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Microscopic magnetic field inhomogeneities caused by iron deposition or tissue-air

interfaces may result in rapid decay of transverse magnetization in MRI. The aim of

this study is to detect and quantify the distribution of iron-based nanoparticles in

mouse models by applying ultrashort-echo-time (UTE) sequences in tissues exhibiting

extremely fast transverse relaxation. In 24 C57BL/6 mice (two controls), suspensions

containing either non-oxidic Fe or AuFeOx nanoparticles were injected into the tail

vein at two doses (200 μg and 600 μg per mouse). Mice underwent MRI using a UTE

sequence at 4.7 T field strength with five different echo times between 100 μs and

5000 μs. Transverse relaxation times T2* were computed for the lung, liver, and

spleen by mono-exponential fitting. In UTE imaging, the MRI signal could reliably be

detected even in liver parenchyma exhibiting the highest deposition of nanoparticles.

In animals treated with Fe nanoparticles (600 μg per mouse), the relaxation time sub-

stantially decreased in the liver (3418 ± 1534 μs (control) versus 228 ± 67 μs), the

spleen (2170 ± 728 μs versus 299 ± 97 μs), and the lungs (663 ± 101 μs versus 413

± 99 μs). The change in transverse relaxation was dependent on the number and

composition of the nanoparticles. By pixel-wise curve fitting, T2* maps were calcu-

lated showing nanoparticle distribution. In conclusion, UTE sequences may be used

to assess and quantify nanoparticle distribution in tissues exhibiting ultrafast signal

decay in MRI.
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1 | INTRODUCTION

Among the broad spectrum of nanoparticles available for biomedical applications, iron-based nanoparticles have attracted significant attention

due to their unique magnetic properties and excellent biocompatibility. These attributes render them highly promising for various therapeutic

(eg magnetic particle heating,1 drug delivery,2 blood purification3) and diagnostic applications.4 In particular, their utilization as contrast agents for

Abbreviations: FoV, field of view; FSE, fast spin-echo; ICP-MS, inductively coupled plasma mass spectroscopy; mGRE, multi-echo gradient-echo; RoI, region of interest; TE, echo time; UTE,

ultrashort echo time; ZTE, zero echo time.
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MRI has been frequently investigated and led to several clinically approved products.5 Due to their biocompatibility, they are an attractive alterna-

tive to gadolinium-based MRI contrast agents, which face considerable toxicity concerns.6

Depending on oxidation state and size, iron-based nanoparticles attain various magnetic states, ranging from paramagnetic to super-

paramagnetic or ferromagnetic. These characteristics can cause shortened T1, T2, or T2* relaxation times as well as phase and susceptibility

changes by influencing the magnetic environment of surrounding hydrogen protons. For example, when superparamagnetic magnetic iron oxide

or ferromagnetic iron nanoparticles are injected in vivo, they induce distortions of the magnetic field around them, resulting in shortening of the

T2 and T2* relaxation times of tissues in which they accumulate. The reduction of T2* relaxation time provides a negative enhancement, resulting

in the generation of a hypointense signal that appears dark on T2*-weighted images.7 Iron-based nanoparticles not only impact on T2/T2* relaxa-

tion times but also reduce the longitudinal relaxation time T1, which may result in signal increase for low concentrations.

Research in the field has so far focused predominantly on the development of novel iron-based nanoparticles with optimized magnetic char-

acteristics. While the advancement in this regard has started to stagnate, the understanding of the biodistribution of nanostructures in general is

still limited.8 This is surprising, as the low targeting efficiencies of nanoparticles are frequently considered as the bottleneck in the development

of highly efficient diagnostic and therapeutic nanosystems.9

Radiology and especially MRI provide promising approaches to this issue. Iron deposits, eg as a consequence of hemochromatosis, are rou-

tinely assessed via exponentially decaying signals seen in multi-echo gradient-echo sequence (mGRE) MRI.10,11 The measurement of T2* trans-

verse relaxation times is widely recognized as the primary approach to quantify the distribution and concentration of iron-based deposits in the

liver.12 Hence, such methods are in principle well suited for the biodistribution analysis of iron-based nanoparticles, although their concentrations

are typically lower.

