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Abstract

Goal: PET is a relatively noisy process compared to other imaging modalities, and sparsity of acquisition data leads
to noise in the images. Recent work has focused on machine learning techniques to improve PET images, and this
study investigates a deep learning approach to improve the quality of reconstructed image volumes through
denoising by a 3D convolution neural network. Potential improvements were evaluated within a clinical context by
physician performance in a reading task.

Methods: A wide range of controlled noise levels was emulated from a set of chest PET data in patients with lung
cancer, and a convolutional neural network was trained to denoise the reconstructed images using the full-count
reconstructions as the ground truth. The benefits, over conventional Gaussian smoothing, were quantified across all
noise levels by observer performance in an image ranking and lesion detection task.

Results: The CNN-denoised images were generally ranked by the physicians equal to or better than the Gaussian-
smoothed images for all count levels, with the largest effects observed in the lowest-count image sets. For the
CNN-denoised images, overall lesion contrast recovery was 60% and 90% at the 1 and 20 million count levels,
respectively. Notwithstanding the reduced lesion contrast recovery in noisy data, the CNN-denoised images also
yielded better lesion detectability in low count levels. For example, at 1 million true counts, the average true
positive detection rate was around 40% for the CNN-denoised images and 30% for the smoothed images.

Conclusion: Significant improvements were found for CNN-denoising for very noisy images, and to some degree
for all noise levels. The technique presented here offered however limited benefit for detection performance for
images at the count levels routinely encountered in the clinic.
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Key points
Question: Can a CNN be reliably used to denoise PET
images and improve image quality for clinical use?

Pertinent findings: This technique offers clear qualita-
tive and quantitative benefits at high noise levels. Some
qualitative benefits were also observed in lower noise
too, but it yielded limited benefits for detectability per-
formance at clinically routine count levels.

Implications for patient care: This approach, and other
deep learning-based methods, might be well suited to
improve current or potentially future protocols yielding
noisy data, e.g., low dose PET for lung screening.

Introduction

Positron emission tomography (PET) is an inherently
noisy imaging modality. Each sinogram projection bin of
a routine PET acquisition contains only a few coincident
events. This situation becomes even more problematic
in very low-count conditions, e.g., low radiotracer dose
[1, 2], short scan time [3], or quick dynamic framing
[4, 5]. The reconstruction task is therefore ill-posed,
and current algorithms seek to recover the true underlying
activity distribution by generating an image representing
the most likely estimate given the measured data. Not-
withstanding the significant improvements to image qual-
ity realized by reconstruction techniques like time-of-
flight [6] and resolution modeling [7], reconstructions of
sparse PET data can still produce images of poor quality
with possibly limited clinical use.

Due, in part, to advances in processing hardware, the
past decade has seen a surge in research focused on ma-
chine learning and artificial intelligence. Deep learning
and convolutional neural networks (CNNs), in particu-
lar, have produced state-of-the-art results in the fields of
object detection [8, 9], classification [10, 11], image seg-
mentation [12, 13], speech recognition [14], and image
generation with adversarial networks [15, 16]. Recent
years have also seen the emergence of Al for various ap-
plications in medical imaging, including organ segmen-
tation [17, 18], image denoising [19-21], and cancer
detection [22].

This work presents an experiment designed to evaluate
the use of CNNs for improving the noise properties of
PET images reconstructed from low-count data in lung
cancer patients. The noise in PET images is generally as-
sumed to follow Gaussian and/or Poisson distributions,
and deep learning is especially well positioned to address
this since the characteristic features of the noise, regard-
less of the assumed model, are inherently learned through
training. Several techniques have previously been applied
successfully for denoising PET images [23-26], to date
however, there are very few studies exploring CNNs which
handle 3D data. Due to the volumetric nature of data, it is
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expected that the performance of CNNs could be im-
proved [27].

The objectives of the current study are: (1) to assess
the performance of a dedicated 3D CNN trained to im-
prove clinical PET images in a wide range of noise con-
ditions, (2) to investigate the benefits and limitations of
this approach in general image quality as well as in le-
sion detection and characterization, and (3) to evaluate
the clinical reading performance in CNN-denoised im-
ages vs. standard clinically used images.

