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Abstract: In the present article we propose the application of variants of the mutual information
function as characteristic fingerprints of biomolecular sequences for classification analysis. In par-
ticular, we consider the resolved mutual information functions based on Shannon-, Rényi-, and
Tsallis-entropy. In combination with interpretable machine learning classifier models based on gener-
alized learning vector quantization, a powerful methodology for sequence classification is achieved
which allows substantial knowledge extraction in addition to the high classification ability due to
the model-inherent robustness. Any potential (slightly) inferior performance of the used classifier
is compensated by the additional knowledge provided by interpretable models. This knowledge
may assist the user in the analysis and understanding of the used data and considered task. After
theoretical justification of the concepts, we demonstrate the approach for various example data sets
covering different areas in biomolecular sequence analysis.

Keywords: mutual information; sequence analysis; classification; machine learning; interpretable
models

1. Introduction

The accumulation of information based on physical organization processes like struc-
ture generation and self-organization belongs to the key aspects of living systems [1–4].
Thus, information theoretic concepts play an important role in sequence analysis for un-
derstanding biomolecular entities like RNA, DNA, and proteins to explain biological
systems [5–7]. In case of DNA/RNA, the biomolecular information is coded by the nu-
cleotide sequence, particularly their sequence element’s frequencies, correlations, and
other topological features. The extensive influence of information theoretic concepts and
applications in the fields of computational, molecular, and systems biology is captured in
various reviews [8–11].

The study of sequences in consideration of their biological properties is still crucial for
such diverse applications as drug design, phylogenetic analyses, prediction of molecular
interactions, identification of polymorphisms or definition of pathogenic mutations [12–15].
With the availability of powerful machine learning methods like deep and convolutional
networks [16,17], and support vector machines [18] as well as the supporting hardware
(graphic processing units—GPU), self-learning procedures have entered (and revolution-
ized) many of these areas of biomolecular research [19–23]. Although these models provide
promising performance by automated training and outperform many statistical approaches,
the disadvantage is their general “black-box” behavior, i.e., the model decisions are usually
hardly interpretable. Thus, explanations are at least difficult to give and usually require
additional tools [24]. However, current focus is given to develop interpretable machine
learning models instead [25,26]. According to [27], interpretable models are designed to be
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interpretable in contrast to explainable methods, which can be comprehended post-hoc
by experts in the field using additional tools and elaborate considerations. Generally,
interpretability increases the trustworthiness of the machine learning method and hence
contributes to making them transparent for the applicants. However, interpretable models
require meaningful features describing the objects to be considered, ideally taking domain
knowledge into account.

It is precisely this identification or rather the design of problem-adequate features
that is the subject of research in the field of alignment-free sequence comparison in com-
putational biology. By overcoming some of the major disadvantages of alignments, such
as strong evolutionary assumptions [28], high computational costs [29] as well as non-
numerical sequence representation, alignment-free methods evolved as a true alternative
for quantifying sequence (dis-)similarity [30]. At present, respective methods are used
in the domains of phylogenetics [31–33], (meta-)genomics [34,35], database similarity
search [36], or next-generation sequencing data analyses [37–39].

In particular, information theoretic and statistical quantities provide a natural way
to generate unique signatures or fingerprints of molecular sequence data by considering
the distribution of nucleotides as elements of sequence as well as their statistical corre-
lations [40–42]. Long-range correlations in sequences are well-known and intensively
studied in alignment-free sequence comparison [43–46]. A promising statistical descriptor
approach for sequences is the concept of natural vectors. It considers the moments of the
distribution of the nucleotides in a sequence as the determining quantities to characterize
the molecular sequence [47]. The equality of all statistical moments of two sequences
implies the equality of statistical distributions and, hence, can be seen as an equivalence
relation. Natural vectors were successfully applied for DNA-analysis, virus, and protein
sequence classification [48,49].

The use of so-called mutual information functions (MIFs) as an alternative to cor-
relation profiles as sequence descriptors was first investigated in [50]. This idea was
reconsidered in [51] and renewed in [52,53]. In bioinformatics, this concept was established
as average mutual information profile (AMI-profile) and proposed to serve as a genomic
signature [54]. Molecular descriptors based on the mutual information are considered
in [55]. Further applications of MIF in computational biology involve its use for species
identification from DNA sequences [56], for finding (species-independent) patterns that
differ in coding and non-coding DNA [57] as well as for investigating co-variation of
mutations in protein sequences [58]. To make the idea accessible to a larger audience, a
user interface program for MIF calculation is provided in [59] and more applications are
reviewed in [60].

The mutual information is known as a similarity measure between distributions,
which originally is based on the Shannon entropy [61]. It implicitly takes all correlation
moments of the distributions for the comparison into account. Popular alternatives to the
standard mutual information are the Rényi and the Tsallis mutual information, which are
based on the Rényi and the Tsallis entropy, respectively [62–65]. The numerical estimations
of these mutual information variants seem to be more robust than the estimations for the
Shannon original [66].

These mutual information concepts can be used to generate information theoretic fea-
tures for sequence analysis: Rényi entropic profiles were considered for DNA classification
problems based on chaos game representation [67,68]. Molecular descriptors based on
the Rényi entropy were investigated in [69], whereas long range correlation using Tsallis
mutual information was considered in [70]. However, to our best knowledge, MIF for these
variants are not known so far.

Furthermore, in [71], it is criticized that the (Shannon) AMI profile, i.e., the MIF, suffers
from an average effect of 16 kinds of base correlations. Therefore, the authors of this study
proposed, based on the earlier work in [40], a partial information correlation.

