables, metabolic parameters, and serum irisin
concentrations among the repeated measures, respectively. Spearman’s rank correlation test and linear
regression analysis were employed to assess the associations between irisin levels and anthropometric
or metabolic parameters. We used SPSS (version 19.0 for Windows; SPSS Inc., Chicago, IL, USA) for all
statistical analyses, and p < 0.05 was regarded as statistically significant.

3. Results

3.1. Longitudinal Changes in Clinical Characteristics

The preoperative characteristics of the 12 study subjects, including their anthropometric variables
and laboratory data, are listed in Table 1. All were morbidly obese with a mean body mass index (BMI)
of 40.6 ± 4.2 kg/m2 (range 30.2–45.9) and a mean age of 37.6 ± 10.7 years (range 25–56). Among them,
five were men, three had diabetes mellitus, and eight had taken antihypertensive medication.

Table 1. Longitudinal changes in clinical characteristics after Roux-en-Y gastric bypass surgery (RYGBP)
(n = 12).

Pre 3 Months 6 Months 9 Months 12 Months p-Value a

Weight (Kg) 114.4 ± 18.7 92.8 ± 14.1 86.3 ±12.6 83.5 ± 13.2 80.5 ±15.0 <0.001
BMI (kg/m2) 40.6 ± 4.2 32.9 ± 3.3 30.6 ± 3.0 29.6 ± 3.24 28.1 ± 3.49 <0.001

AC (cm) 119.0 ±14.3 106.3 ± 12.4 100.4 ± 10.9 97.2 ± 10.3 94.7 ± 11.6 <0.001
%EWL NA 52.7 ± 17.9 66.8 ± 16.4 73.1 ± 19.3 79.4 ± 19.6 <0.001

SBP (mmHg) 136.4 ±21.6 121.4 ± 6.7 124.6 ± 9.6 119.3 ± 10.0 117.2 ± 11.1 0.006
DBP (mmHg) 87.2 ± 16.4 75.6 ± 5.7 77.3 ± 6.4 75.2 ± 8.0 74.4 ± 10.2 0.001
TG (mg/dL) 181.3 ± 135.6 108.7 ± 52.4 105.3 ± 53.0 85.6 ± 26.7 84.3 ± 25.7 <0.001

HDL (mg/dL) 42.6 ± 10.1 41.7 ± 9.2 50.6 ± 11.9 53.7 ± 13.3 55.6 ± 12.8 <0.001
Fasting glucose (mg/dL) 103.7 ± 20.7 94.2 ± 14.4 93.4 ± 10.6 92.8 ± 11.1 90.3 ± 11.1 0.055

HbA1C (%) 6.19 ± 1.04 5.45 ± 0.48 5.35 ± 0.41 5.39 ± 0.37 5.27 ± 0.38 <0.001
Fasting insulin (µU/mL) 18.2± 7.04 10.9 ± 3.8 10.7± 5.4 9.8± 2.8 10.1 ± 3.1 0.002

a Friedman’s F test. Abbreviations: Pre; preoperative baseline level; NA, not available; BMI, body mass index; AC,
abdominal circumference; %EWL, percentage of excess bodyweight loss; SBP, systolic blood pressure; DBP, diastolic
blood pressure; TG, triglyceride; HDL, high-density lipoprotein; HbA1C, hemoglobin A1C.