Methods

Convolutional neural network

A convolutional neural network framework, compatible
for 3D data, was developed in C++ and built on the
CUDA deep learning libraries. The network architecture,
seen in Fig. 1, was similar to U-Net [17], with symmetric
contracting (encoding) and expanding (decoding) paths.
The contracting path comprised 6 blocks of 3 convolu-
tion layers followed by a max pooling layer, and the
expanding path comprised 6 blocks of 3 convolution
layers followed by a strided transposed convolution
layer. There was additionally a vertex block with 3 con-
volution layers followed by a strided transposed convolu-
tion layer. To improve training stability and preserve
fine details at higher resolutions, the output of the last
convolution layer in each block on the contracting path
was added directly to the input of the corresponding
resolution block on the expanding path. Instance
normalization [28] was performed before every nonline-
arity. Rectified linear activation functions were used in
all layers except for the output layer, which used no acti-
vation (or normalization)—hence, the range of network
output values was not bounded.

Patient PET data

The CNN was trained with real patient data. The train-
ing data were PET images acquired in a cohort of 31
non-small cell lung cancer patients—nine were selected
for training. All patient data were obtained on a Bio-
graph mCT (Siemens Healthcare Molecular Imaging)
after an uptake period of 60 min and after injection of
2253 + 5.6 (214.6-233.1) MBq of ['*F]-FDG. All data
were acquired in list mode. The patients were scanned
with 1 or 2 bed positions over the torso, for 10 min per
bed, resulting in 132.7 + 57.6 million true counts
(prompts minus randoms) per bed. All patients provided
written consent as required by the NHG Domain Spe-
cific Review Board.

The full PET datasets were used to emulate lower
count levels through random list mode decimation [29]
according to 9 predefined levels: 20, 15, 10, 7.5, 5, 2, 1,
0.5, and 0.25 million trues—independent realizations
were generated at each count level, resulting in
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Fig. 1 The CNN used in this study followed a U-Net architecture with encoding and decoding paths, connected with direct skip-sum layers at

approximately 270 reduced-count datasets for every full-
count set. All images were then reconstructed with
OSEM, corrected for attenuation and scatter and incorp-
orating time-of-flight information and point-response
modeling, for 2 iterations and 21 subsets. For each bed,
the final image matrix was 400 x 400 x 109, with voxel
dimensions 2.0863 x 2.0863 x 2.0313 mm.

Network training

The emulated noisy images, along with their corre-
sponding “ground truth” (full-count) images, made up
the paired supervised training sets. For each network
training epoch, 1600 samples were generated by ran-
domly dividing the training image data into 64 x 64 x
64 volume patches—the noisy slices at the axial ex-
tremes of each bed position were not used for training.
Each 3D patch sample was normalized to zero mean and
unit variance prior to training. These normalization fac-
tors were saved for 2 purposes: to scale the correspond-
ing low-noise output label by the same amounts and to
invert the transformation in the output after network in-
ference. Under this approach, the network only “saw”

data which was already “instance normalized.” This way,
a very noisy input would be mapped to an output with
smaller variance than that of its less noisy correlate, but
after the final scaling, both would be quantitatively ac-
curate. Training was performed using a sample batch
size of 16; the Adam optimizer was used to minimize
the L2-norm (mean squared error) loss. The learning
rate was initialized at 0.01 and decayed by 5% after each
epoch, and L2-norm weight regularization was used.
Prior to training, the data from two patients were re-
moved from the training population for validation. The
CNN was trained with the images from all count levels
and was tested continually on the validation set to moni-
tor the training performance—training stopped when
the loss curve within the validation set was observed to
flatten.