Standard MR sequences offer echo times (TE) in the range of a few milliseconds for spin-echo sequences and down to 1 ms for gradient-echo

sequences. Signals arising from tissues with a very short T2, well below 1 ms, are therefore not visible using standard sequences, as the signal has

already decayed by the time of acquisition. In the image, these tissues appear dark and indistinguishable from air cavities or noise. With conven-

tional MRI sequences, such as fast spin-echo sequences (FSE), which use TE values longer than 1 ms, there is no possibility to encode the decaying

signal of short- and ultrashort-T2/T2* tissues before it has reached zero or near zero. A short T2 can usually be found in tissue with strong cou-

plings of solid materials such as teeth, ligaments, tendons, and bones in the human body.

Moreover, iron content quantification via R2*-MRI using mGRE imaging in general is compromised towards high iron concentrations or at

higher fields due to ultrafast signal decay.13,14 In the lung, mGRE of the pulmonary parenchyma is especially challenging since it is hampered by

multiple challenges, primarily related to (1) patient respiratory- and circulation-related motion, (2) low proton density, and (3) extremely fast signal

decay caused by microscopic magnetic field inhomogeneities between alveoli and air. The aforementioned limitations of mGRE-based iron con-

centration estimation could be overcome by using ultrashort-echo-time (UTE) imaging.15,16 UTE imaging allows for very short delays (≤100 μs)

between signal excitation and data acquisition, thereby enabling the detection of tissues with very short transverse relaxation times, such as corti-

cal bone17,18 and lungs.19,20

This study aims to demonstrate the feasibility of UTE-based T2* mapping for semi-quantitative measurement of iron concentration in liver,

spleen, and lung of mice injected with nanoparticles.

2 | MATERIAL AND METHODS

2.1 | Study design

The study was approved by the local veterinary office of the canton of Zurich. C57BL/6 mice (8-10 weeks old, female) were injected with 200 μL

of non-oxidic Fe or AuFeOx nanoparticle dispersion at two different concentrations (1 mg/mL (low) and 3 mg/mL (high)) in the tail vein, resulting

in a dose of 200 or 600 μg per mouse, respectively. For each condition, four mice were injected and two untreated mice served as control

(no sham injection). Additionally, nanoparticle distribution was also studied in two tumor-bearing mice, where liver metastases were induced using

a well established protocol.21 Finally, to investigate potential alterations in biodistribution due to knocked-down macrophages, nanoparticle distri-

butions were investigated in wild type mice compared with macrophage-depleted mice. All MRI measurements of the above mice were performed

24 h after nanoparticle injection. In the sequence optimization (13 additional mice), a set of echo times for the UTE sequence was initially tested

(TE = 20 μs, 100 μs, 500 μs, 1,500 μs). In the final protocol, five different echo times were used (see below).

2.2 | Animal surgery

Animal surgery was carried out as previously described.21 Interventions were performed by a surgeon with extensive experience in experimental

microsurgery. Isoflurane inhalation (Attane, Minrad I, Buffalo, NY) 2-3% mixed with pure oxygen was used for anesthesia induction; intraoperative
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analgesia was administered via subcutaneous application of buprenorphine (0.1 mg/kg body weight). For metastasis induction, median laparotomy

was performed after fixation of the animal with tape on a heating pad. The liver was mobilized by cutting the falciform ligament and the mem-

brane between caudate and left lateral lobe with microsurgical scissors. After display of the portal vein, 1 � 105 MC-38 tumor cells, prepared in

100 μL PBS (phosphate buffered saline), were injected intraportally with a 29-gauge insulin syringe. The needle was then removed and hemostasis

achieved by gentle pressure with cotton swabs and application of small pieces of TachoSil (Baxter, Deerfield, IL), if necessary. The abdomen was

closed with two layered continuous sutures with 5-0 prolene. Mice recovered on a warmed heating pad, and food and water were provided 1 h

after the operation. Postoperative analgesia with buprenorphine was administered via drinking water for three days. Animals underwent MRI one

week after liver tumor induction. Macrophages were depleted using anti-CFSR1 antibody (300 μg/mouse; Bio X Cell, Lebanon, NH) 12 h prior to

nanoparticle injection. Mice were sacrificed after the MRI examination.

