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Abstract: Microtubules are formed by α- and β-tubulin heterodimers nucleated with γ-tubulin.
Tubulins are conserved eukaryotic proteins. Previously, it was shown that microtubules are involved
in diatom silica frustule morphogenesis. Diatom frustules are varied, and their morphology is
species-specific. Despite the attractiveness of the problem of elucidating the molecular mechanisms
of genetically programmed morphogenesis, the structure and evolution of diatom tubulins have
not been studied previously. Based on available genomic and transcriptome data, we analyzed the
phylogeny of the predicted amino acid sequences of diatom α-, β- and γ-tubulins and identified
five groups for α-tubulins, six for β-tubulins and four for γ-tubulins. We identified characteristic
amino acids of each of these groups and also analyzed possible posttranslational modification sites
of diatom tubulins. According to our results, we assumed what changes occurred in the diatom
tubulin structures during their evolution. We also identified which tubulin groups are inherent in
large diatom taxa. The similarity between the evolution of diatom tubulins and the evolution of
diatoms suggests that molecular changes in α-, β- and γ-tubulins could be one of the factors in the
formation of a high morphological diversity of diatoms.

Keywords: microtubules; α-, β-, and γ-tubulins; phylogeny; morphology and evolution of diatoms

1. Introduction

Microtubules (MTs) are major components of the eukaryotic cytoskeleton. Although
MTs are involved in a variety of diverse processes ranging from intracellular transport
to morphogenesis, their protein building blocks, called tubulins, are among the most
well-conserved proteins [1,2]. Tubulin is a subject of study in various fields of molecular
science, from cell biology [3] to evolution [4]. Knowledge of the structure and function of
tubulins has practical applications in the development of new drugs for medicine [5,6] and
agriculture [7].

The tubulin superfamily includes α-, β-, γ-, δ-, ε-, ζ-, and η-tubulins [4]; the evolution
of this superfamily has been shaped by intense recent duplications [8]. The high degree
of similarity between the bacterial filamentous temperature-sensitive protein Z (FtsZ)
and the eukaryotic family of tubulins [9,10] has led to the inclusion of FtsZ (along with
other prokaryotic tubulin-like proteins [11]) in the tubulin superfamily [12,13], and FtsZ is
thought to be a tubulin ancestor [14]. The α-, β- and γ-tubulins are present in all eukaryotic
phyla, whereas δ-, ε-, ζ- and η-tubulins are restricted to animals, fungi and protists [15–17]
and have been lost in some phyla [8]. Phylogenetic analysis has shown that plant α-
and β-tubulins can be separated into distinct subclasses [1,18]. In animals, the α- and
β-tubulin genes have undergone duplication, encoding separate isoforms [19,20]. The
various isoforms of α-, β- and γ-tubulins differ by their variable sites [21,22] mostly at
the C-terminal ends, and the different isoform structures affect MT dynamics [23,24]. In
addition to these duplications, the diversity of tubulin isoforms can be further increased by
the application of post-translational modifications [11,22].
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α- and β-tubulin monomers form a dimeric protein that serves as a basic building block
for microtubules [13,15], and γ-tubulin is necessary to initiate their assembly [15,25,26].
Although the three-dimensional structure of the tubulin dimer has been studied [27–32],
the roles played by some amino acid residues in both the α- and β-tubulin chains in model
organisms are known [29].

For example, it is known that α- and β-tubulins consist of 10 β-chains (S1–S10) and
12 α-helices (H1–H12) connected by loops. These structures formed by three major do-
mains: an N-terminal nucleotide-binding domain (1–205 amino acids [a.a.]), an inter-
mediate domain (206–381 a.a.) and a C-terminal ligand-binding domain (from 382 a.a.;
Figure 1) [24,33–35]. γ-tubulins have similar structure according to [36,37]. The C-terminal
domain is also known as the C-terminal tail (CTT) [18], and its modifications affect protein
diffusion along MTs [38] and alter dynein binding [1]. Amino acid substitutions in CTT
may result in changes in protein function since this domain is responsible for interactions
between microtubules and various intracellular components [1,39]. Tubulin heterodimers
assemble longitudinally to form protofilaments. The H3-helice and M-loop (ML-surface) are
involved in lateral interactions between heterodimers of neighboring protofilaments [40,41].