Clinical evaluation

PET image quality and lesion detection tasks were devel-
oped and presented to 3 physicians with image reading
experience (3, 3, and 9 years). The acquisition data from
twenty patients (not used for training) were selected for
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the viewing tasks and reconstructed once with the full
data, i.e., the ground truth image, and twice at each of
the reduced count levels 20, 10, 5, 2, and 1 million trues,
which were equivalent to 90, 45, 23, 9, and 5s scan
times. For every reduced count reconstruction, one
image was denoised by the trained CNN and the other
underwent conventional Gaussian smoothing by a 3-mm
FWHM filter—this approach yielded 11 images per
patient. The full-count images were also smoothed by a
3-mm filter. Throughout this manuscript, the images
post-processed only by Gaussian smoothing are referred
to as “original.” For the purposes of this study, only 1
smoothing filter was investigated—this was regarded by
our physicians as a good compromised between noise
reduction and resolution.

Prior to the observer evaluations, the capacity of our
trained CNN to recover lesion contrast was investigated
and quantified. Sixty-five lesions were identified and de-
lineated on the full-count PET images by 40% max-
threshold contouring, resulting in 65 VOIs ranging in
volume from 0.2 to 61.5cm® (mean 4.6 + 9.3, median
1.3cm®). The voxel statistics within these VOIs were
compared between the CNN-denoised and the smoothed
original image sets for every count level.

For the qualitative evaluation, each observer read the
total pool of 220 images, rating each on a 4-point scale
according to 3 criteria: image noise, image sharpness,
and general image quality—this scheme was similar to
previously published criteria [30]. Additionally, for each
patient full-count image, the observer selected locations
of liver, lung, and blood pool (left ventricle or aorta) to
be used subsequently for volume-of-interest (VOI) ana-
lyses, in which spherical VOIs, of radius 10 mm for liver
and lung and 5mm for blood pool, were defined and
propagated throughout the reduced-count images for
each patient.

For the lesion detection evaluation, 12 (of the 20) pa-
tients were included in the task. These patients were in-
cluded in the detection task because they were identified
on the full-count images as having isolated and clear
pathological foci within the mediastinum and/or lung
parenchyma.

The physicians were instructed to locate and rank, also
on a 4-point scale, the detectability of every suspicious le-
sion in each of the 132 image volumes—the display was
continuously updated to highlight all previously selected le-
sions within the current subject so as to avoid repeated se-
lections. Performance in each reduced-count image was
evaluated relative to the performance in the corresponding
full-count image and reported in terms of true positive rate
(TPR), false positive rate (FPR), false negative rate (FNR),
positive predictive value (PPV), and sensitivity. The area
under the receiver operating characteristic curve (ROC-
AUC) was also calculated from the detection ratings.
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Results

Lesion contrast

The presented methods were evaluated within all emu-
lated noise levels. After the network training converged
within the validation set, the CNN demonstrated the
capacity to learn to reproduce the latent distributions
from which the noisy data originated. This image
denoising manifested not only as a smoothing effect, but
as local image regularization, i.e., relatively uniform re-
gions with clear anatomical boundaries. The quality of
the CNN-denoised images appeared equal or superior to
their corresponding original images at every count level;
as seen in Fig. 2, general anatomical structures were
more clearly defined.

Although the CNN quantification of large lesions was
generally accurate, this was not found to be the case for
small lesions, especially in noisy data where the network
imposed a greater degree of suppression of high spatial
frequencies. For the CNN-denoised images, overall le-
sion contrast recovery was 60% and 90% at the 1 and 20
million count levels, respectively; when including only
those lesions smaller than 1 cm?®, these numbers dropped
to 41% and 85%. These effects were less pronounced in
the original image set, and the VOI measurements for
all count levels are displayed in Fig. 3—the data are
grouped by volume to illustrate the effect of lesion size.
As seen here, when lesion size decreased and image
noise increased, contrast recovery suffered relative to the
original images. This however, as reported in the “Lesion
detection” evaluation section below, did not directly
translate to poorer lesion detectability, which is more
closely related to lesion signal-to-noise, rather than sim-
ply contrast [31].

Figure 4 shows the activity profile for a small lesion in
the lung parenchyma for 2 count levels, 2 and 20 mil-
lion. In this case, neither CNN-denoised image was able
to completely recover the contrast of the lesion.