This critic together with the above mentioned robustness observations for the Rényi
and the Tsallis entropy estimators motivated our investigations: first, we introduce a



Entropy 2021, 23, 1357 3 of 21

resolved variant of the Shannon-based MIF as a more adequate information theoretic
signature of molecular sequences reducing the average effects. Afterwards, we transfer
this concept to both the Rényi and the Tsallis variants obtaining respective (resolved)
mutual information functions. The resulting signature vectors serve as data descriptors
for sequence classification problems to be tackled by machine learning methods. In this
machine learning part, we focus on dissimilarity based and interpretable classifier models
according to the above discussion about interpretability. Particularly, we apply a variant
of learning vector quantization which delivers feature correlation information regarding
the classification problem as an additional information beyond the classifier predicting
performance [72]. Furthermore, this method is known to be robust and optimizing the
class separating hypothesis margin [73].

The paper is structured as follows: first, we introduce variants of the mutual informa-
tion functions for the Shannon-, the Rényi-, and the Tsallis-entropy and give theoretical
justifications. Second, we describe the interpretable machine learning classifier based on
learning vector quantization and show how knowledge about the decision process and the
regarding data properties can be extracted. Thereafter, we apply this methodology for three
biomolecular sequence data sets covering different application areas. For this purpose, we
describe in detail the feature generation and the parameter setting. Furthermore, we show
in the example for one data set how knowledge extraction from the trained classifier model
is done to provide useful additional information. Concluding remarks and outlook for
future work complete the paper.

2. Variants of Mutual Information Functions as Biomolecular Sequence Signatures

In the following section, we introduce the concept of variants of mutual information
functions, which later serve as determining fingerprints of nucleotide sequences. These
functions reflect structural characteristics and spatial relations within the sequences. For
this purpose, we consider several types of mutual information regarding different entropy
concepts. Thereby, we concentrate on those approaches, which are frequently used in ma-
chine learning. For a general overview of entropies, divergences, and mutual information,
we refer to [74].

2.1. The Resolved Mutual Information Function Based on the Shannon Entropy

We consider the Shannon entropy

H(X) =
∫
X

p(x) · log
(

1
p(x)

)
dx (1)

of a random quantity X ⊆ X with the density measure p(x) being the expectation value
of the information log

(
1

p(x)

)
. In the machine learning context here, we interpret X as

a feature or object quantity. The maximum value of the entropy H(X) is obtained for a
uniform density p(x) and, hence, H(X) serves as a measure of uncertainty [75].

The corresponding divergence is the Kullback–Leibler-divergence

DKL(p(x) ‖ p(y)) =
∫
X

∫
Y

p(x) · log
(

p(x)
p(y)

)
dydx (2)

as dissimilarity measure between the densities p(x) and p(y) [61,76]. The corresponding
mutual information is

I(X, Y) = DKL(p(x, y) ‖ p(x) · p(y)) (3)

quantifying the joint information of p(x) and p(y). Here, p(x, y) is the joint density.
Alternatively, the mutual information can be written as

I(X, Y) = H(X)− H(X|Y) (4)

using the conditional entropy H(X|Y) which can be written as
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H(X|Y) = H(X, Y)− H(Y) (5)

= −
∫
X

∫
Y

p(x, y) · log
(

p(x, y)
p(y)

)
dydx

known as the chain rule of the entropies [61,76]. Equivalently, the mutual information can
be formulated as the difference between the sum of the marginal entropies and the joint
entropy, i.e.,

I(X, Y) = H(X) + H(Y)− H(X, Y) (6)

is valid.
We can rewrite the divergence formulation of the mutual information I(X, Y) from

Equation (3) as

I(X, Y) =
∫
X

F(x, Y)dx

where

F(x, Y) =
∫
Y

p(x, y) · log
(

p(x, y)
p(x) · p(y)

)
dy (7)

describes a mutual information relation of a particular object (feature) x with respect to the
random quantity Y. We denote F(x, Y) as the (feature) resolved mutual information (rMI).

The mutual information for sequences X(t) and Y(t + τ) at time (position) t with shift
τ ≥ 0 is defined as

I(X(t), Y(t + τ)) =
∫
X

∫
Y

p(x(t), y(t + τ)) · log
(

p(x(t), y(t + τ))

p(x(t)) · p(y(t + τ))

)
dydx (8)

which yields by setting Y(t + τ) = X(t + τ)

I(X(t), X(t + τ)) =
∫
X

∫
X

p(x(t), x(t + τ)) · log
(

p(x(t), x(t + τ))

p(x(t)) · p(x(t + τ))

)
dx(t + τ)dx

as the auto mutual information at time/position t with shift (delay) τ [77,78]. If p(x(t))
is independent from t, only the joint probability p(x(t), x(t + τ)) remains t-dependent
or, more precisely, it becomes dependent only on the shift τ such that we simply write
p(x, x(τ)) for this. Thus, the auto mutual information in dependence on the shift τ is
obtained as

I(X, τ) =
∫
X

∫
X

p(x, x(τ)) · log
(

p(x, x(τ))
p(x) · p(x(τ))

)
dx(τ)dx (9)

as an information theoretic analogous to the auto-correlation function. In [50,79], this shift-
dependent auto mutual information is denoted as the mutual information function (MIF)
F(X, τ) = I(X, τ). Adapting the rMI from Equation (7) to the auto mutual information
I(X, τ) results in the function

F(x, τ) =
∫
X

p(x, x(τ)) · log
(

p(x, x(τ))
p(x) · p(x(τ))