Diatoms are a unicellular eukaryotic group within the kingdom Chromista [42] that
display a high diversity of morphologically distinct species [43]. The phylum Bacillar-
iophyta consists of classes Coscinodiscophyceae (centric species with radial symmetry),
Mediophyceae (centric species with radial and bipolar symmetry), and the bilaterally sym-
metric class Bacillariophyceae. Class Bacillariophyceae, in turn, consists of the subclass
Bacillariophycidae (raphid pennates) and the araphid subclasses Fragilariophycidae and
Urneidophycidae. Phylogenetic analysis of 4 markers expressed by araphid diatoms can
be used to separate them into two major clades: (1) a small basal araphid clade, which
includes families from Urneidophycidae and the genera Neofragilaria and Asteroplanus; and
(2) a larger Fragilariophycidae clade, which includes other araphid pennates. This latter
clade is thought to be a sister of the raphid pennates [44,45]. According to the timescale
for diatom evolution based on four molecular markers [44,46], class Coscinodiscophyceae
diverged from the remaining diatoms belonging to the subdivision Bacillariophytina 230
Ma (max). Within the Bacillariophytina the bi(multi)- polar centric class Mediophyceae
diverged from the class Bacillariophyceae 218 Ma. The Bacillariophyceae radiated 190 Ma.

Numerous studies have attempted to determine the genetic and cellular mechanisms
that underlie the differences in symmetry and the fine structures of diatom cell walls. Earlier
studies have shown that this group of organisms expresses α-, β-, and γ-tubulins [8,47–49].
Exposure to microtubule inhibitors causes a variety of structural anomalies in diatom
valves [50–59]. In other studies, tubulin has been shown to be involved during mor-
phogenesis, and microtubules appear to form underlying layers during the formation of
valves [60,61] and other specialized structures [56,57]. The role of microtubules is likely not
limited to defining formations of structure; they are also likely to be involved in intracellular
vesicular transport [50,62,63]. A hypothesis was put forward about the specific localization
of aquaporins in silicalemma by MTs during the morphogenesis of silica structures [64].

Currently, the molecular mechanisms regulating of microtubules in diatoms have
been insufficiently studied. For further experimental studies, it is necessary to analyze the
primary structure of diatom tubulins and their regulating proteins.

In this work, we performed a comparative and phylogenetic analysis of diatom α-,
β- and γ-tubulins, including the description of their groups, duplications, and amino acid
residues to define characteristic positions. Based on these data, we propose a model of
diatom tubulin evolution.
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Figure 1. Tubulin structure. (A): Secondary structure for α- and b-tubulin for example H. sapiens 

(HsTa1A—α-tubulins, HsTb3—β-tubulins and HsTg1—γ-tubulin) and P. tricornutum 
Figure 1. Tubulin structure. (A): Secondary structure for α- and b-tubulin for example
H. sapiens (HsTa1A—α-tubulins, HsTb3—β-tubulins and HsTg1—γ-tubulin) and P. tricornutum
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(PtTa—α-tubulins, PtTb—β-tubulins and PtTg1—γ-tubulin). β-chains are marked S1–S10 and 12 α-
helices—H1–H12. Cross black lines delimit major domains. (B–D): Structural conservation mapping
performing on the ConSurf 2016 webserver; this conservation was assayed for all diatom tubulins.
(B): α-tubulins; (C): β-tubulins; (D): γ-tubulins. Conserved amino acid residues are shown in shades
of red, and the variable amino acids are showed in shades of blue. Residues with insufficient data are
showed in shades of yellow.