2.3 | Nanoparticle production

Dry and scalable flame spray pyrolysis was used for the nanoparticle synthesis, as described elsewhere in detail for AuFeOx
22 and Fe.23 The non-

oxidic iron nanoparticles consist of iron carbide (Fe3C) and are encapsulated by a thin carbon shell of a few nanometers. The AuFeOx

nanoparticles consist of a Janus-like Au/Fe2O3 core structure (30 at.% Fe = molFe/[molFe + molAu]) hermetically covered by an inert SiO2 coating

(13 wt% SiO2 = mSiO2/(mSiO2 + mAu + mFe2O3). The as-prepared nanoparticles were surface functionalized with polyethylene glycol via silane

chemistry. Typically, 10 mg AuFeOx nanoparticles were dispersed in 17.5 mL ethanol (puriss p.a., Sigma Aldrich, MO, USA) via strong

ultrasonication (Sonics Vibra-Cell, Sonics & Materials, Inc., Newtown, CT, USA, 8 kJ, power 90%, pulse on/off 10 s/10 s) for 90 s. Thereafter,

1.25 mL NH3 (25%, analytical reagent, Riedel-de Haen, Honeywell Specialty Chemicals, Seelze, Germany) was added and the dispersion again son-

icated for 30 min. Then 50 μL APTES ((3-aminopropyl)triethoxysilane, 99%, Sigma Aldrich) was added, the reaction was started and kept at 25 �C

for 1 h under shaking (800 rpm). Afterwards, the particle dispersion was washed via centrifugation (15 min, 8500 rpm) twice with ethanol and

twice with ultrapure water and then dispersed in 2 mL of borax buffer to a concentration of 5 mg/mL. The resulting dispersion of amine

functionalized nanoparticles was then sonicated for 30 min. Afterwards 100 mg mPEG-SC (5 k, methoxypoly(ethylene glycol) succinimidyl carbon-

ate, Biochempeg, Watertown, MA, USA) was dissolved in 2 mL borax buffer and mixed with the freshly sonicated particle dispersion to initiate

the reaction. The resulting mixture was weakly sonicated (Branson 1800 ultrasonic cleaner, Brookfield, CT, USA) for 5 min before being placed in

a shaker for 24 h (25 �C, 800 rpm). Afterwards, the particles were washed via centrifugation (15 min, 8500 rpm) once in borax buffer and once in

ultrapure water before storing them at 1 mg/mL in saline (0.9%) for further experiments.

2.4 | Microscopy and elemental analysis

Tissue samples were fixed in formalin and post-fixed in 0.2% glutaraldehyde. They were paraffin embedded and sectioned using standard histol-

ogy sample preparation protocols established at Sophistolab (Muttenz, Switzerland). Tissue sections were hematoxylin and eosin or F4/80 stained

and imaged by optical microscopy (Zeiss, Oberkochen, Germany) at different magnifications. A whole slide scanner (ScopeM, ETH Zurich) was

used to obtain overview images. Inductively coupled plasma spectrometry was used for iron and gold quantification in tissue after digestion using

an Agilent 7900 (Santa Clara, CA, USA).

2.5 | MRI

All MRI examinations were carried out in a Bruker 4.7 T BioSpec 47/40 (Bruker BioSpin, Ettlingen, Germany) equipped with a circular polarized
1H mouse whole body transmit-receive RF coil. The animal bed was equipped with a pad with continuous warm water flow supply to keep the

mouse warm. Mice were anesthetized during MRI with 0.6% isoflurane (1-chlor-2,2,2-trifluorethyl-difluoromethylether) (Attane; Minrad I, Buffalo,

NY) mixed with 100% oxygen. The animal's eyes were protected from drying by applying sterile ophthalmic ointment (Vit. A Crème, Bausch &

Lomb Swiss, Steinhausen, Switzerland). A gradient-echo localizer was applied in three spatial directions to provide anatomical overview. A trans-

verse oriented T2w FSE sequence (TR 4410 ms/first echo 15 ms; effective TE 45 ms; echo train length 8; matrix 384 � 384; field of view (FoV)