)
dx(τ) (10)

=
∫
X

p(x, x(τ)) · log
(

p(x, x(τ))
p(x(τ))

)
dx(τ)− p(x) · log(p(x))



Entropy 2021, 23, 1357 5 of 21

which can be seen as a quantity characterizing the inherent correlations of the sequence
values x(t). We denote F(x, τ) as the (feature) resolved mutual information function (rMIF),
which trivially fulfills

I(X, τ) =
∫
X

F(x, τ)dx (11)

according to its definition. Note, more precisely would be the notation F(X, x, τ). We drop
the dependency on X for better readability. For (finite) discrete distributions, it becomes
simply a matrix F and I(X, τ) constitutes a vector. Hence, we can compare those vectors in
terms of respective norms, e.g., by the Euclidean norm for vectors or the corresponding
Frobenius norm for matrices [80,81].

2.2. Rényi α-Entropy and Related Mutual Information Functions

The Rényi-entropy

HR
α (X) =

1
1− α

log
(∫
X
(p(x))αdx

)
(12)

is a generalization of the Shannon-entropy, where α > 0 and α 6= 1 is a parameter [62].
Depending on the context, it is also denoted as α-entropy. In the limit α→ 1, the Shannon
entropy is obtained. The corresponding Rényi-divergence is

DR
α (p(x) ‖ p(y)) =

1
α− 1

log

(∫
X

∫
Y

(p(x))α

(p(y))α−1 dydx

)
(13)

with the limit limα→1 DR
α (p(x) ‖ p(y)) = DKL(p(x) ‖ p(y)) being valid, such that the α-

dependent Rényi-mutual-information (RMI) is defined as

IR
α (X, Y) = DR

α (p(x, y) ‖ p(x) · p(y)) (14)

analogous to the Shannon case (3). This mutual information is widely applied in data
analysis and pattern recognition as well as in information theoretic machine learning [82–90].
Unfortunately, a relation comparable to (6) does not hold, i.e.,

IR
α (X, Y) 6= HR

α (X) + HR
α (Y)− HR

α (X, Y)

is generally valid. This problem arises from the difficulty to define a conditional Rényi
entropy to be consistent with the setting in the Shannon case [91–93]. Several variants are
known [94,95]. The Jizba–Arimitsu conditional Rényi-entropy HJA

α (X|Y) defined as

HJA
α (X|Y) = Hα(X, Y)− Hα(Y) (15)

fulfills the chain rule by definition [96]. Obviously, HJA
α (X|Y) can be interpreted as an

extension of the conditional Shannon entropy H(X|Y) because the definition (15) precisely
coincides with Shannons chain rule (5). The resulting mutual entropy

MR
α (X, Y) = Hα(X) + HJA

α (X|Y) (16)

is consistent with (4) and preserves the symmetry [97]. However, it may violate the non-
negativity as well as IR

α (X, Y) 6= MR
α (X, Y) is valid. For further variants, we refer to [95].

Analogous to the resolved mutual information F(x, Y) in the Shannon case from
Equation (10), we denote

FR
α (x, Y) =

∫
Y

(p(x, y))α

(p(x))α−1 · (p(y))α−1 dy (17)
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as the α-scaled (feature) resolved Rényi mutual information (rRMI). Obviously,

IR
α (X, Y) =

1
α− 1

log
(∫
X

FR
α (x, Y)dx

)
holds. The Rényi variant of the cross mutual information for sequences X(t) and Y(t + τ)
at time t with shift τ ≥ 0 is defined as

IR
α (X(t), Y(t + τ)) =

1
α− 1

log

(∫
X

∫
Y

(p(x(t), y(t + τ)))α

(p(x(t)))α−1 · (p(y(t + τ)))α−1 dy(t + τ)dx(t)

)
(18)

which gives by setting Y(t + τ) = X(t + τ)

IR
α (X(t), X(t + τ)) =

1
α− 1

log

(∫
X

∫
X

(p(x(t), x(t + τ)))α

(p(x(t)))α−1 · (p(x(t + τ)))α−1 dx(t + τ)dx(t)

)

as the Rényi variant of the auto mutual information at time t with shift (delay) τ. Again,
if p(x(t)) is independent from t, only the joint probability p(x(t), x(t + τ)) remains t-
dependent such that it becomes dependent only on the shift τ and we simply write
p(x, x(τ)) for this. Hence, the Rényi auto mutual information in dependence on the shift τ
is obtained as

IR
α (X, τ) =

1
α− 1

log
(

FR
α (X, τ)

)
(19)

with

FR
α (X, τ) =

∫
X

∫
X

(p(x, x(τ)))α

(p(x))α−1 · (p(x(τ)))α−1 dx(τ)dx (20)

denoted as the Rényi variant of, or α-scaled Rényi mutual information function (RMIF).
Accordingly, the α-scaled resolved version of the RMIF is

FR
α (x, τ) =

∫
X

(p(x, x(τ)))α

(p(x))α−1 · (p(x(τ)))α−1 dx(τ) (21)

describing again the inherent correlations of the sequence and, hence, can serve as a
characterizing quantity of the sequence. Accordingly, we denote the function FR

α (x, τ)
as the α-scaled resolved Rényi mutual information function (rRMIF) for Rényi entropies.
Obviously,

IR
α (X, τ) =

1
α− 1

log
(∫
X

FR
α (x, τ)dx

)
(22)

is valid analogous to Equation (11).