2. Results
2.1. Tubulin Identification

Analysis of genomic data of diatoms Fragilaria radians (Kützing) D.M. Williams &
Round, Phaeodactylum tricornutum Bohlin, Thalassiosira pseudonana Hasle & Heimdal, Pseudo-
nitzschia multiseries (Hasle) Hasle, Fragilariopsis cylindrus (Grunow ex Cleve) Helmcke and
Krieger showed the presence of α-, β- and γ-tubulin; in the genome of Pseudo-nitzschia
multistrata, only the genes of α- and γ-tubulin were found. The genome of P. multiseries
contained two α-tubulin genes with 95.58% sequence identity. F. cylindrus and T. pseudonana
encoded two and three β-tubulin genes, respectively, with intra-genome sequence identities
of 90.83% and 78.33 to 97.18%, respectively (Supplemental Table S1).

The analysis of the MMETSP transcriptomic data resulted in the detection of all
three tubulin subfamilies in the analyzed species (Supplemental Table S1). Of the known
transcriptomes, 53 species encoded at least one α-tubulin transcript (17 encoded two, and
3 encoded three α-tubulin sequences, with varying intra-genome sequence identities) β-
tubulins were identified in 54 species, with 14 species had 2 and 1 species had 3 sequences
(which also featured various intra-genome sequence identities). γ-tubulin sequences were
identified in 17 species, with no species encoding more than one transcript.

Mapping the structural conservation of diatom α- and β- tubulins (Figure 1; Supple-
mental Figure S2A–C) revealed that they are highly conserved throughout most of the
sequence. In contrast, γ-tubulins are only conserved within the helices, whereas the loops
featured multiple variable sites (Figure 1; Supplemental Figure S2A–C).

The length of the predicted a.a. sequences of diatom α-tubulins included in our data
set varies from 445 to 468 a.a. Analysis of the alignment of all sequences including Homo
sapiens and Arabidopsis thaliana (Supplemental File S3) revealed that more than 50% of
total a.a. number are conserved. Fourteen a.a. are conserved among diatoms, but differ
from the same positions in out-group sequences. That is, these positions are conserved for
diatoms and differ from the outgroup (see below “characteristic of diatoms”). Moreover,
the positions are probably significant for the diatoms as the amino acids have retained
conservatism. The amino acid residues are C75, Y87, I92, T141, S168, S172, T201, L209,
V212, A232, T303, V378, L388 and A400 (Supplemental File S3; Supplemental Table S6A;
Figure 2).

Most of the differences in the diatom α-tubulin amino acid sequences were concen-
trated in the N-terminal domain and the CTT, this latter being enriched in negatively
charged amino acids aspartate (D) and glutamate (E). Single amino acid polymorphisms
could be detected along all of the sequence (Supplemental File S3).

The length of predicted a.a. sequences of β-tubulins of diatoms included into our data
set varies from 422 to 466 a.a. Analysis of the alignment of all sequences considered, includ-
ing H. sapiens and A. thaliana (Supplemental File S4), revealed that more than 40% of a.a.
positions are conserved. Differences among the β-tubulin predicted amino acid sequences
of diatoms were typically found in variable positions along the entire sequence. Twelve
positions are conserved for diatoms and differ from out group (see below “characteristics
of diatoms”): M139, Y167, Q198, A201, A230, A232, T236, C248, C313, S323, A351, and
W378 (Supplemental File S4; Supplemental Table S6B; Figure 3).
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Figure 2. Phylogenetic tree of diatom α-tubulins. A total of 101 sequences were used to build a
Maximum Likelihood tree using the LG + F + R7 substitution model. The amino acids conserved
in diatoms are on the left , characteristic amino acids of certain α-tubulin groups are on the right.
Large taxa are highlighted in color: green, Coscinodiscophyceae; red, Mediophyceae; blue, Bacillario-
phyceae, Fragilariophycidae; orange, Bacillariophyceae, Urneidophycidae; purple, Bacillariophyceae,
Bacillariophycidae.
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Figure 3. Phylogenetic tree of diatom β-tubulins. A total of 106 sequences were used to build a
Maximum Likelihood tree using the LG + F + R7 substitution model. The amino acids conserved
in diatoms are on the left, characteristic amino acids of certain β-tubulin groups are on the right.
Large taxa are highlighted in color: green, Coscinodiscophyceae; red, Mediophyceae; blue, Bacillario-
phyceae, Fragilariophycidae; orange, Bacillariophyceae, Urneidophycidae; purple, Bacillariophyceae,
Bacillariophycidae.