45 � 45 mm; slice thickness 1 mm, three averages) was used to depict organ morphology. For visualization of fast relaxing tissue and for relaxa-

tion measurements, a three-dimensional UTE sequence was applied with five subsequent acquisitions with TE = 100 μs, 500 μs, 1500 μs,

3000 μs, and 5000 μs, respectively. For spin excitation, a non-selective RF block pulse of 20 μs duration was applied. Further protocol parameters

of the UTE sequence were the following: repetition time TR = 8 ms; matrix 128 � 128 � 128; FoV 45 � 45 � 45 mm3; spatial resolution

0.35 � 0.35 � 0.35 mm3; flip angle 18.9�; one averages; acquisition time 6 m 50 s for each echo time. The standard reconstruction algorithm of

the Bruker UTE3D sequence was applied for image reconstruction.
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2.6 | Data analysis

Data analysis was performed on a stand-alone personal computer using custom-made routines in the MATLAB programming language

(MathWorks, Natwick, MA). Signal intensity curves and parametrical maps of T2* relaxation times were computed by mono-exponential fitting. A

nonlinear least square fit to the signal intensities was performed based on the Levenberg-Marquardt algorithm using the following equation:

S TEið Þ¼ S 0ð Þ�e�TEi
T2� þN

with S denoting the signal intensity, TEi meaning the different times to echo, T2* the apparent transverse relaxation time, and N the noise (three

variables fitted).

For signal intensity curves, a polygonal region of interest (RoI) was manually placed to encompass as much of the investigated organ tissue as

possible. RoI analysis was performed three times in each mouse in three different slices. In the lungs, the subpleural area was chosen to avoid sig-

nal contamination from large vessels. Moreover, RoI measurements were made on both sides of the lung. In liver parenchyma, RoI measurements

were made three times in the lower and upper parts of the liver.

For statistical analysis, mean values and standard deviations were computed. The Kruskal-Wallis test was used to test for significance

between two groups. P values less than 0.05 were considered statistically significant. All statistical analyses were performed using commercially

available software (SPSS, Release 17.0, Chicago, IL).

3 | RESULTS

3.1 | Qualitative assessment of image quality

FSE sequences with T2-weighted contrast (TE 45 ms) and UTE sequences (TE between 100 μs and 5000 μs) were acquired. Representative images

are shown in Figure 1. In mice without nanoparticle injection, the FSE sequences show intermediate signal intensity of the liver, allowing for

F IGURE 1 FSE (TE = 45 ms) (A, B, D) and UTE sequence (TE = 100 μs) (C, E, F) MR images of metastasis-free mice with and without
administration of Fe nanoparticles (low dose). A-C, The liver parenchyma, which darkens due to a complete signal loss caused by the accumulated
Fe nanoparticles. D, E, Images of the lung. No signal can be measured in lung parenchyma using an FSE sequence due to the fast signal decay
caused by microscopic magnetic field inhomogeneities. Using a UTE sequence with echo time TE = 100 μs, signal above the background noise
level can be measured in iron-loaded liver, spleen, and lung parenchyma. Typical RoI measurements for computation of signal curves are indicated
by the dashed lines. Li indicates liver, Lu lung, and S spleen. NP, nanoparticles
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assessment of liver parenchyma. In mice treated with Fe nanoparticles, a complete signal loss to background noise can be observed in liver paren-

chyma caused by the magnetic field inhomogeneities induced by nanoparticles. In the lungs, regardless of whether nanoparticles have been

applied or not, a complete signal loss is observed in the FSE sequence. Applying UTE sequences, in iron-loaded liver, iron-loaded spleen, and lungs,

signal above the noise level can be observed. Visually on MR images iron deposition was only observable in liver and spleen parenchyma, and from

image impression alone nanoparticle deposition in the lung was not detectable. Liver metastases were detectable in both FSE and UTE sequences

(Figure 2). However, in the liver loaded with Fe nanoparticles the normal parenchyma could not be assessed due to signal loss, whereas in UTE

sequences both liver metastases and iron-loaded liver parenchyma were visible. No uptake of nanoparticles was seen in the metastases.