2.3. Tsallis α-Entropy and Related Mutual Information Functions

Recently, the Tsallis mutual information came into the focus for studying long range
correlations in symbol sequences [70]. It is related to the Tsallis α-entropy

HT
α (X) =

1
α− 1

(
1−

∫
X
(p(x))αdx

)
(23)

which becomes in the limit α→ 1 the Shannon entropy H(X). It was first introduced by
HAVRDA AND CHARVÁT in 1967 [98] and later rediscovered by TSALLIS [64]. It is related to
the Rényi α-entropy HR

α (X) by

HR
α (X) =

log
(
1− (1− α)HT

α (X)
)

1− α

as stated in [65]. The Tsallis-divergence is given by
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DT
α (p(x) ‖ p(y)) =

1
α− 1

(
1−

∫
X

∫
Y

(p(x))α

(p(y))α−1 dydx

)
(24)

as explained in [64,74]. Using the same procedure as for the Shannon case (3), we obtain

IT
α (X, Y) = DT

α (p(x, y) ‖ p(x) · p(y)) (25)

for the α-dependent Tsallis mutual information (TMI) [99]. As for the Rényi mutual
information, the inequality

IT
α (X, Y) 6= HT

α (X) + HT
α (Y)− HT

α (X, Y)

is generally valid except the case α = 1 being the Shannon case. It is symmetric and always
non-negative but not consistent with the conditional Tsallis entropy

HT
α (X|Y) = HT

α (X, Y)− HT
α (Y)

1 + (1− α) · HT
α (Y)

(26)

as explained in [65]. To avoid these and other difficulties, finally, the Tsallis α-entropy
based mutual entropy (information) is suggested to be

MT
α (X, Y) =

HT
α (X) + HT

α (Y)− HT
α (X, Y) + (1− α)HT

α (X)HT
α (Y)

1 + (1− α)HT
α (X)

as proposed in [65]. However, the inequality MT
α (X, Y) 6= IT

α (X, Y) holds.
As for the Shannon and the Rényi variants of the mutual information, we consider a

resolved Tsallis mutual information (rTMI)

FT
α (x, Y) =

∫
Y

(p(x, y))α

(p(x) · p(y))α−1 dy (27)

such that

IT
α (X, Y) =

1
α− 1

(
1−

∫
X

FT
α (x, Y)dx

)
(28)

holds. For the auto mutual information with shift τ, we get

IT
α (X, τ) =

1
α− 1

(
1− FT

α (X, τ)
)

(29)

with

FT
α (X, τ) =

∫
X

FT
α (x, τ)dx (30)

as the Tsallis mutual information function (TMIF) by the same arguments as before with

FT
α (x, τ) =

∫
X

(p(x, x(τ)))α

(p(x) · p(x(τ)))α−1 dx(τ) (31)

denoted as the α-scaled resolved Tsallis mutual information function (rTMIF) for Tsallis
entropies. In bioinformatics context, it can be seen as a α-scaled object dependent average
Tsallis mutual information profile.

Comparing TMIF and RMIF as well as rTMIF and rRMIF, we can obviously state the
equalities FR

α (X, τ) = FT
α (X, τ) and FR

α (x, τ) = FT
α (x, τ).

All quantities relevant for the later data analysis are summarized and adapted for
biomolecular sequences in Table 2.
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3. Interpretable Classification Learning by Learning Vector Quantization

Learning vector quantization (LVQ) as introduced by T. KOHONEN is a neural network
approach for classification trained by Hebbian competitive learning to achieve an approxi-
mation of a Bayes classifier model [100,101]. It is based on the intuitive nearest prototype
principle, i.e., prototype vectors are distributed in the data space during the learning phase
to detect the data class distribution. In the recall phase, a data point is assigned to that
class the nearest prototype is referencing based on a given data dissimilarity. It is known
as a robust variant of the nearest neighbor principle [102]. In this way, LVQ is easy to
interpret [27].

Particularly, LVQ supposes data vectors x ∈ X = {xk}K
k=1 ⊆ Rn together with class

labels c(x) ∈ C = {1, . . . , C} for training [100]. Furthermore, the LVQ-model requires
prototype vectors wj ∈ W = {wk}N

k=1 ⊂ Rn with class labels c
(
wj
)

such that each class
of C is represented by at least one prototype. As already mentioned, a new data vector is
assigned to a class by means of the nearest prototype principle

x 7→ c(w∗) with w∗ = argmin
wj∈W

(
d
(
x, wj

))
where w∗ is denoted as the winning prototype for the input x with respect to W. Here, d
is a predefined dissimilarity measure in Rn frequently chosen as the (squared) Euclidean
distance. According to [103], prototype learning in GLVQ can be realized as a stochastic
gradient descent learning (SGDL) for the prototype set W. The respective cost function

E = ∑
x∈X

E(x, W)

approximates the overall classification error for the training set X by local errors

E(x, W) = f (µ(x, W))

taking into account the classifier function

µ(x, W) =
d(x, w+)− d(x, w−)
d(x, w+) + d(x, w−)

such that µ(x, W) ∈ [−1, 1] is valid and f is a monotonically increasing sigmoid squashing
function. Here, w+ is the closest prototype to x with a correct label, whereas w− is the
closest prototype with incorrect label, i.e.,

w+ = argmin
wj ∈ W

c(x) = c
(
wj
)

d
(
x, wj

)
and w− = argmin

wj ∈ W
c(x) 6= c

(
wj
)

d
(
x, wj

)
(32)

such that µ(x, W) < 0 holds in case of a correct classification.
The SGDL-step for a given input x is

∆w± ∝
∂E(x, W)

∂w±

realizing an attraction scheme (vector shift) for w+ towards x in case of the (squared)
Euclidean distance as dissimilarity d, whereas w− is repelled from x. This variant of LVQ
is known as generalized LVQ (GLVQ, [103]).

