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Satisfied quantitative value can 
be acquired by short‑time bone 
SPECT/CT using a whole‑body 
cadmium–zinc–telluride gamma 
camera
Tomohiko Yamane1,2*, Masafumi Takahashi3, Yohji Matsusaka2, Kenji Fukushima2, 
Akira Seto2, Ichiei Kuji2 & Ichiro Matsunari1

The aim of this study was to evaluate the quantitative values of short-time scan (STS) of metastatic 
lesions compared with a standard scan (SS) when acquired by whole-body bone SPECT/CT with 
cadmium–zinc–telluride (CZT) detectors. We retrospectively reviewed 13 patients with bone 
metastases from prostate cancer, who underwent SPECT/CT performed on whole-body CZT gamma 
cameras. STSs were obtained using 75, 50, 25, 10, and 5% of the list-mode data for SS, respectively. 
Regions of interest (ROIs) were set on the increased uptake areas diagnosed as metastases. 
Intraclass correlation coefficients (ICCs) of standardized uptake values (SUVs) for the ROIs were 
calculated between the SS and each STS, and ICC ≥ 0.8 was set as a perfect correlation. Moreover, the 
repeatability coefficient (RC) was calculated, and RC ≤ 20% was defined as acceptable. A total of 152 
metastatic lesions were included in the analysis. The ICCs between the SS vs. 75%-STS, 50%-STS, 
25%-STS, 10%-STS, and 5%-STS were 0.999, 0.997, 0.994, 0.983, and 0.955, respectively. The RCs of 
the SS vs. 75%-STS, 50%-STS, 25%-STS, 10%-STS, and 5%-STS were 7.9, 12.4, 19.8, 30.8, and 41.3%, 
respectively. When evaluating the quality of CZT bone SPECT/CT acquired by a standard protocol, 
25%-STS may provide adequate quantitative values.

Bone scans using phosphate-based radiopharmaceutical tracers are widely used for the diagnosis of bone disor-
ders. While whole-body imaging has been long-used for bone scans, it is now known that adding single-photon 
emission computed tomography (SPECT) or SPECT with computed tomography (SPECT/CT) can increase the 
diagnostic capabilities of whole-body imaging1,2. However, the addition of SPECT sequences increases the total 
scan time. A shorter scan is preferred, especially in patients with painful bone metastases who find it difficult to 
stay in a single position. Moreover, the feasibility of shorter scan times indicates the possibility of lower dose to 
the patient when the same scan time is used for SPECT image acquisition.

Gamma cameras with cadmium–zinc–telluride (CZT) detectors have advantages over conventional scintil-
lation cameras, which have increased spatial, time, and energy resolution. Clinical applications of CZT-based 
SPECT initially began with dedicated cardiac SPECT systems, which were reported to acquire images in a 
shorter time than conventional systems3,4. Subsequently, companies began marketing whole-body SPECT/CT 
using CZT detectors, and the possibility of a short-time scan (STS) has been reported in cardiac5, brain6,7, and 
whole-body bone scan8. However, it is as yet unknown whether or not short-time acquisition is acceptable for 
clinical applications related to SPECT/CT bone imaging using CZT detectors.

Quantitative evaluation is essential for objectively evaluating SPECT uptake values. Techniques for the stand-
ardization of these values have been developed using advances in hardware and software9,10. Among such tech-
niques, the standardized uptake value (SUV), originally used in positron emission tomography (PET), can be an 
appropriate representative index even for SPECT. SUVs have recently been utilized in SPECT/CT bone imaging 
for malignant lesions, such as when differentiating between benign degeneration and metastases11, or when 
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evaluating the treatment effects of 223Ra-chloride, which is used as radionuclide therapy of bone metastases from 
prostate cancer12. It is also utilized for benign lesions, such as in the evaluation of the clinical stage of antiresorp-
tive agent-related osteonecrosis of the jaw13, or in the evaluation of osteoblastic activity in the epiphyseal growth 
plates of children14. Although instability or vulnerability may be associated with SUVs for SPECT in comparison 
with those for PET, it has been found to be acceptable in most conditions after phantom-base analysis for quality 
assessment9,15,16, or in clinical-based assessments such as test–retest repeatability17. Therefore, images acquired 
in a shorter time might be acceptable for clinical use when the variance of the SUV is within a specified allow-
ance. The present study aimed to evaluate the clinical feasibility of short acquisition times for the bone SPECT/
CT using whole-body CZT detectors.