Qualitative evaluation

Regarding the clinical reading evaluation, three readers
completed both phases of the task, and similar perform-
ance trends were observed among them. The results of
all readers were pooled within each count level, aver-
aged, and presented here, with inter-reader variability
noted and any remarkable differences highlighted in the
discussion. As seen in Fig. 5, with the exception of image
sharpness, the CNN-denoised images were generally
ranked equal to or better than the Gaussian-smoothed
images for all count levels, with the largest effects ob-
served in the lowest-count image sets. For example, at
the 1 million count level, the average general image
quality and image noise ratings were 1.26 and 1.25 for
the original images and 2.37 and 2.67 for the CNN-
denoised images, respectively.
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Fig. 2 After training completed, the CNN produced outputs with improved noise properties, relative to the original image volumes—inter-voxel
spatial variance was reduced and anatomical boundaries were generally preserved

Noise reduction

The perceived improvements in image quality were largely
dependent on the levels of image noise, i.e., the linear co-
efficient of determination for the rating differences in gen-
eral image quality was 0.87 between those of image
sharpness and 0.94 between those of image noise—this
was also reflected in the VOI analyses. Figure 6 shows the
VOI means and standard deviations, along with the corre-

sponding VOI measurement bias relative to the full-count cases.

image sets. The VOI pixel variance was significantly re-
duced for all count levels in the CNN-denoised image set,
especially in the noisiest data, e.g., at the 1 million count
level, the mean standard deviation of the liver VOIs was
1.95 in the original images and 0.43 in the CNN-denoised
images. The VOI measurement biases were somewhat
similar, with the CNN-denoising images demonstrating
slightly lower bias and corresponding variance in most
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Fig. 3 Mean SUV measurements in VOI's contoured for 65 lesions, grouped by those with volumes larger and smaller than 1 cm? The CNN had
difficulty to accurately quantify lesion SUVs, and this effect was amplified for small lesions in noisy data. Error bars denote the corresponding
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Fig. 4 Example showing a small lesion (0.3 cm?) where its uptake was not fully recovered by the CNN

Lesion detection

Notwithstanding the reduced lesion contrast recovery in
noisy data reported above, as seen in Fig. 7, the CNN-
denoised images also yielded better lesion detectability
in low count levels, i.e., data comprising 5M or fewer
counts. For example, at 1 million true counts, the aver-
age TPR was around 40% for the CNN-denoised images
and 30% for the smoothed images. However as expected,
as the true-count level increased, the relative perform-
ance in the CNN-denoised images waned, and the ori-
ginal images yielded better performance for the highest
count levels. At 20 million true counts, average TPR and
ENR were 60% and 35% for the CNN-denoised images
and 70% and 20% for the original smoothed images. Sen-
sitivity was strongly correlated with TPR. FPR and PPV
improved somewhat with true count level but were less
sensitive to post-processing method.

Additionally, the ratings of every detection were used
as a surrogate for observer confidence, by which receiver
operating characteristic (ROC) analyses was performed
[32]. Regarding the area under the ROC curve (AUC) in
Fig. 8, only slight improvement was found overall for the
CNN-denoised images (0.02)—the detection confidence
ratings were generally higher within this set.

Discussion

This work investigated the capacity for a 3D CNN to im-
prove PET image quality and evaluated its impact within
a clinical task-based framework—it found several advan-
tages of CNN-denoised images over conventional
Gaussian-smoothed images, especially at count levels
below 5 M counts.

There are several novel aspects of this study. The ma-
jority of other related work has been performed in 2D
since processing times are faster, fewer GPU memory is-
sues are encountered, and the availability of pretrained
2D networks provides additional options in the choice of
training objectives [23-26]. However, volumetric 3D
PET data are the medical standard, and inclusion of the
additional dimension of data was expected to improve
training stability and robustness of the network perform-
ance [27]. Furthermore, to our knowledge, no previous
work has evaluated the impact of CNN denoising within
the context of a physician reading task—to this end,
many groups have reported substantial improvements of
the technique [24, 25], but few have noted any potential
pitfalls. Finally, it was determined important from the
beginning, to perform the experiment across a wide
range of noise conditions to cover all realistic situations
and to understand the limits of any potential benefits.

