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Secondary formation damage 
of low-pressure layer during 
commingled production in 
multilayered tight gas reservoirs
Jingchen Ding1,2*, Changhui Yan1, Yongming He1 & changcheng Wang1

This paper experimentally investigates fluid back-flow behavior and formation damage during 
commingled production in multilayered tight gas reservoirs. The development of fluid back-flow in 
commingled tight gas reservoirs was simulated using a newly designed experimental platform. the 
results indicate that when there is a pressure difference between different layers during commingled 
production from tight gas reservoir, water produced from the high-pressure layer will invade the low-
pressure layer along with gas back-flow and will accumulate in the near-wellbore area. This will lead 
to an increase in water saturation and a decline in permeability in the low-pressure layer and result in 
a significant reduction in ultimate recovery. The outcomes of these experiments demonstrate that as 
well as the formation damage caused by the working fluid during drilling and fracturing, “Secondary 
formation Damage” also occurs during commingled production in multilayered tight gas reservoirs. this 
secondary formation damage mainly occurs in the near-wellbore area of low-pressure layers and is more 
severe with greater proximity to the wellbore. Through further experimentation to assess the factors 
influencing secondary formation damage, it is shown that the degree of secondary formation damage 
increases with decreasing original formation pressure, original water saturation, and permeability in the 
lower-pressure layer.

Natural gas is being developed at an ever-increasing rate worldwide due to its environmental benefits relative to 
other fossil fuels. Tight gas, which is a major emerging source of natural gas supply, has entered a “golden age” 
driven by the decline of conventional natural gas resources1–3. In China, for example, tight gas production reached 
51.5 billion cubic meters in 2018, 32 percent of the national natural gas production. It is anticipated that, by 2020, 
tight gas production will rise to 80 billion cubic meters and will account for up to 36 percent of China’s natural gas 
supply, according to the National Energy Administration of China4,5.

Tight gas reservoirs are commonly thin and have multiple development layers. Single-layer development often 
fails to meet economic requirements due to the poor reservoir properties and insufficient thickness offered by a 
single layer6. Therefore, a considerable proportion of tight gas reservoirs adopt the development method of com-
mingled production from vertical wells7–9. However, since different layers always have different reservoir and fluid 
properties, interlayer interference is inevitable in commingled production10,11. Interlayer interference has thus 
become a topic of considerable interest in tight gas research, and extensive work has been done in this area12–16.

Interlayer fluid exchange through a wellbore is one of the main mechanisms of interlayer interference. Fluid 
crossflow can occur from one layer to another when there is a pressure difference between different layers, and 
this can affect the whole commingled production process17,18. Zhu and Hill (2002) developed a multilateral well 
deliverability model that couples reservoir inflow into multiple well segments and found that crossflow from a 
lower to an upper layer can occur in multilateral wells if the surface pressure is too high11. Hong et al. (2012) 
reported that the interference coefficient is positively correlated with the permeability contrast and also found 
that interlayer interference decreases gradually as multilayer commingled production continues19. Zhu et al. 
(2013) carried out a commingled production experiment on a multilayer gas reservoir and demonstrated that 
back-flow from high to low-pressure layers can occur easily and may cause interlayer pressure fluctuations and 
related reservoir damage20. A quantitative evaluation of the degree of interference in dual-reservoir commingled 
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production of tight sand gas in the Linxing area by Feng et al. (2017) showed that fluid back-flow will lead to a 
production decline during the early development stages but has little impact on long-term development21.

There is now a general consensus that back-flow damage during commingled production is temporary and 
will not have any impact on long-term production or ultimate recovery levels20,22–24. However, development data 
from some tight gas reservoirs shows that during commingled production, the low-pressure layers of a partial gas 
well show a significant permeability decline in the near-wellbore area after fluid back-flow, with a corresponding 
significant drop in productive capacity. The studies discussed above cannot explain this observation. Meanwhile, 
some researchers have also come to realize that interlayer fluid exchange during commingled production is not 
only of gas; water may also enter a low-pressure layer along with back-flow gas and thus may cause reservoir dam-
age and a decline in productivity21. However, until now, no experiments have been reported on two-phase (gas 
and water) back-flow in commingled production in multilayered tight gas reservoirs, hindering an understanding 
of the potential for reservoir damage in this production context. It remains to be explored whether water will 
back-flow into the low-pressure layer, and, if so, whether the invading water will affect the physical properties of 
and recovery from that layer. It must further be determined whether the impact of this back-flow will be different 
under different reservoir combinations.