Methods
Patients.  This retrospective study was conducted in accordance with the guidelines of the Declaration 
of Helsinki. All experimental protocols in the present study were approved by Institutional Review Board of 
Saitama Medical University Hospital (No. 20158.01), and the need for written informed consent was waived due 
to the retrospective nature of the study. From the male patients with bone metastases from prostate cancer who 
underwent bone scans at our institution between December 2019 and December 2020, we selected 13 patients 
who met the following criteria: SPECT/CT was acquired using a fixed protocol as shown in the next subsection, 
and at least one metastatic lesion was confirmed based on the consensus of two experienced nuclear medicine 
physicians. We estimated 39 lesions to be the minimum required for an adequate analysis of intraclass correla-
tion coefficient (ICC), based on the table from Shoukri et al.18, with the parameters of n = 2, α = 0.05, β = 0.20, 
ρ0 = 0.6, and ρ1 = 0.8, where n was observations per subject, α was the probability of type-I error, β was the prob-
ability of type-II error, ρ0 was the ICC when the null hypothesis was true, and ρ1 is the ICC when the alternative 
hypothesis was true.

Bone SPECT/CT protocol: standard scan.  Initially, the patients received intravenous injections of 
99mTc-methylene diphosphonate (99mTc-MDP). Although 740 MBq was set as the standard target dose, we meas-
ured the dose in the syringe before and after administration, and calculated the precise dose injected from these 
values. Approximately 3 h after injecting the tracer, the patients were asked to void, after which whole-body 
bone and the associated SPECT/CT images were acquired using a Discovery NM/CT 670 CZT scanner (GE 
Healthcare, Chicago, IL, USA).

SPECT images for the standard scan (SS) were acquired using the following parameters: a total of 60 projec-
tions of 20 s each over 360° in a non-circular orbit, step-and-shoot acquisition by dual-head CZT detectors, 
high-energy high-resolution collimator, and energy window of 140.5 keV ± 7.5%. It indicated that 10 min was 
the standard scan time per table position when we did not consider time for gamma-camera rotation. All SPECT 
images were reconstructed using the ordered subset expectation maximization method, with iteration 4 and 
subset 10, the matrix size was 128 × 128, and the voxel size was 4.42 × 4.42 × 4.42 mm. CT images were acquired 
using the following parameters: 120 kV and auto mA (noise index 35) using an ASiR reconstruction system (GE 
Healthcare), 512 × 512 matrix, 1.375 pitch, and 0.5 s rotation. Although this SPECT/CT system could acquire 
SPECT data during the rotation of the gamma camera, named as SwiftScan (GE Healthcare), these data were 
not used in the present study to clarify the analysis.

Bone SPECT/CT protocol: short‑time scan.  The SPECT/CT image data were acquired using list-mode, 
and the images of STSs were reconstructed using 75, 50, 25, 10, and 5% data of SS. The 5%-STS image indicates 
the shortest acquisition for the scanner, indicating 1 s per step of the gamma cameras.

Placement of region of interest.  We used a workstation with Xeleris v9.0 (GE Healthcare) for region 
of interest (ROI) placement and SUV calculation. Based on the SS images, each 3-dimensional (3D) ROI was 
placed to cover the increased uptake interpreted as bone metastasis by the consensus of two board-certified 
nuclear medicine physicians. The maximum SUV (SUVmax) was calculated for each ROI. The reference ROI, 
which was healthy bone, was then set on the proximal area of the femur. To choose the reference area, the ROI 
was set to avoid metastatic lesions.