Consistent with previous studies [25, 26, 33], the find-
ings presented here suggest that image quality, in terms
of interpixel spatial variance and measurement reprodu-
cibility, were significantly improved. However, we found
that these findings might not always translate directly
into clinical improvements—the uptake in small foci was
sometimes not accurately quantified, and lesion detec-
tion and localization realized less benefit. For example,
in extremely high noise, the CNN-denoised images
yielded better detection performance. At routine noise
levels, however, performance suffered, and this might be
attributed to the contrast recovery in small lesions. The
network used in this study was trained with the L2-
norm loss function, which is known to introduce slight
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blurring in the network output [16, 34, 35] and may be
responsible to some degree for the limited recovery of
lesion contrast. However, relative to other imaging mo-
dalities, PET already has intrinsically poor spatial reso-
lution, and the comparison images were smoothed after
reconstruction anyways, and so this argument might not
account for the degree of inaccuracies observed. We sur-
mise that the additional reason for the limited contrast
recovery is that the network learned to suppress high
frequencies in the input image data over a range of noise
levels. For smaller lesions and increased background
noise, it becomes difficult for the network to differenti-
ate lesion signal from noise. We included in this study
many noise levels to cover all realistic situations, but
training with data specific to the target noise level could
focus the objective and improve network performance.
The introduction of a coregistered, anatomical correlate
as an additional input to define morphological boundar-
ies could also help to improve quantification accuracy.

Regarding the performance in the reading task, the
overall trends among the physicians were similar. We
did, however, notice that the most experienced of the
three readers never ranked the CNN-denoised images
with the highest rating, even at the highest count levels.
This may be because the impressions of the images were
not consistent with the previous clinical experience. This
was also evident in the lesion detection task of the same
observer, which showed lower performance in the high-
count, CNN-denoised images relative to the other 2
physicians. This point highlights another important con-
sideration concerning the clinical adoption of new tech-
nology, namely, there might be a transitionary period
needed to become accustomed to the new appearance of
otherwise familiar images. We also evaluated the rela-
tionship between detectability and lesion SNR; the latter
was generally higher in all images denoised by the CNN.
In the noisiest images, the lesion SNR was well corre-
lated with improved detectability. However, in the
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higher-count images, it was observed that CNN-
denoising also yielded higher lesion SNR measurements
but lower detectability.

Notwithstanding potential pitfalls of using deep learn-
ing techniques to improve PET image quality mentioned
here, we expect that this class of processing methods will
still find its place in the medical setting. Specifically, it
could prove useful for tasks involving noisy data, where
absolute uptake quantification is unnecessary. One such
future application might be PET for lung cancer screen-
ing, where a low-dose acquisition would be desired
[36]—even if the uptake of small lesions was not accur-
ately quantified, the overall improved noise characteristics
could help to improve the identification of suspicious foci
in images reconstructed from sparse data acquired by
low-dose protocols. Other low-count situations which
might benefit from this include pediatric imaging proto-
cols where scan time and dose are constrained, dynamic

imaging with fast temporal framing and physiological
gated studies. More generally speaking, the clinical adop-
tion of CNN-denoising will require careful consideration
and planning and will depend on the imaging goals.

Some potential limitations of this study are noted. Nine
patients were used for training—since end-to-end training
of deep convolutional networks typically involves thou-
sands of datasets, this number could seem largely insuffi-
cient. However, most patients had 2 different bed position
acquisitions, and from each full dataset, around 270
unique images were realized. From each image, multiple
smaller training patches were extracted at random. Hence,
thousands of different training samples were produced at
every training epoch. Even though the underlying activity
distributions were limited by the patient population, this
approach provided a clear objective for the CNN to learn
the features of the image noise associated with the PET
acquisition and reconstruction processes. Successful deep



Schaefferkoetter et al. EJINMMI Research (2020) 10:105 Page 9 of 11
1 Original 4 CNN-denoised
TP rate -‘/\ \—_-///—_—_
0.8 — FP rate 08F
FN rate
Sens
0.6 PPV 06"
S S
0.4 / 0.4
0.2 0.2
0 . 0 .
106 107 108 107