One year after RYGBP, the mean weight loss was 33.8 ± 10.5 kg, with a 29.5 ± 8.1% loss of
body weight, and a 79.4 ± 19.6% excess weight loss (%EWL). The weight loss during the first three
months was 21.5 ± 5.4 kg (67.7 ± 19.8% of total body weight reduction) with 52.7 ± 17.9 %EWL.
For whole-body DEXA (dual-energy x-ray absorptiometry) when analysing body composition, the
preoperative total fat percentage was 48.1 ± 7.5%, with 55.0 ± 11.4 kg of total fat mass (TFM), and this
reduced to 33.6 ± 8.1% with 27.0 ± 8.3 kg of TFM one year postoperatively. Lean body mass (LBM)
decreased from 57.5 ± 12.4 kg to 51.3 ± 12.2 kg one year postoperatively. In CT measurements for
abdominal fat distribution, the preoperative total fat area (TFA) of 691.7 ± 220.5 cm2 and visceral fat
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area (VFA) of 183.5 ± 80.4 cm2 decreased to 311.1 ± 133.6 cm2 and 45.7 ± 29.5 cm2, respectively. Along
with losing body weight and decreasing adiposity, the metabolic parameters improved significantly.
None of the three diabetic patients needed anti-diabetic medication or insulin to control blood glucose
levels from one week to one year after RYGBP.

3.2. Longitudinal Changes in Circulating Irisin Levels

The preoperative circulating serum irisin concentration was 1.01 ± 0.23 µg/mL, with a range of
0.73–1.49 µg/mL. The concentrations altered bidirectionally in this group one month after RYGBP,
within a range of 0.55–2.51 µg/mL. This dispersal disappeared nine months after RYGBP, with a mean
value of 1.11 ± 0.15 µg/mL and a range of 0.92–1.35 µg/mL (Figure 1).
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Figure 1. Changes in preoperative (Pre) circulating serum irisin concentrations with respect to the
levels one (1 Mo) and nine months (9 Mo) after RYGBP; p = 0.0528 by Friedman’s F test.

We observed two groups displaying either increases or decreases in irisin levels one or nine
months after surgery, compared with their preoperative levels. At one month, five subjects showed a
mean 0.79 ± 0.66 µg/mL increase in irisin levels and seven had a mean 0.26 ± 0.12 µg/mL decrease,
compared with the preoperative levels. The preoperative irisin levels were not different between
these two groups, although their pattern of alteration showed a significant difference in the two-way
RM ANOVA analysis (p = 0.009), and the mean serum irisin levels at 1 month showed a significant
difference using the Mann–Whitney U test (p = 0.007). Nine months after surgery, eight subjects who
had lower preoperative irisin levels showed a statistically significant elevation in the mean irisin level
of 0.18 ± 0.14 µg/mL, while the other four did not. We observed no significant difference in age, sex
distribution, prevalence of diabetes mellitus, or hypertension medication history when comparing
the two groups with either increases or decreases in irisin levels one or nine months after surgery.
Preoperative irisin levels had a Spearman’s rank correlation coefficient (rho) of 0.524 (p = 0.08) with
irisin levels at nine months after RYGBP. Using Friedman’s F test, there was no statistical difference
among the three time points.

3.3. Changes in Irisin Levels and Weight Reduction

We classified the patients according to their elevation or reduction in irisin levels after RYGBP.
First, we analysed the association of a change in irisin level during the initial month with weight
reduction by subgroup analysis (Figure 2). The seven subjects of the group with decreased irisin levels
one month post-surgery appeared to have higher %EWL three months post-surgery (p = 0.088) than
the group with increased irisin levels; however, the longitudinal one-year changes in %EWL were not
significantly different. The five subjects with increased irisin levels had a higher mean preoperative
BMI than the group with decreased irisin levels (42.9 ± 2.4 vs. 38.9 ± 4.5 kg/m2; p = 0.042), although
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the change in BMI one year post-surgery was not significantly different between the two groups
(p = 0.108).
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Figure 2. Comparison of the body-weight lowering effects of RYGBP during one year between two
groups with increased or decreased irisin levels one month after RYGBP. (A) Changes in %EWL.
(B) Changes in BMI. Blue and red lines represent groups with increased or decreased irisin levels
one month after RYGBP, respectively. No significant differences were found between the groups
(A, p = 0.296; B, p = 0.108 by 2-way RM ANOVA).