Statistics.  First, the variance of SUVmax between the SS and each STS was evaluated based on the ICC. 
Statistical analyses were performed using SPSS 27 (IBM, Armonk, NY, USA). For the calculation of the ICCs, 
the two-way random model, absolute agreement type, and single measurement data were used in SPSS 27. An 
ICC ≥ 0.8 was considered as an almost perfect correlation19. Second, we drew Bland–Altman plots between the 
SS and each STS. The repeatability coefficient (RC), reflecting 95% limits of repeatability for the relative differ-
ence between the two measurements on the Bland–Altman plot, was calculated to be 1.96 times the standard 
deviation of relative differences. For the evaluation of RC, ≤ 20% was defined as acceptable for the variation 
based on the results of previous studies concerning the test–retest repeatability of SUVmax on PET or SPECT 
images20–22. Third, we calculated the rate at which SUVmax changed by ≥ 5% and ≥ 10% for each STS compared 
with the SS. Finally, we calculated the contrast-to-noise ratio (CNR) using the following formula:

The CNR of the SS was statistically compared with that of each STS using the Wilcoxon signed-rank test, and 
a p-value of < 0.05 was considered statistically significant.

CNR =

SUVmax of the lesion−SUVmean of the reference

Standard deviation of the reference SUV
.
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Results
Patients.  A total of 152 metastatic lesions from 13 patients were selected for analysis. Injected dose ranged 
from 600 to 905 MBq (median 740 MBq), and the time of imaging after injection ranged from 165 to 220 min 
(median 200 min). The patient characteristics are shown in Table 1, and maximum intensity projection SPECT 
images of a representative case are shown in Fig. 1.

Agreement analysis.  The ICC and RC results are summarized in Table  2. The ICC was 0.955, even in 
5%-STS, and all STS images were found to have almost perfect agreement. The Bland–Altman plots are shown 
in Fig. 2. The RCs between the SS and 75%-STS, 50%-STS, and 25%-STS were < 20% and were therefore found 
to be acceptable, whereas those between the SS and 10%-STS and 5%-STS were > 20%, and were therefore found 
to be non-acceptable.

The SUVmax changes are shown in Fig. 3. The rates of SUVmax changes ≥ 10% were 1.3% at 75%-STS, 11.8% 
at 50%-STS, 25.0% at 25%-STS, 59.7% at 10%-STS, and 67.1% at 5%-STS.

Table 1.   Patient characteristics. 3D-ROI three dimensional-region of interest.

Patient no. Age (years) Dose (MBq) SPECT table position number
Time between tracer injection 
and SPECT scan start (min) Number of 3D-ROI (s)

1 82 878 3 206 21

2 76 740 2 194 11

3 69 662 2 207 11

4 69 600 1 216 1

5 65 869 3 200 21

6 83 687 2 204 8

7 72 673 2 197 7

8 74 699 2 198 10

9 80 905 1 171 6

10 76 745 1 190 15

11 76 765 2 220 11

12 74 726 2 201 18

13 79 765 2 165 12

Median 76 740 2 200 11

Figure 1.   Standard scan (SS) and short-time scan (STS) images of a representative case (#2) with bone 
metastases in a prostate cancer patient.

Table 2.   Intraclass correlation coefficient and repeatability coefficient between standard scan and each 
short-time scan. ICC intraclass correlation coefficient, RC repeatability coefficient, CI confidence interval, SS 
standard scan, STS short-time scan.

ICC (95% CI) RC (%)

SS vs 75%-STS 0.999 (0.999–0.999) 7.9

SS vs 50%-STS 0.997 (0.996–0.998) 12.4

SS vs 25%-STS 0.994 (0.992–0.996) 19.8

SS vs 10%-STS 0.983 (0.975–0.988) 30.8

SS vs 5%-STS 0.955 (0.928–0.970) 41.3
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Contrast‑to‑noise ratio.  Figure 4 shows the CNRs of the SS and each STS. CNR medians were 97.2, 91.4, 
80.1, 61.2, 42.6, and 27.1 for the SS, 75%-STS, 50%-STS, 25%-STS, 10%-STS, and 5%-STS, respectively. A signifi-
cant difference was observed between the SS and each STS (p = 0.04 between the SS and 75%-STS, and p < 0.001 
between the SS and the other STSs).

Discussion
To evaluate the clinical applicability of the quantitative values acquired from STS SPECT/CT images, we utilized 
list-mode data to simulate short-time acquisition of whole-body SPECT/CT bone scans performed in patients 
with bone metastases from prostate cancer. The resulting ICCs between the SS and each STS showed almost 
perfect agreement, even between the SS and 5%-STS (1/20th scan time).