The interpretability and the power of the GLVQ can be improved taking the dissimi-
larity d as

dΩ(x, w) = (Ω(x−w))2 (33)
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where Ω ∈ Rm×n is a mapping matrix with m ≤ n. This mapping matrix is also the subject
of adaptation during learning with

∆Ωij ∝
∂E(x, W)

∂Ωij

realizing the SGDL-step for a given input x. This approach is known as the generalized
matrix LVQ (GMLVQ) [72]. In case of m < n, it is the limited rank GMLVQ (LiRaM-
LVQ) [104].

The resulting matrix Λ = ΩTΩ is denoted as classification correlation matrix (CCM) [105].
The matrix entries Λij reflect after training those correlations between the ith and jth data
features, which contribute to a class discrimination. More specifically, if

∣∣Λij
∣∣� 0 is valid,

the respective correlation of the features is important to separate the classes, whereas∣∣Λij
∣∣ ≈ 0 indicates that either the correlation between the ith and jth data feature does

not improve the classification or that this correlation information is already contained in
another significant correlation. The vector λ = (λ1, . . . , λn)

T with

λi = Λii

being the non-negative diagonal elements of the classification correlation matrix is denoted
as classification relevance profile (CRP) of the features [106]. It describes the relevance
of the features for class discrimination with an analog interpretation as for

∣∣Λij
∣∣. The

classification influence profile (CIP), defined as κ = (κ1, . . . , κn)
T with

κi = ∑
j

∣∣Λij
∣∣

provides the importance of the ith data feature in combination with all other features for
the separation of the data set. Both profiles, as well as the classification correlation matrix,
provide additional information beyond the pure classification performance and, hence,
contribute to a high interpretability of the classification model [107].

Moreover, all mentioned GLVQ variants are robust classification learning models
maximizing the hypothesis margin for most appropriate class separation [73,108].

4. Applications of Mutual Information Functions for Sequence Classification

In the following, we apply the described information theoretic quantities as charac-
terizing features for biomolecular sequences. Particularly, we use the introduced variants
of mutual information functions summarized in Table 2 and natural vectors as feature
generators. Their performance is evaluated in combination with the LiRaM-LVQ for three
biological classification tasks.

4.1. Data Sets

The chosen data sets summarized in Table 1 are representatives of biological applica-
tions facing the common challenges of varying sequence lengths and containing ambiguous
characters (see Section 4.2.3).

Table 1. Overview of the used data sets.

Data Set Classes Sequences Per Class * Mean Length Std. Length

Quadruplex
detection 2 368 175/193 62.1 43.7

lncRNA vs.
mRNA 2 20,000 10,000 each 1197.3 710.8

COVID types 3 156 44/90/22 29,862.9 34.1
* Sample size per class.
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4.1.1. Quadruplex Detection

This data set consists of 368 nucleotide sequences that were experimentally validated
to either build or not build a G-quadruplex during folding. Quadruplexes are structural
(3D) motifs of one or more nucleic acid strands consisting of at least two stacked tetrads.
These are characterized by the planar arrangement of four nucleotides, each of which
forms non-canonical bonds (base pairing schemes other than Watson-Crick) with two of
the other nucleotides. If all tetrad-forming nucleotides are guanine, it is also denoted as the
G-quadruplex, or G4. The utilized data are equivalent to that published by [109] without
the random sequences (background sequences assumed to be non-G4). The data source is
the G4RNA database [110].

4.1.2. lncRNA vs. mRNA

For the next task, we used a data set containing 10,000 human long non-coding RNA
(lncRNA) sequences and 10,000 protein-coding transcripts (mRNA). lncRNA are transcripts
that do not encode proteins, i.e., they are not translated, but play a role in gene regulation.
Their typical length of more than 200 nucleotides (nt) delineates them from small non-
coding RNA such as miRNAs or snoRNAs and similarities in sequence structure compared
to mRNA make their differentiation challenging [111]. The data set was generated anal-
ogous to [111]: The data were retrieved from the GENCODE database [112] in the latest
version v.38 at the time of access (11 August 2021). Data preprocessing comprising filtering
of sequences with length 250–3000 nt and random selection of 10,000 sequences per class
was applied. In contrast to [111], we decided to use the same interval for both classes in
order to not prone our classifier to use the sequence length as class discriminating property.

4.1.3. COVID Types

As a third data set, we took 156 coronavirus sequences from human hosts of the
types A, B, and C, implicitly coding the evolution in time of the virus. The SARS-CoV-2
sequence data source is the GISAID (Global Initiative on Sharing Avian Influenza Data)
coronavirus repository from 4 March 2020 with types derived from a phylogenetic network
analysis in [113]. Type A is most similar to the bat virus, type B evolves from A by a
non-synonymous and a synonymous mutation (evolutionary substitutions that do or do
not modify the resulting amino acid sequence, respectively) and type C is characterized by
a further non-synonymous mutation.

4.2. Feature Generation

In the following, we introduce the concept of natural vectors and provide a description
of how to generate feature vectors from the information theoretical quantities MIF and
rMIF introduced in Section 2 for machine learning applications. Both feature generators are
sequence length independent and capable of handling ambiguous characters in biological
data as covered in more detail in Section 4.2.3.