In this study, experimental investigations were first performed to study two-phase back-flow and reservoir 
damage during commingled production in multilayered tight gas reservoirs. The formation and development 
of two-phase back-flow were simulated using a newly developed procedure, and the concept of “Secondary 
Formation Damage” that occurs during commingled production was proposed. On this basis, the mechanism, 
range of influence and degree of influence of secondary formation damage were experimentally investigated, and 
the factors influencing secondary formation damage were explored. This study investigates reservoir damage 
development during commingled production and contributes to our present understanding of commingled pro-
duction in water-bearing multilayered tight gas reservoirs.

Materials and conditions
cores. To simulate commingled production from tight gas reservoirs more accurately, experiments were car-
ried out on natural cores from the DS gas reservoir, a tight sand gas reservoir in western China. The rock type is 
moderately sorted lithic-quartz sandstone.

Short natural cores with similar permeability values were connected in series to form a long core to simulate 
the underground gas layers. This use of long cores enables better analysis of the radial distribution of pressure and 
fluid during commingled production than would a more limited core. The lengths of the individual short cores 
range from 6.3 cm to 6.8 cm. Each long core consists of 15 short cores and has a total length of about 100 cm. Five 
long cores with average permeability range from 0.11 × 10−3 μm2 to 2.11 × 10−3 μm2 were prepared; their proper-
ties are shown in Table 1.

fluids. The gas used in this study is pure nitrogen (99.999%). The water used was prepared indoors according 
to the parameters of the formation water of the DS gas reservoir, which are shown in Table 2.

experimental conditions. Experimental conditions of this study are shown in Table 3. Experimental pres-
sure and temperature are set to simulate the actual reservoir condition of DS tight gas reservoir (Appendix A).

experimental equipment and procedure
The experimental procedure is shown in Fig. 1. The prepared long core was placed in a long-core holder. A pres-
sure sensor and resistivity sensor was installed every 10 cm along the holder, so that real-time changes in pressure 
and water saturation along the long core during the experiments could be recorded.

A back-pressure valve was set on the main pipeline downstream of two long-core holders. Back pressure 
was exerted using an ISCO pump to simulate constant-pressure production of a gas reservoir. Two long-core 
holders were connected in parallel by the gas production pipeline to simulate a two-layer tight gas reservoir in 

Name
Average Permeability, 
10−3 μm2 Porosity, % Diameter, cm Total Length, cm

Long Core I 0.11 7.5 2.5 98

Long Core II 0.23 8.7 2.5 100

Long Core III 0.85 10.4 2.5 99

Long Core IV 2.05 12.8 2.5 100

Long Core V 2.11 12.9 2.5 99

Table 1. Properties of long cores.

PH

Ion Concentration, mg/L

Total Salinity, mg/L Water TypeHCO3
− Cl− SO4

2− Ca2+ Mg2+ K+ + Na+

6 113 24788 2225 7961 125 6796 42008 CaCl2

Table 2. Parameters of the formation water of the DS gas reservoir.
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commingled production. In addition, the whole experimental procedure was placed in a calorstat to simulate the 
actual temperature of the reservoir.

The water saturation of each core was first brought to its prescribed value, and nitrogen was then injected until 
the pore pressure reached the pre-set value, at which point the inlet valve of the long-core holder was closed. At 
the beginning of each experiment, the outlet valves of the two long-core holders were opened at the same time to 
simulate commingled production. During the experimental process, pressure and resistivity along each long-core 
holder were recorded at regular intervals, and the fluid produced from the main pipeline was separated into water 
and gas, which were measured separately. The experimental run ended when no more fluid was being produced.