Next, we compared weight reduction between the two groups with and without elevated
irisin levels nine months after RYGBP (Figure 3). The mean preoperative irisin level in the first
group (0.89 ± 0.09 µg/mL) was significantly lower than in the group with an unchanged level
(1.26 ± 0.22 µg/mL; p = 0.016). The second group, with a higher preoperative irisin level (n = 4) had a
significantly higher %EWL (p = 0.006) compared with the group with an elevated postoperative level
but a lower preoperative irisin level (n = 8).
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Figure 3. Comparison of the body-weight lowering effect of RYGBP one year after surgery between
groups with or without elevated irisin levels detected nine months after RYGBP. Black and green lines
represent groups with or without elevated irisin levels nine months after RYGBP, respectively. (A) The
%EWL in the group without an elevated irisin concentration was larger than in the group with elevated
irisin levels (p = 0.006 by two-way RM ANOVA). (B) The decrease of BMI in the group without an
elevated irisin level was significantly greater than in the group with an elevated level (p = 0.032 by
two-way RM ANOVA).
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3.4. Association of Preoperative Irisin Levels with Weight Reduction after RYGBP

To analyse the association of preoperative serum irisin levels with weight reduction after RYGBP,
we evaluated preoperative irisin levels and %EWL. As shown in Figure 4, preoperative irisin levels
were correlated with %EWL at three months (β = 0.573; R2 = 0.478; p = 0.069, Figure 4A) and one year
(β = 0.576; R2 = 0.612; p = 0.04, Figure 4B) after RYGBP, although the significance levels were marginal.
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4. Discussion

In this pilot prospective observational study, we measured circulating irisin concentrations at
three time points—preoperatively, at one month, and at nine months after RYGBP—and analysed
their associations with weight reduction. We decided to measure the irisin concentrations on, before,
and at one and nine months after surgery because we hypothesized that signals from muscles could
contribute to the weight reduction effects of bariatric surgery and that surgery could have an influence
on the signaling of muscles. We assumed that abrupt alteration of muscle metabolism and gut signaling
induced by surgery could have an influence on myokines like irisin. Circulating irisin levels could
reflect muscle metabolism or muscle mass, and hence, circulating irisin levels before and one and
nine months after RYGBP could be an indicator of muscle function before, during, and after weight
reduction by RYGBP. In the first three months after RYGBP, patients experienced very low energy
intake and muscle wasting accompanying fast weight reduction; irisin levels at one month after surgery
may represent this period. Between 6 and 12 months after RYGBP, most patients’ energy intake and
body weights had stabilized, and irisin levels nine months after RYGBP may reflect this period.

Although the number of samples was limited, our data showed interesting findings. First, we
found that serum irisin concentrations changed bidirectionally one month after RYGBP. Thus, seven
patients with decreased irisin values one month post-surgery tended to have a higher %EWL three
months post-surgery. Second, eight of the patients who showed lower preoperative irisin levels
and elevated levels nine months after RYGBP had smaller weight reduction than the four patients
who showed no postoperative increase. Third, by nine months, the bidirectional changes in irisin
levels observed at one month post-surgery returned to a similar range as before surgery. Fourth, the
preoperative irisin levels were significantly associated with %EWL by regression analysis.

The patients who underwent RYGBP experienced loss of appetite and indigestion for a few
months and recovered slowly over time. One month after RYGBP is usually a period of severe negative
nitrogen balance that might influence muscle physiology and metabolism [30]. Because of the very low
energy intake and malabsorption in this early postoperative period, this negative nitrogen balance is
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accompanied by rapid losses in weight and LBM. Energy deprivation and protein deficiency result in
decreased protein synthesis in skeletal muscles during this period [31,32]. Unexpectedly, the alteration
of irisin one month post-RYGBP occurred bidirectionally in this group. Five of the subjects showed
irisin values that increased by 88.9 ± 75.9%, ranging from 1.04 to 2.51 µg/mL, while seven of them had
irisin levels that decreased by 23.0 ± 7.1%, in a range of 0.55–1.16 µg/mL. This dispersal in the results
was reversed when the patients had recovered from energy depletion and negative nitrogen balance,
and serum irisin levels nine months after surgery returned to similar ranges as seen preoperatively.
A prolonged negative nitrogen balance is usually associated with lower caloric intake, and this could
have caused the greater weight reductions in the four patients who did not show elevated irisin levels
nine months post-surgery.