4.2.1. Natural Vectors

Natural vectors (NV) in biomolecular context accumulate statistical descriptors con-
cerning the distribution of nucleotide positions within a sequence s = [s1 . . . sn] over the
alphabet A = {A, C, G, T}. They were generalized in [47] from [114]. Natural vectors are
known to be characteristic fingerprints for biomolecular sequences reflecting statistical
and, hence, information theoretic properties. Therefore, we consider them as baseline for
comparison with mutual information functions.

To define NV accurately, let nk = ∑n
i=1 wk(si) be the absolute frequency of nucleotide

k in s, given that wk(si) ∈ {0, 1} indicates the absence (0) or presence (1) of k at sequence
position si. Furthermore, let µk = ∑n

i=1 i · wk(si)
nk

denote the mean sequence position of

nucleotide k and Dj
k = ∑n

i=1
(i−µk)

jwk(si)

nj−1
k nj−1

be the normalized central moment of order j. Then,
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the natural vector is defined as

x = (nA, µA, D2
A, . . . , DnA

A , nC, µC, D2
C, . . . , DnC

C , nG, µG, D2
G, . . . , DnG

G , nT , µT , D2
T , . . . , DnT

T ) (34)

Obviously, µk = D1
k is valid and one can take just nk = D0

k in terms of the statistical
moments. Furthermore, it was stated that this setting guarantees a unique coding of the
molecular sequences [47]. In practical applications, the maximum order jmax of moments
to be calculated is fixed equally in dependence of the data set for all nucleotides to achieve
equal-length vectors for all considered sequences. Hence, the data dimension becomes
n = 4 · (jmax + 1).

In the experiments, we determined an optimal setting of jmax under consideration of
the sequence length via grid search. Therefore, we evaluated jmax ∈ {2, 3, 4}, {2, . . . , 15}
and {2, . . . , 15} for the Quadruplex detection, lncRNA vs. mRNA and COVID types data
set, respectively. We directly take x from Equation (34) as input (feature vector) for the
LVQ model. The maximum order 15 for jmax was taken as an upper bound because higher
moments were numerically vanishing for the used data sets.

4.2.2. Mutual Information Functions

In case of mutual information functions, the feature vector x = (x1, . . . , xτmax)
T is

generated from a sequence X by setting xτ = F(X, τ) or xτ = FR
α (X, τ) for Shannon and

Rényi, respectively. The maximum distance between pairs of nucleotides considered in the
sequence is τmax.

For the resolved mutual information functions, we take

x =
(

xA
1 , . . . , xA

τmax xC
1 , . . . , xC

τmax xG
1 , . . . , xG

τmax xT
1 , . . . , xT

τmax

)T

with xk
τ = F(k, τ) or xk

τ = FR
α (k, τ), where k ∈ A = {A, C, G, T}.

Table 2 summarizes the applied mutual information functions for the Shannon and
Rényi case.

Table 2. Overview of the computed mutual information functions for biomolecular sequences X
from Sections 2.1 and 2.2.

MIF rMIF

Shannon F(X, τ) = ∑x∈X F(x, τ)
F(x, τ) = ∑x(τ)∈X p

(
x, x(τ)

)
·

log

(
p
(

x,x(τ)
)

p(x)·p
(

x(τ)
))

Rényi FR
α (X, τ) = ∑x∈X FR

α (x, τ) FR
α (x, τ) = ∑x(τ)∈X

p
(

x,x(τ)
)α(

p(x)·p
(

x(τ)
))α−1

In the literature on MIF, there is disagreement on how to calculate the marginal
probabilities of the nucleotides: one camp propagates a symmetric version, i.e., p(x)
denotes the relative frequency of a nucleotide x in a sequence [52,54,56], while the other
distinguishes the frequencies of the nucleotides at the positions x depending on x(τ), i.e.,

p(x) = ∑x(τ) p
((

x, x(τ)
)
|x
)

and p
(
x(τ)

)
= ∑x p

((
x, x(τ)

)
|x(τ)

)
[57–59]. We used the

latter (non-symmetric) version, since biological sequences have a chemically reasonable
reading direction, such that a nucleotide’s neighbor is determined in the 3’ direction.

An optimal setting of the hyper-parameter τmax was obtained under consideration of
the sequence length via grid search. We evaluated τmax ∈ {2, . . . , 8}, {10, 25, 50, 100} and
{5, 10, 50, 100} for the Quadruplex detection, lncRNA vs. mRNA and COVID types data
set, respectively.

The α-value for the Rényi variants was set to α = 2 as usual. This choice leads to low
computational costs and provides numerical stability [82].
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4.2.3. Handling of Ambiguous Characters

Ambiguous characters are introduced by the IUPAC (International Union of Pure and
Applied Chemistry) degenerate base notation [115]. Thereby, the notation ambiguous refers
to the concept that a single character from the alphabet extension
E = {R, Y, M, K, S, W, H, B, V, D, N} represents more than one nucleotide, present in data
to describe incompletely specified bases or uncertainty of them [115]. For instance R de-
notes either A or G, the ambiguous character H stands for either A, C, or T, whereas N
codes for all four possible nucleotides.

In order to make the feature generators cope with these representations, the weights
0 ≤ wk(si) ≤ 1 now code the probability for, and not just the presence (1) or absence (0) of,
a nucleotide at one specific sequence position, i.e.,

wA(si) =



1 i f si = A
0 i f si = C, G, T, Y, K, S or B
1
2 i f si = R, M or W
1
3 i f si = H, V or D
1
4 i f si = N

. (35)

In [116], natural vectors were expanded to handle this extended alphabet. We designed
a solution for the MIF variants analogously.