For experimental runs simulating commingled production without back-flow, a one-way valve was set in 
the outlet pipeline of each long-core holder. This prevented back-flow of the fluid produced into the core. For 
comparative experiments, the one-way valves were removed so that back-flow could occur. On the basis of these 
comparative experiments, the influence of back-flow on commingled production could be isolated and studied.

Results and Discussion
Commingled production behavior of dry cores. First, commingled production was simulated using 
dry cores to provide a reference frame for subsequent experiments. Long Core IV and Long Core V were selected 
for these experiments; their pore pressures were set at 27 MPa and 22 MPa, respectively. Commingled production 
simulation was carried out both with and without back-flow, giving the results shown in Fig. 2.

Without back-flow, the total gas production curve for commingled production exhibits two stages. During 
early production (stage a), gas produced from the high-pressure layer (Long Core IV) is at higher pressure than 
that from the low-pressure layer (Long Core V). Gas cannot be produced from the low-pressure layer, and all 
of the gas is supplied from the high-pressure layer. Gas in the low-pressure layer begins to be released when the 
outlet pressure of the commingled production is lower than the pressure in the low-pressure layer, resulting in an 
increase in the gas production rate (stage b). As the gas is produced continuously from two layers, the total gas 
production rate gradually decreases and tends to stabilize.

Taking back-flow into account results in a significantly different gas production curve that reflects three-stage 
gas-production behavior. In stage A, which we call the “initial stage of back-flow”, a large proportion of the gas 
produced from the high-pressure layer flows back into the low-pressure layer, leading to a significant decrease in 
total gas production versus the case without backflow. When commingled production enters stage B, which we 
call the “recovery stage of back-flow”, the invading gas in the low-pressure layer begins to be re-produced as the 
outlet pressure of commingled production decreases, and there is a rapid increase in total gas production. During 
stage C, which we call the “commingled production stage”, the effects of back-flow gradually disappear, and the 
total gas production behavior tends to be consistent with that without back-flow.

At the end of these experimental runs, total production in the case of back-flow is slightly lower than that 
without back-flow. These results agree with former studies that indicate that commingled production has little 
impact on long-term gas recovery20,22.

Parameter Value Parameter in the DS Gas Reservoir Replicated

Experimental temperature 75 °C Reservoir temperature

Confining pressure on the long core 51 MPa Overburden pressure

Maximum initial pore pressure 27 MPa Original reservoir pressure

Back pressure 18 MPa —

Table 3. Experimental conditions.

Figure 1. Experimental procedure to study formation damage during commingled production.
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The pressure distribution along the low-pressure layer during commingled production with backflow, which 
is shown in Fig. 3, more clearly illustrates the back-flow process. Pore pressure near the outlet of the low-pressure 
layer shows a significant increase instead of a decrease at the very beginning of commingled production (t = 50 s). 
The pressure increase is greater at closer proximity to the outlet. This is the behavior one would intuitively expect 
with fluid back-flow during commingled production; this time corresponds to the initial stage of back-flow in 
Fig. 2. When the time elapsed reaches 100 s, the pressure increase near the outlet is significantly reduced. This 
is because the fluid that has invaded begins to be re-produced as the outlet pressure of commingled produc-
tion decreases; this time corresponds to the recovery stage of back-flow in Fig. 2. The overall pressure of the 
low-pressure layer then begins to decline gradually, which indicates that the original fluid in the low-pressure 
layer has begun to be produced, corresponding to the commingled production stage in Fig. 2.

The changes in the pressure distribution along the low-pressure layer demonstrate that the back-flow has a 
sphere of influence of 50–60 cm. The section of the core far from the outlet shows no pressure perturbation during 
the back-flow stage. These results reveal that the impact of back-flow is limited to the near-wellbore area of the 
lower-pressure layer, and back-flow has little effect on the remote formation.