3.2 | Signal intensity curves

Example T2* signal intensity curves are shown in Figure 3. From the curves it can be seen that an excellent curve fitting based on the five signal

intensities of different echo times between 100 μs and 5,000 μs was possible in untreated mice as well as for both nanoparticle compositions and

for both injected numbers of nanoparticles in liver, lung and spleen. A sequence with even shorter echo time of 20 μs resulted in worse signal-

curves due to a signal loss at this echo time compared with the later echo at 100 μs, which may be due to hardware limits of the ADC converter.

No reliable signal curves could be computed from tissues with T2* relaxation times longer than the liver (eg muscle tissue). Investigation of such

tissues would have required the inclusion of even longer echo times in the MRI protocol. In contrast, signal curves with suitable quality could be

obtained from the lung tissue in all mice (treated and untreated).

3.3 | Quantitative T2* transverse relaxation times

An overview of the measured T2* values is visualized in Figure 4; numeric mean values and standard deviations are provided in Table 1. No statisti-

cal difference was found between the left and right sides of the lungs; therefore, T2* values from the two sides were pooled. Liver T2* values were

shorter close to the diaphragm compared with the more caudal parts of the liver (data not shown), which is most likely due to macroscopic mag-

netic field inhomogeneities close to the diaphragm (tissue-air interface). Dependent on the nanoparticle type and dose, a reduction of T2* values

can be seen in liver, spleen, and lung tissue. Macrophage depletion was performed to increase the nanoparticle deposition in the lungs, resulting in

F IGURE 2 FSE and UTE sequence MRIs of mouse liver metastases after Fe nanoparticle administration (low dose). A T2 hyperintense
metastasis (arrow) can be seen in the FSE image with complete signal loss of the surrounding iron-loaded liver parenchyma. In the UTE
sequences, both liver parenchyma and metastasis are clearly visible using TE of 500 μs and 1500 μs, respectively. In the T2* map, the metastases
show notably longer T2* relaxation time compared with liver parenchyma loaded with nanoparticles
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a similar reduction of T2* time with the low number of Fe-based nanoparticles in the lung as compared with the high number of nanoparticles with-

out macrophage depletion. In some of theT2* values of Figure 4, a relatively large error bar can be seen, which may be due to inaccurate T2* quanti-

fication in tissues with long transverse relaxation time, small size of the evaluated organ or incomplete injection of nanoparticles in the tail vein.

3.4 | Parametrical T2* maps

T2* maps were calculated in a pixel-by-pixel manner; example images are displayed in Figures 5 and 6. From the generated T2* maps with good

image quality, it can be seen that the curve fit is stable enough to allow pixel-wise evaluation.

F IGURE 3 T 2* signal relaxation curves (measurement points and corresponding mono-exponential fits) for liver (top), lung (middle) and
spleen (bottom) parenchyma. The computed transverse relaxation times are shown in the legends
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3.5 | Ex vivo characterization of the nanoparticle content in tissues

After mouse sacrifice, liver, spleen, and lungs were harvested and analyzed using histology, including macrophage staining with F4/80antibodies.

Additional metal quantification was performed using inductively coupled plasma mass spectroscopy (ICP-MS). Observation of F4/80 antibody-

stained sections shows the presence of black deposits in macrophages in the organs from the mice exposed to both magnetic nanoparticles, with

a dose effect Figure 7). These black spots can then be related to the presence of nanoparticles, and thus confirm the presence of the Fe and

AuFeOx particles in the liver and the spleen. In contrast, no differences have been observed between the lungs from the control and nanoparticle-

exposed mice. This indicates that UTE sequences can potentially detect nanoparticle deposits with improved sensitivity compared with histology

alone. To quantify the amount of metal, ICP-MS of liver and spleen tissue was used in three healthy mice, showing first the presence of gold only

in the tissues exposed to AuFeOx nanoparticles, and second an increase of the amount of iron above the endogenous level after injection of both

types of nanoparticle (Figure 8).