4.3. Classification

Following all the feature extractors mentioned above, we have applied a Z-score
normalization in order to make the individual features comparable. Classification was
then done using the LiRaM-LVQ implementation from the Python toolbox prototorch
in 3-fold cross validation. In all cases, the prototypes for learning were initialized as
randomly selected data points and the learning rate was set to 0.01 in all cases. The
mapping dimension m was set to 10 independent of data set or feature set. The choice of
the number of prototypes was data set depending: for Quadruplex detection and COVID
types, we took only one prototype per class. For the lncRNA vs. mRNA data set, the grid
search for optimal setting resulted in 50 prototypes per class as balance between complexity
of the model and performance.

5. Results and Discussion
5.1. Classification Performance

Table 3 displays the achieved test accuracies by LiRaM-LVQ in combination with the
optimal parameter setting of jmax and τmax for the NV and MIF variant feature extractors,
respectively.

Table 3. Achieved test accuracies ± standard deviation by LiRaM-LVQ in percent and the respective parameter setting.

Data Set NV
MIF rMIF

Shannon Rényi Shannon Rényi

Quadruplex detection 78.8± 1.0
jmax = 4

68.9± 1.2
τmax = 7

68.2± 1.7
τmax = 7

77.4± 1.3
τmax = 8

82.0± 1.0
τmax = 7

lncRNA vs. mRNA 71.9± 0.1
jmax = 7

75.4± 0.2
τmax = 100

75.5± 0.3
τmax = 100

81.4± 0.1
τmax = 100

76.3± 0.6
τmax = 100

COVID types 86.0± 1.2
jmax = 5

98.1± 0.6
τmax = 50

97.4± 1.0
τmax = 50

99.7± 0.3
τmax = 50

99.3± 0.5
τmax = 50

Considering these results in Table 3, we see that rMIF outperforms the MIF variants
as well as the models which use NV for feature generations for all three data sets. Further-
more, the developed Rényi variant shows in the Quadruplex detection example for rMIF
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significantly better results compared to the Shannon counterpart. However, for the second
data set, the performance of rMIF depends on the choice of τmax. In general, it can be said
that for long sequences τmax need to be chosen adequately if long range correlations are to
be considered as well.

For deeper investigation of these results and to show the capabilities of the applied
LiRaM-LVQ classifier, we will consider the CCM and CIP. Furthermore, visualizations of
the mean MIF and rMIF per class and data set are considered for deeper understanding
of the generated features and their potential differences between classes. In order to not
overload the reader, we will restrict a more in-depth interpretation and discussion to one
of the data sets, the quadruplex detection challenge.

It should be noted that a feature generation procedure based on pure statistics might
achieve comparable or even better results. For this reason, it is not surprising that the
statistical feature extractor Bag of words [117,118] has been successful in related works on
the data sets mentioned: 92.8% AUC were achieved for the quadruplex data in combination
with a simple neural network [109], an accuracy of 98.7% was described in [111] for the
lncRNA vs. mRNA data by use of a convolutional neural network and 97.4% accuracy
were obtained in [119] for COVID type detection using GMLVQ. However, the focus of this
paper is on the investigation and further development of information theoretical methods
and their suitability for sequence analyses in computational biology.

5.2. Visualization of MIF Variants

A closer look at the class-wise averaged MIF variant profiles in Figure 1 allows for
assessing the methods behavior on the quadruplex data set. The plotted means suggest a
clear class delineation, while the standard deviation adds depth/difficulty to the problem.
All profiles are plotted prior to Z-score normalization, but with a slight vertical shift
between the classes for better visual perception.

Figure 1. Data insights, i.e., class-wise mean and standard deviation of the MIF variants for the
quadruplex data set (G4 and non-G4 forming sequences). (a) Rényi MIF; (b) Rényi rMIF.

Comparison of the MIF and rMIF clearly shows a more accurate resolution of the
information for rMIF, not only in terms of inter-sequential distances, but also in terms of
individual nucleotides. Obviously, the sum of the four F(x, τ) with x ∈ {A, C, G, T} yields
F(X, τ). The features with respect to G-nucleotides stand out in particular.

5.3. Interpretation of CCM and CIP of the Trained LiRaM-LVQ Model

The resulting CCM of the trained LiRaM-LVQ model gives domain experts, here
biologists, immediate assistance to evaluate whether the classifier works reasonably. Fur-
thermore, it allows statements to be made about whether the classification decision is
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based on some data biases or artifacts that were not necessarily known during data genera-
tion [104]. This interpretation possibility of the LiRaM-LVQ model is a huge advantage in
comparison to black box models [120] especially in biological issues: Together with mean-
ingful data features, as given here, biologists can draw conclusions regarding expected
biological and biochemical properties.

In the experiments, we verified that the CCM can serve as a basis for interpretation
by repeating the classification process multiple times and analyzing whether the matrix is
visually stable. If significant deviations had been seen, an interpretation would have been
spurious. Each depicted CCM is the result of averaging the individual CCMs obtained
form the three validation folds. Furthermore, we limit the visualization to the best hyper-
parameter setting according to our grid search.

For the quadruplex data set, the best choice τmax = 7 gives a CCM with dimensionality
7× 7 and 28× 28 for the MIF and rMIF case, respectively. These quantities are visualized
in Figure 2 giving insights into the classification decision of LiRaM-LVQ:

Figure 2. Classification insights, i.e., CCM and CIP of LiRaM-LVQ for the quadruplex data set. The color bars code the
correlation values of the CCM. (a) Rényi MIF; (b) Rényi rMIF.