Commingled production behavior and secondary formation damage of water-bearing cores.  
The results above confirm previous findings on the commingled production behavior of dry cores. However, gas–
water two-phase flow is ubiquitous in most tight gas reservoirs, so further experiments were carried out on Long 
Cores IV and V to explore their behavior under water-saturated conditions25–27. The water saturation values of 
the long cores were set at 55% and 20% respectively to simulate the reservoir conditions. The other experimental 
conditions and experimental procedures were the same as in Section 4.1. The results are shown in Fig. 4.

The total gas production curves for commingled production with water-bearing cores show similar trends to 
those for dry cores. However, the final gas production volume in the case with back-flow is significantly lower 
than that without back-flow, unlike with dry cores.

The reasons behind this difference in total production were explored by studying the change in water satura-
tion along the low-pressure layer during the experimental process in the case with back-flow (Fig. 5). The water 
saturation near the outlet of the low-pressure layer rises as the experiment progresses. This is because the water 
produced from the high-pressure layer enters the low-pressure layer along with the gas back-flow and accumu-
lates in the near-wellbore area, increasing its water saturation. Parts of the core that are far from outlet are not 

Figure 2. Commingled production behavior of dry cores with and without back-flow.

Figure 3. Pressure distribution along the low-pressure layer during commingled production (with back-flow).
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affected by the back-flow, so the water saturation remains constant. After the back-flow stage, the water saturation 
near the outlet of the low-pressure layer stabilizes, remaining significantly higher than that in other sections.

At the end of the experiment, the short cores making up the low-pressure layer were removed one by one, and 
their permeability and water saturation values were measured individually. The properties of the sub-cores before 
and after the experiment were compared, as shown in Fig. 6.

It is clear from Fig. 6 that sub-cores near the outlet of the low-pressure layer were affected significantly by the 
back-flow and show increased water saturation after the experiment. The closer they were to the outlet, the more 
their water saturation had increased. Sub-cores that were far from the outlet were not affected by the back-flow: 
their water saturation had not changed after the experiment.

The results for the ratio between sub-core permeability before and after the experiment, Ka/Kb, plotted in 
Fig. 6, show that the permeability of sub-cores near the outlet of the low-pressure layer had declined by 19.5% 
after the experiment. Moreover, the gas relative permeability showed a decline of 25.7% according to the rock rel-
ative permeability data. This is mainly because water invaded the low-pressure layer along with the gas back-flow 
and will have led to an increase in water saturation and to water block28–30. The closer they were to the outlet, the 
greater the influence of the back-flow, the greater the increase in water saturation, and the greater the decline in 
permeability.

These results suggest that during commingled production from a tight gas reservoir, water produced from 
the high-pressure layer will enter the low-pressure layer along with back-flowing gas, and this will lead to an 
increase in water saturation and a decline in permeability and gas relative permeability in regions near the well-
bore, resulting in a reduction in the seepage capability of the low-pressure layer. This is the reason why the final 

Figure 4. Commingled production behavior of water-bearing cores with and without back-flow.

Figure 5. Change in water saturation along the low-pressure layer during commingled production (with back-
flow).
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gas production volume in the case with back-flow is significantly lower than that without back-flow under com-
mingled production from water-bearing cores (Fig. 4).

Unlike the formation damage caused by working fluid31,32, the damage found in this study occurs during 
commingled production from gas reservoirs and is caused by back-flow of the produced formation fluid and its 
invasion into a low-pressure layer. Therefore, we term this damage “Secondary Formation Damage”.

Next, a series of experiments were carried out to study the factors influencing this secondary formation 
damage.

Secondary formation damage under different initial low-pressure-layer pore pressures. The 
influence of the initial pore pressure of the low-pressure layer was investigated by conducting experiments 
in which Long Core IV, the high-pressure layer, had an initial pore pressure of 27 MPa, and Long Core V, the 
low-pressure layer, had an initial pore pressure of 20 MPa, 22 MPa, 24 MPa, and 26 MPa in different experimen-
tal runs. The water saturation values of the high and low-pressure layers were set at 55% and 20%, respectively. 
Experiments were carried out with back-flow, with the results shown in Figs. 7 and 8.