4 | DISCUSSION

In this study we utilize UTE imaging to better visualize typically MRI invisible organs with a short T2*, such as lungs, and liver after application of

iron-based nanoparticles providing an alternative method for investigating the biodistribution of nanoparticles, as seen in our case with an Fe

nanoparticle loaded tumor-containing liver and lung. The sensitivity for the detection of magnetic nanoparticles as molecular imaging probes is

F IGURE 4 Mean and standard deviations for T2* transverse relaxation times of liver, spleen, and lung for untreated mice, mice injected with
AuFeOx or Fe nanoparticles in high and low concentrations, and mice treated by macrophage depletion before injection of low concentrations of
AuFeOx or Fe nanoparticles. It can be seen that Fe nanoparticles result in stronger reduction of transverse relaxation time compared with AuFeOx

nanoparticles, and the higher number of nanoparticles results in stronger reduction of T2*. In the liver, an effect of Fe nanoparticle deposition can
clearly be observed. Macrophage depletion causes a reduction of T2* in the lung with low concentration similar to high concentration without
macrophage depletion, which may be attributed to higher nanoparticle deposition in the lung due to lower accumulation in liver macrophages

TABLE 1 Mean T2* relaxation times and standard deviations measured in the liver, kidney, and lung after application of different nanoparticle
types and amounts

T 2* relaxation times [μs]

Treatment Liver Spleen Lung

Untreated 3418 ± 1535 2170 ± 728 861 ± 208

AuFeOx low 6438 ± 4193* (p = 0.04) 1634 ± 202 (p = 0.26) 527 ± 153* (p < 0.01)

AuFeOx high 3836 ± 2024 (p = 0.50) 2276 ± 686 (p = 0.93) 663 ± 101* (p < 0.01)

AuFeOx m-depl. 3118 ± 1521 (p = 0.68) 1594 ± 426* (p = 0.04) 539 ± 84* (p < 0.01)

Fe low 1771 ± 2729* (p < 0.01) 453 ± 280* (p < 0.01) 507 ± 106* (p < 0.01)

Fe high 228 ± 67* (p < 0.01) 299 ± 97* (p < 0.01) 413 ± 99* (p < 0.01)

Fe m-depl. 720 ± 173* (p < 0.01) 193 ± 78* (p < 0.01) 409 ± 89* (p < 0.01)

Mean RoI size [voxels] 93 ± 45 40 ± 17 44 ± 18

*Statistically significant versus untreated.

BOSS ET AL. 7 of 12



enhanced due to the increased signal yield, and a semi-quantitative measurement of nanoparticle concentration is provided by computation

of T2*.

Using FSE, we observed complete signal loss in the liver parenchyma after nanoparticle injection and deposition. We did not find any signal in

lungs with FSE after nanoparticle deposition due to fast signal decay caused by microscopic magnetic field inhomogeneities owing to tissue-air

interfaces in the alveoli of lungs. Using a UTE sequence with echo time TE = 100 μs, signals above the background noise level can be measured in

Fe nanoparticle loaded livers with differentiated metastasis, spleen, and lung parenchyma.

F IGURE 5 UTE images (left) and corresponding T2* parametrical maps (right) of the liver for high (top) and low (bottom) numbers of injected
Fe nanoparticles. L, liver; S, stomach

F IGURE 6 UTE images (left) and corresponding T2* parametrical maps (right) of the basis of the lungs without injected nanoparticles and of
the spleen (blue arrow) with low number of injected Fe nanoparticles
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It is known that tissues with low background signals and nanoparticle induced susceptibility artifacts require fast signal acquisition starting

immediately after the RF excitation. In UTE pulse sequences, the RF excitation is performed before gradients are ramped up and data acquisition

begins after a short, non-negligible delay time. Data acquisition occurs while the readout gradient is being ramped on. Since the readout gradients

are turned on at the beginning of data acquisition, the sampling pattern of k-space is radial, filled from the center out, and is nonlinear in time.

UTE can be applied for 2D imaging,24,25 with a slice selective gradient during the RF pulse while encoding in two directions, or for 3D imaging,

without any slice selective gradients and encoding in all three directions. Slice selective 2D radial acquisition may be used to image brain tissue,26

cortical bone,27,28 and tendons.29 An acquisition-weighted stack of spirals sequence has been proposed for high-resolution 3D UTE imaging.30

Typically, radial trajectories are used, although other center-out trajectories such as spirals,31 twisted projections,32 or cones33 are also feasible.

However, it must be pointed out that center-out techniques for lung imaging are limited by the required rather long readout.