ICC is one of the most frequently used indicators to evaluate reproducibility. Although there is no specific 
cutoff, an ICC of ≥ 0.819 or ≥ 0.7523 is generally considered to be an almost perfect correlation, based on the 
definition of the kappa agreement value. From this point of view, an ICC of 0.955, even between SS and 5%-STS, 
showed extremely high reproducibility. We also evaluated RC, another absolute indicator for reproducibility, to 
reinforce the statistical result because some studies recommended using both relative and absolute indicators24,25. 
Although no optimal cutoff was identified on the RC, we set 20% as the cutoff for the present study, based on 
previous studies that evaluated the reliabilities of SUVs20–22. As a result, we found that 25%-STS may be reliable at 
providing quantitative values. In the 25%-STS images, the SUV changed by ≥ 10% in 25.0% of the lesions. Based 
on the results of the previous studies regarding repeatability, changes in the SUV may be acceptable at ≤ 10%. As 

Figure 2.   Bland–Altman plots of short-time scan (STS) images. Horizontal dot lines indicate 95%-limits of 
agreement. Note that the range of difference on the vertical axis for 5%-STS (− 100 to 100%) is different from 
those in others (− 40 to 40%).

Figure 3.   Bar chart for the change in the rate of maximum standardized uptake value (SUVmax) from the 
standard scan to short-time scan (STS). Rate changes of 5–10% are orange and changes > 10% are blue.
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the incidence of the SUV change dramatically increases in the 10%-STS, the 25%-STS may be the shortest with 
which to maintain the reliability of quantitative values.

Contrarily, background noise gradually increased as the scan time decreased. Statistically significant differ-
ences were observed in the CNR between the SS and STS, even in 75%-STS, which may lead to false-positive 
results in the interpretation of SPECT/CT bone scans when using a shorter acquisition time. There may be a 
discrepancy in the results of ICC or RC analysis. Generally, uptake on bone scans in bone metastases is consid-
ered quite high11 compared with that in other types of metastatic or bone disorders26. Such a high quantitative 
value, therefore, may have been unaffected by the decrease in scan time and the subsequent noise on the images. 
These results are quite similar to those from the STS of a planar bone scan8. As a result, we feel that 25%-STS 
provides appropriate quantitative values for whole-body SPECT/CT scans for bone metastases from prostate 
cancer. Reducing scan time enables patients with pain to shorten the restrain. Instead of scan time, our results 
can apply for reducing tracer dose. For patients who need multiple follow-up scans, the benefits of low-dose 
scans must be significant. However, short acquisition time results in the reduction of image quality. The shorter 
the image acquisition time was, the more SUVmax changed, and the lower CNR was. On the other hand, more 
acquisition time, like > 75%, may be required for the initial diagnosis, even in the case of bone metastases from 
prostate cancer, or other types of bone metastasis or bone disorders that have lower uptakes. Therefore, we should 
use proper acquisition time or tracer dose for what is essential for the patient and how much the image quality 
is required. In addition, we should note that the median tracer dose we used in the present study was 740 MBq, 
which is relatively high when we consider 555 MBq as the standard dose. In that case, more acquisition time 
may be required for the appropriate quantification. Further studies are needed to evaluate the reliability of STS 
in different patient groups, including other malignant tumors or bone disorders.

Our proposed methods for short-time acquisition may be helpful to develop dynamic quantitative SPECT/
CT imaging, so far a domain of PET. Tracers with more complex kinetics, such as 99mTc-sestamibi or even new 
radiopharmaceuticals, could be evaluated. In addition to 99mTc labeled tracer, the development of new collimators 
of wide-energy high-resolution or medium-energy high-resolution can acquire images of other radionuclides, 
including 123I or 177Lu, that can apply for the dosimetry of radionuclide therapy27.

One limitation of the present study was that we did not evaluate the diagnostic capabilities of these scans, 
including sensitivity and specificity. Although we chose metastatic lesions based on the consensus of experienced 
nuclear medicine doctors, the results were not confirmed by pathological methods. Therefore, we can only discuss 
the quantitative values as the results of the present study.

In conclusion, regarding bone SPECT/CT images acquired using a standard protocol of 740 MBq tracer 
dose and 10 min/bed position, we found that 25%-STS might be acceptable for the clinical evaluation of the 
quantitative values of bone whole-body SPECT/CT images acquired using CZT detectors, specifically for bone 
metastases from prostate cancer.
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