The figures show that back-flow and secondary formation damage have little influence on the low-pressure 
layer when its initial pore pressure is close to that of the high-pressure layer (where it is 26 MPa). The water 
saturation is almost the same after the experiment as it was before it, and there her been a slight decrease in the 
permeability of sub-cores near the outlet. Secondary formation damage becomes more obvious as the initial pore 
pressure of the low-pressure layer decreases: the water saturation and permeability of sub-cores near the outlet 
show a significant increase and decrease after the experiments, respectively. The lower the initial pore pressure 
of the low-pressure layer, the larger the range and degree of influence of secondary formation damage become.

Furthermore, additional experiments were performed under the same conditions as for the four experimental 
runs described above but by setting the one-way valve at the outlet pipeline of each long-core holder, thus pre-
venting back-flow and avoiding secondary formation damage. The gas recoveries at different initial pore pressures 
in the low-pressure layer without and without secondary formation damage were compared, as shown in Table 4.

Table 4 shows that gas recovery was always lower when secondary formation damage was taken into account 
than when it was not. The influence of secondary formation damage on gas recovery increases as the initial pore 
pressure of the low-pressure layer decreases. These findings can be attributed to the increase in the range and 
degree of influence of secondary formation damage with a decrease in the initial pore pressure of the low-pressure 
layer, which results in permeability loss and will finally lead to the recovery decline.

Secondary formation damage under different low-pressure-layer permeability values. To 
investigate the influence of the permeability of the low-pressure layer on secondary formation damage, Long 
Core V was set as the high-pressure layer, with an initial pore pressure of 27 MPa and a water saturation of 55%. 
Long Core I, Long Core II, Long Core III, and Long Core IV, which have different average permeability values 
(Table 1), were set as the low-pressure layer for different experimental runs. The low-pressure layer had an initial 
pore pressure of 22 MPa and a water saturation of 20%. The results of experimental runs simulating commingled 
production under these conditions are shown in Figs. 9 and 10.

The figures show that the range of influence of secondary formation damage decreases with a decrease in 
the permeability of the low-pressure layer. However, within its sphere of influence, the increase in water satura-
tion and the decrease in permeability are greater at lower low-pressure-layer permeability values. This is mainly 
because lower permeability makes it more difficult for the invading fluid to enter the low-pressure layer, which 
will shorten the range of influence of secondary formation damage.

At the same time, however, water imbibition and the water block effect increase considerably in case of low 
permeability, which will lead to stronger secondary formation damage. According to the water saturation change, 

Figure 6. Water saturation and permeability of low-pressure-layer sub-cores before and after commingled 
production (with back-flow).
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the volume of water invading the low-pressure layer was 0.61 cm3, 0.78 cm3, 1.02 cm3 and 1.10 cm3 respectively 
in case of the permeability of low-pressure layer ranged from 0.11 × 10−3 μm2 to 2.01 × 10−3 μm2. The lower the 
permeability of the low-pressure layer, the less the amount of invasion water. However, since the low-permeability 
layer has lower porosity, and the range of invasion water decreases with the decreasing permeability. Therefore, 
although the total amount of water invaded through back-flow reduces in the case of low permeability, the influ-
ence of the invasion water on the seepage capacity of the near-wellbore area still increases.

As described in Section 4.3, experiments were performed without secondary formation damage (without 
back-flow), and the gas recoveries were compared with those from experiments with secondary formation dam-
age; the results are shown in Table 5.

The influence of secondary formation damage on gas recovery can be seen to increase with a decrease in the 
permeability of the low-pressure layer. As shown by the results above, although a decrease in the permeability of 
the low-pressure layer does lead to a reduction in the range of the secondary damage, it also leads to a substantial 
increase in its degree of influence; hence, recovery is increasingly severely impacted.

Figure 7. Water saturation of the low-pressure layer after commingled production under different initial low-
pressure-layer pore pressures.

Figure 8. Ratio between the permeability of low-pressure-layer sub-cores before and after commingled 
production under different initial low-pressure-layer pore pressures.