UTE shares with the other radial sampling techniques the advantage of being less sensitive to motion artifacts compared with cartesian sam-

pling.34 One challenge of the UTE sequence is that acquiring data during gradient ramping can lead to major image distortions originating from

eddy currents and time delays within the gradient system. Zero-TE imaging may overcome this problem. A disadvantage of UTE imaging is that it

typically requires a relatively long scan time compared with conventional T2*-weighted GRE. However, UTE imaging is advantageous and

F IGURE 7 Imaging of histology sections of liver (A, B) and spleen (C, D) after tissue staining with F4/80 antibody. Micrographs in A and C
present sections of organs harvested from vehicle injected animals (A, C); B and D display micrographs of animals injected with a high dose of Fe
(B, D). In the latter, red arrows indicate the presence of characteristic black depositions. Scale bars: 50 μm

F IGURE 8 Quantification of the iron (and gold) content in the livers and spleens from mice injected with vehicle solution, low dose of Fe
nanoparticles or low dose of AuFeOx nanoparticles. Results displayed for one mouse per condition
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potentially more sensitive compared with T2 and T2* imaging using standard sequences when nanoparticle concentrations are high in the tissue,

but may not be beneficial when the tissue nanoparticle concentration is low. In particular, in tissues with long relaxation time inaccuracies in T2*

quantifications may occur with UTE sequences, as the curve shape and the noise level cannot reliably be estimated.

Zero echo-time (ZTE) or UTE pulse sequences use specialized acquisition and reconstruction techniques to enable detection of ultrashort-T2

components in vivo, and rely on beginning data acquisition as soon as possible after completion of the RF pulses.35 Radial imaging, as in UTE and

ZTE, is particularly robust to movement artifacts. A certain amount of image blurring must nevertheless be expected if motion is present during

the acquisition. Thus, the need of the day is for techniques such as UTE and ZTE, which are able to compensate for motion, resulting in the best

image quality possible. Moreover, such techniques can be useful to determine the influence of motion over parameter quantification in motion

corrupted datasets.

Different tissues and organs have different T2* values, and the different statuses of the same tissues and organs also have different T2*

values. Thus, the T2* value has the potential to reflect a change in the biochemical components of the counterpart and may be used for the early

diagnosis and quantitative description of some diseases, eg to detect and quantify excess iron deposition in various organs such as the liver, heart,

spleen, pancreas, and pituitary gland.36 In T2*-weighted sequences, the lesion, structures, or areas of dephasing are shown as dark areas, leading

to their detection or characterization.37 The T2*-based contrast mechanism is also used in other MR applications such as susceptibility weighted

imaging, MR perfusion imaging, functional MRI, and iron overload imaging.38 Iron overload can be caused by disorders of iron absorption, such as

hereditary hemochromatosis and thalassemia intermedia, defects in heme metabolism, or long-term transfusion therapy.39,40

Iron nanoparticles, as magnetically active agents, primarily shorten transverse relaxation times T2 and T2*, which leads to prominent signal

decrease or “negative contrast” of targeted tissue on T2- and T2*-weighted images. UTE imaging enables capturing signal of the shortened T2 and

T2*, allowing for obtaining signal from tissues with rapidly decaying transverse relaxation, as observed in the current study. Here we saw that Fe

nanoparticles result in stronger reduction of transverse relaxation time compared with AuFeOx nanoparticles. This can be explained by the higher

saturation magnetization of the Fe nanoparticles (140 emu/g)41 compared with the AuFeOx system (43.5 emu/g).22 Also, as expected, a higher

concentration of nanoparticles results in stronger reduction of T2*. In the liver, an effect of nanoparticle deposition can clearly be observed. Inter-

estingly a reduction of T2* for lung parenchyma in vivo after nanoparticle deposition has been shown for the very first time here in this study.