Previous studies [33–39] reported inconsistent results on the relationship between circulating
irisin and body mass. One study [35] reported that circulating irisin concentrations in bariatric patients
decreased along with LBM loss six months after surgery. However, another study [36] reported
opposing results among morbidly obese subjects preparing for bariatric surgery who had lower
serum irisin levels than non-obese subjects. In other studies, irisin levels were not proportional to
BMI or LBM [24,37]. After losing weight and relieving metabolic burdens, patients subjected to
bariatric surgery tended to have physically active lifestyles, and their muscular fitness improved
with physical training, which could prevent the reduction in irisin levels even if they had lost LBM.
Circulating irisin levels might reflect not only LBM and BMI but also lifestyle interventions, including
adjustments to nutritional balance and increased muscle fitness [38]. A negative nitrogen balance
is usually concomitant with a lower caloric intake in patients after bariatric surgery, and this could
lead to greater weight reductions and decreased irisin levels. Therefore, detailed measurements of
confounding factors affecting changes in serum irisin levels after bariatric surgery are needed to
interpret these variations over time, particularly in the subacute postoperative period (e.g., one month
postoperatively). Morbidly obese patients with similar BMI values have different degrees of muscle
fitness. Therefore, we hypothesize that this could reflect the level of irisin, which in turn could influence
the effects of surgery on weight loss [39–41]. If future studies could confirm that serum irisin levels
reflect muscle fitness along with muscle mass, this assumption would be valid.

On the other hand, irisin has proven to be related to metabolic parameters and adiposity as not
only a myokine but also as an adipokine in various studies. Circulating irisin levels increased nearly
10% after an average 27 kg of TFM loss (27.0 ± 8.3 kg, 33.6 ± 8.1% of total fat) following bariatric
surgery in our study, while irisin levels in humans were positively correlated with parameters of
adiposity [34,35] and associated with markers of glucose and lipid homeostasis disturbance in obesity
and in patients with metabolic syndrome [39,42]. A recent study reported that human visceral and
subcutaneous adipose tissues in obese patients secrete irisin, and the blocking of irisin gene expression
is related to reduced UCP1 (uncoupling protein 1) expression and enhanced adipogenesis [43].
Therefore, we could not exclude the possibility that differential acute loss of adiposity in our patients
caused the bidirectional alteration of irisin concentration one month after surgery.

This prospective observational pilot study had several limitations. The first is the small sample
size, particularly in sub-group analysis. Of the 25 subjects in the eligible population, only 12 met the
enrolment criteria. Since the number of subjects in the sub-groups to compare variables was limited,
we did not conduct a power analysis. Therefore, our results could not conclude the predictive value
of preoperative or postoperative irisin concentration in RYGBP-induced weight reduction, rather, it
could provide basic clinical data for the RYGBP-mediated alteration of irisin and weight reduction.
Second, the heterogeneity of this population should be considered. Obesity has multiple causes, and
the clinical status of obesity is multidimensional. Patients with similar levels of adiposity can have
variable metabolic impairments and obesity-related endocrine dysfunctions. A third limitation is
the variation in the clinical intervention needed by each patient. Medications for inducing further
weight loss or controlling metabolic diseases could influence clinical outcomes. Nonetheless, this study
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has significance as a pilot study to generate a hypothesis on the effect of irisin on the clinical weight
reduction by RYGBP. Further large-scale studies are required to test this hypothesis.

5. Conclusions

Preoperative fasting serum irisin concentration in obese patients who underwent RYGBP, may
be associated, at least in part, with weight reduction after RYGBP in this pilot study. Although the
number of samples was limited, our results suggest that the serum level of irisin before and after
RYGBP could be a predictive biomarker for the weight reduction effects of surgery, which warrants
further clinical studies with a large number of samples.
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