Initial Pore Pressure of Low-Pressure Layer, MPa 20 22 24 26

Gas Recovery Decline, % 14.7 9.7 6.5 4.2

Table 4. Influence of secondary formation damage on gas recovery for different initial low-pressure-layer pore 
pressures

https://doi.org/10.1038/s41598-019-53940-6
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Secondary formation damage under different initial low-pressure-layer water saturation values.  
To explore the influence of the initial water saturation of the low-pressure layer, further experiments were per-
formed using Long Core IV as the high-pressure layer, with an initial pore pressure of 27 MPa and water satura-
tion of 55%, and Long Core V as the low-pressure layer, with a pore pressure of 22 MPa and a water saturation of 
10%, 20%, 30% and 40% in different experimental runs. Experiments were carried out with back-flow, giving the 
results shown in Figs. 11 and 12.

The figures show that both the range and degree of influence of secondary formation damage increases with a 
decrease in the initial water saturation of the low-pressure layer. The permeability of sub-cores near the outlet had 
decreased to about 70% of the initial value after the experiment in the case with 10% initial water saturation of 
the low-pressure layer, whereas the permeability ratio was about 92% in the case of a 40% initial water saturation. 
This is mainly because flow resistance shows a marked reduction with a decrease in water saturation. Therefore, 
the back-flow fluid will be able to enter the low-pressure layer more easily, causing secondary formation damage 
to have a larger range and degree of influence.

Figure 9. Water saturation of the low-pressure layer after commingled production for different low-pressure-
layer permeability values.

Figure 10. Ratio between the permeability of low-pressure-layer sub-cores of the before and after commingled 
production for different low-pressure layer permeability values.

Permeability of Low-Pressure Layer, ×10−3 μm2 0.11 0.23 0.85 1.99

Gas Recovery Decline, % 18.7 14.8 12.1 9.7

Table 5. Influence of secondary formation damage on gas recovery for different low-pressure-layer 
permeability values.

https://doi.org/10.1038/s41598-019-53940-6
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As in the previous sections, experiments were performed without secondary formation damage (without 
back-flow), and the gas recovery values from these experiments were compared to those from the experiments 
with secondary formation damage; the results are shown in Table 6.

The influence of secondary formation damage on gas recovery can be seen to increase with a decrease in the 
initial water saturation of the low-pressure layer. This can be explained by the results above, which show that the 
range and degree of secondary formation damage to increase considerably with a decrease in the initial water sat-
uration of the low-pressure layer; this will cause recovery to become correspondingly reduced to an increasingly 
severe degree.

conclusions

 (1) When there is a pressure difference between different layers during commingled production from a tight 
gas reservoir, water produced from the high-pressure layer will invade the low-pressure layer along with 
gas back-flow, leading to a decline in permeability. “Secondary Formation Damage” thus develops, result-
ing in a significant reduction in ultimate recovery.

 (2) Secondary formation damage occurs in the near-wellbore area of low-pressure layers and is more severe at 
closer proximity to the wellbore.

Figure 11. Water saturation of the low-pressure layer after commingled production for different initial low-
pressure-layer water saturation values.

Figure 12. Ratio between the permeability of low-pressure-layer sub-cores before and after commingled 
production with different initial low-pressure-layer water saturation values.

Initial Water Saturation of Low-Pressure Layer, % 10 20 30 40

Gas Recovery Decline, % 14.5 9.7 7.4 5.2

Table 6. Influence of secondary formation damage on gas recovery under different initial low-pressure-layer 
water saturation values

https://doi.org/10.1038/s41598-019-53940-6
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 (3) The range and degree of influence of secondary formation damage increase with decreasing initial pore 
pressure and water saturation in the low-pressure layer.

 (4) With a decrease in the permeability of the low-pressure layer, the range of influence of secondary forma-
tion damage reduces, but its degree of influence shows a considerable increase.

Received: 16 June 2019; Accepted: 16 October 2019;
Published: xx xx xxxx
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