The lung parenchyma properties that are important in the context of its visualization with MRI are its low density and the susceptibility differ-

ences between tissue and air. The tissue density in a healthy human lung is around 0.1 g/cm3,42 which is about 1/10 that of other tissues. As the

MR signal is directly proportional to the tissue proton density, the MR signal arising from the lung is 10 times weaker than that of other tissues,

even prior to any relaxation. The inherently low signal to noise ratio (SNR) is one of the main limitations that makes structural proton MRI of the

lung challenging, particularly when acquisition times must be within reasonable limits and high spatial and/or temporal resolution is required.43

The second important property is the high number of tissue-air interfaces in the lung. Oxygen present in the air is paramagnetic and lung tissue is

diamagnetic, leading to a magnetic susceptibility difference at lung-air interfaces. Since between two areas of different susceptibility there exists

a small static magnetic field, this results in a highly inhomogeneous local magnetic field on a spatial scale smaller than the size of a typical voxel.

This leads to a rapid signal dephasing in gradient-echo imaging, and thus to short T2*. Thus, gradient-echo MRI of lung parenchyma becomes

highly challenging and requires pulse sequences with peculiarly low TE. Moreover, continuous motion is present in the thoracic and abdominal

area, due to the presence of respiratory movements and the heartbeat. This requires countermeasures for avoiding artifacts and image blurring,

which may happen when these movements occur on a time scale shorter than the acquisition time of the image.44

The T2* relaxation time of tissues is dependent on many parameters, eg the voxel size, the voxel geometry, the field strength, the number of

echoes, the distribution of the measured echoes, and the technique for calculating T2* (fitting algorithm). In general, the larger the voxel size and

the higher the field strength, the faster the transverse signal decay. The treatment of noise can strongly influence the calculated T2* depending on

whether a fixed or variable noise is used in the fitting algorithm. Using a 3D UTE sequence at 4.7 T with an isotropic spatial of

0.35 � 0.35 � 0.35 mm3 with five different echo times and variable fitting of noise, we measured a T2* of normal lung of 860 μs. Olsson et al45 at

the same field strength used a larger voxel size of 0.31 � 0.31 � 1.56 mm3, only two echo times, and an algorithm with fixed noise measuring

460 μs. Guo et al46 used 7 T field strength, a spatial resolution of 0.47 � 0.47 � 0.47 mm3 and six different echo times, measuring a T2* of

395 μs. Balasch47 measured 200 μs at 11.7 T using a spatial resolution of 0.2 � 0.2 � 0.2 mm3, 10 echo times, and local noise measurement.

Our study had several limitations. First, only a small number of animals have been used, with four mice dedicated to each concentration and

nanoparticle type. Due to rules of animal welfare, the 3R principles (reduce, replace, refine) must be applied, and we believe that with the applied

study design we were able to demonstrate the main aims of our study. However, we cannot exclude that using more animals in each branch of

the study would have been achieved even better results. Second, after UTE protocol optimization and finalizing the post-processing routines, we

cannot exclude that even better settings for both the UTE sequence (with less background blurring) and the post-processing algorithms could

have been found. However, the final settings used in this study were shown to provide consistent and reliable results. Third, only five different

echo times of the UTE sequence have been acquired, which is due to the approved animal protocol restricting the possible time of the MRI exami-

nation protocol due to cooling of the animals. Fourth, all experiments have been carried out at 4.7 T, and potentially better image quality and

higher quantification accuracy could have been achieved with higher field strength or other types of improved hardware. In particular, it would

have been desirable to acquire signal at even shorter echo time such as 100 μs, which was not possible with our hardware set-up. A shorter

10 of 12 BOSS ET AL.



transmit/receive switch might be a solution, as described by Sheth et al.48 Fifth, for accurate iron quantification, a calibration curve would be

needed correlating the tissue iron content to the corresponding T2*. Due to differences in the intrinsic tissue-specific T2* relaxation times, a sepa-

rate curve would be required for each organ to be evaluated. In the current study, we abstained from exact calibration of the iron-T2* curves, as

this would require a large number of animals injected with different numbers of nanoparticles. Finally, a technique called quantitative susceptibil-

ity mapping was recently described to be combined with UTE imaging (UTE-QSM), which might be superior for iron quantification compared with

T2* mapping.

In conclusion, we have demonstrated that UTE imaging can be used for obtaining increased signal in tissues loaded with iron-based

nanoparticles and consequently short transverse relaxation time. In particular, detection of nanoparticles loaded in lung parenchyma becomes fea-

sible. A semi-quantitative measurement of nanoparticle concentrations can be obtained by calculating T2* from UTE imaging of different echo

times.
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