As can be seen from the CIP and from the CCMs’ main diagonal, the CRP, in Figure 2a,
the MIF values for τ equals 1, 4, and 6 mainly influence the classifier’s decision to discrimi-
nate the classes of G-quadruplex (G4) and non-G4 forming sequences. Moreover, the CCM
shows positive and negative correlations between the features. For example, features τ = 4
and 6 are strongly positive and τ = 1 and 4 are in strong negative correlation with each
other. Thus, if τ = 1 has a high value, it is important for the class discrimination, but only
if τ = 4 has a small value and vice versa. It is striking that the feature τ = 5 does neither
alone nor in combination with any other feature contribute to the differentiation for this
learned model.

In Figure 2b, the CIP illustrates that eight features stand out with their influence
on the class discrimination. Sorted by importance, these are: the information for (G, 2),
(G, 3), (A, 1), (C, 3), (G, 7), (G, 4), (G, 5), and (A, 6). Taking the CCM into consideration, a
high positive correlation between (A, 1) and (G, 2) as well as between (C, 3) and (G, 2) is
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obvious. Examples for high negative correlations would be the pairs of (G, 2) and (G, 3) or
between (A, 1) and (G, 3). The clearly recognizable significance of Gs at different distances
is biologically sound due to the general characterization of a G-quadruplex by a pattern of
recurring guanines in the sequence as described in [121]. Insights like this would not have
been possible with the standard MIF but only with our introduced resolved variant rMIF.

At first glance, one might claim an inconstancy between the high influence values in
the CIPs for MIF and rMIF features. However, in the MIF calculation, there is an averaging
of the information over the alphabet, such that the classifier can make use of more detailed
information with rMIF. This means that the summation of the classification influence values
for all four (x, τ) does not necessarily result in the influence value for the MIF for a specific
τ and vice versa. As the individual nucleotides play a key role in the bioinformatics domain,
there might be an essential information loss if an averaging procedure takes place as it is
done for the simpler MIF.

Beside biological interpretations, these insights offer the possibility to adjust or rather
fine-tune the classification model. For example, by taking just the seven most important
rMIF features into account, we still obtain a performance of 77.1± 0.7%. Hence, we could
reduce the model complexity with moderate performance decrease.

To sum up, the LiRaM-LVQ classifier is transparent in the decision process as well
as in the Hebbian learning process. Now, the expert can start to evaluate the results and
either extract knowledge from the classifier or question the quality of the data/model if
the results seem peculiar.

For the sake of completeness, Figure 3 shows the CCM and CIP for the lncRNA vs.
mRNA as well for the COVID type data set. The Shannon rMIF features were superior in
these tasks. Our grid search resulted in high optimal values for τmax which is alright for
pure performance evaluation but poses a problem in visually evaluating the CCMs and
drawing conclusions. Therefore, we decided to take advantage of the same procedure de-
scribed above: we identified the 30 most important/valuable features using the CIP, ran the
classification procedure again using only these, and finally visualized both characteristics.

Figure 3. Classification insights, i.e., CCM and CIP of LiRaM-LVQ using the Shannon rMIF. The color bars code the
correlation values of the CCM. (a) COVID data; (b) lncRNA vs. mRNA data.
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An in-depth analysis of the results including biological interpretation is up to the
well-disposed reader.

6. Conclusions, Remarks, and Future Work

In this contribution, we propose information theoretic concepts and quantities to
characterize spatial correlations in sequences. In particular, we introduced several variants
of mutual information functions for Shannon, Rényi, and Tsallis information theoretic
approaches. In particular, the resolved mutual information functions provide subtle
information regarding the internal spatial correlation of the sequences.

These functions/quantities can be used as sequence signatures/fingerprints and thus
for comparison in machine learning approaches. In particular, interpretable machine
learning models can make use of this resolved information to achieve insights about the
sequence class differences. As we have shown using our favored LiRaM-LVQ, detailed
information can be extracted as an add-on to the pure classification model.

We see applications for sequence analysis in bioinformatics, especially in the context
of alignment-free sequence comparison. Additionally, we remark that this concept can
be extended to the analysis of more general categorical sequential data such as natural
language texts or sheet music.

In the future work, we will extend this approach to further mutual information con-
cepts related to other widely considered entropy measures and information theoretic quan-
tities, e.g., the Cauchy–Schwarz-divergence [85], or more general α-, β- and γ-divergences
with related mutual information concepts [74,91,122]. Further considerations could be a
generalization to higher than two-body correlations as suggested in [123] or performing
the calculation for sequences not 1 by 1 residue (position), but multiple residues [59].

Furthermore, we want to compare these methods with other feature generators tak-
ing statistical (spatial) correlation into account such as the return time distribution [124]
known from stochastic modeling, DMk method [125] incorporating the occurrence, lo-
cation, and order relation of k-mers, compression based methods with the underlying
concept of minimum description length [126], methods based on domain transform, i.e.,
Fourier/Wavelet [127,128], DNA walks [45,129] and iterated function systems, e.g., chaos
game representation or universal sequence maps [42,130].

However, interpretability should be kept always as a key feature when considering
alternative models [25,131,132]. Interpretability increases the trustworthiness and hence
the acceptance of models for the potential users [27]. Further extensions improving trans-
parency of the decision and already known for GLVQ approaches are the incorporation
of reject options for ambiguous decisions or outliers as well as the use of interpretable
probabilistic classifiers [133–135].
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the authors upon request.
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