True count level

Fig. 7 Lesion detection performance for all 3 readers. In the lowest count levels, CNN-denoising improved detection, but this offered limited
benefit at higher count levels, and the original smoothed images actually yielded better performance. The observer mean is given by the solid
lines, and the inter-observer standard deviation is shown by the shaded regions

True count level

network training has also been reported in other work
using a relatively small number of patient datasets [37].
Notwithstanding all of this, it was a major consideration
in this study—although we carefully monitored the loss
performance within the set of validation images in order
to avoid overfitting, we expect accuracy and lesion detect-
ability performance may be improved by including more
patients for training.

Receiver operating characteristics
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Fig. 8 Receiver operating characteristic curves estimated from the
confidence-weighted detections of the physician readers—again,
the observer means are given by the solid lines, and the shaded
regions denote the inter-observer standard deviation. Small overall
differences were found between performance within the original
and CNN-denoised images

The number of patients was also a consideration re-
garding bias in the lesion detection task, since an obser-
ver may have recognized a previous image at a different
noise level. Although it may be impossible to eliminate
this limitation entirely in a study like this, we sought to
minimize it by randomizing the presentation order. This
way, even if bias did exist, it would hypothetically affect
both testing populations equally, and the comparison
should still be valid. Also, the lesion detection analysis
was based on a free response task, i.e., there was no limit
to the number of lesion locations the observer was
allowed to report in each image. So even if the observer
recognized an image as a higher noise version of one
they had already seen, it would be challenging to use any
prior information to replicate every detection decision.

We did not intend to investigate the most advanced
deep learning methods in this experiment. The goal of
this study was instead focused on the clinical implica-
tions in a small, focused experiment with an established
CNN architecture and relatively simple supervised train-
ing—in fact, PET data lend themselves very well to this
approach. However, performance improvements could
be expected by replacing the pooling layers with multi-
phase decomposition layers [38] in our network or by
using additional loss objectives. Although a perceptual
loss might not suit training a 3D network, a second dis-
criminative loss network could provide higher quality
outputs in the generator network. We chose for this
experiment to compare the CNN-denoised images to the
original images post-processed by Gaussian filter
smoothing, since we involved physicians for the evalua-
tions, and Gaussian smoothing is currently the clinical
standard. It was beyond the current scope to compare to
other smoothing techniques, even though more recent
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approaches, e.g., block-matching 3D [39] or spatially
guided non local mean [40] algorithms, might produce
better results. We also note that the conclusions drawn
in this study are relevant to the current generation of
PET systems. The mCT used in this study had 4 mm
LSO crystal detector elements coupled to photomulti-
plier tubes—the coincidence timing resolution is around
550 ps. As detector technology, electronics and process-
ing methods improve, higher quality data will be ac-
quired, and better images will be reconstructed from the
same underlying activity distributions. We evaluated
here the quality of PET images only covering the lungs,
and hence, the detection task focused primarily on pul-
monary lesions. Such evaluations of noise and lesion de-
tectability involving nodules surrounded by a cold air
background are not equivalent to those for bone lesions
in moderate background or small mesenteric nodes adja-
cent to surrounding loops of bowel, for example. The
extensions of these analyses to other body regions and
with more advanced architectures, loss metrics, and ad-
versarial training techniques are opportunities for future
work.

Conclusion

In terms of image quality, the CNN-denoising offered
several improvements over the original images—they ex-
hibited better noise properties and improved measure-
ment reproducibility of pixel values. In general, these
images were also consistently ranked higher than the
original low-count images in the clinical evaluation.
They were also superior in terms of lesion detectability
for data comprising 5 million or fewer true counts.
However, CNN denoising offered limited improvements
for the less noisy images and might not offer significant
benefits in detection performance at the count levels
routinely encountered in the clinic. To this end, there
may be potential pitfalls of incorporating deep learning
approaches into the medical setting which should be
understood, regardless of apparent qualitative improve-
ments. Considering this, the appropriate application of
this technique in the clinic would depend on the task
and the intended use of the output images.
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