The length of the predicted a.a. sequences of γ-tubulins of diatoms included into our
data set varies widely from 453 to 579 a.a. (Supplemental File S5). The longest sequence
was found in P. delicatissima (579 a.a.). This increase is caused by two insertions of varying
length involved in connection with dimers of αβ-tubulins, located between T1 and T2
loops in the nucleotide binding domain (up to 60 a.a.), as well as in the region between S7
and H9 (up to 56 a.a.). Analysis of the alignment of all sequences considered including H.
sapiens and A. thaliana revealed that 19 a.a. are conserved in diatoms and differ from those
in organisms of the out-group (Supplemental File S5; Supplemental Table S6C; Figure 4).
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2.2. Phylogeny

Five groups were identified on the phylogenetic tree of diatom α-tubulins (Figure 2).
The α1 and α3 groups are non-monophyletic, while the α2, α4, and α5 groups are mono-
phyletic. Three of these groups (α1–α3) included centric species with radial symmetry.
Group α1 consisted of species from the classes Mediophyceae and Coscinodiscophyceae.
Group α2 was a small, heterogeneous group containing Ditylum brightwellii, Minutocellus
polymorphus, Extubocellulus spinifer (class Mediophyceae), and Aulacoseira subarctica (class
Coscinodiscophyceae). Group α3 (α3.1 and α3.2) is primarily formed by centric Medio-
phyceae, with two exceptions: Dactyliosolen fragilissimus (class Coscinodiscophyceae) and
Asterionellopsis glacialis (class Bacillariophyceae, subclass Urneidophycidae). The other
two groups consisted of pennate diatoms. Group α4 included araphid pennates from the
subclasses Fragilariophycidae and Urneidophycidae (class Bacillariophyceae). Group α5 is
found entirely among Bacillariophyceae taxa.

In some transcriptomes, the detected α-tubulin copies belonged to the same group,
whereas some transcriptomes featured copies that were classified into multiple groups
(Figure 2). For example, all of the α-tubulin sequences identified in Amphiprora paludosa
(ApTa1, ApTa2, and ApTa3) belonged to group α5, whereas the α-tubulin sequences in
Ditylum brightwellii, DbTa1a and DbTa2, were classified into α2 and α3 groups, respectively,
and the sequence DbTa1 had an intermediate position (α1). Two sequences identified in
Triceratium dubium (TdTa2a and TdTa2b) were placed in the out group, whereas a third
sequence (TdTa1) also occupied an intermediate position (α1).

The phylogen etic tree of diatom β-tubulins (Figure 3) consisted of six groups. β2 and
β4 groups arise as a result of polytomy. Centric diatoms from the classes Mediophyceae and
Coscinodiscophyceae, with multiradial and bipolar symmetry, formed the β1 group. The
non-monophyletic β2 group consisted of centric diatoms from the classes Mediophyceae
and Coscinodiscophyceae. Group β3 is formed by centric diatoms of class Mediophyceae.
Group β4 is non-monophyletic and included centric diatom sequences from the family
Chaetoceraceae (class Mediophyceae), a single araphid pennate diatom Staurosira com-
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plex sp. (subclass Fragilariophycidae, class Bacillariophyceae), a single centric diatom D.
fragillisimus (class Coscinodiscophyceae) and single pennate A. glacialis (class Bacillario-
phyceae, Urneidophycidae). Group β5 represented by araphid pennate diatoms (subclass
Fragilariophycidae, class Bacillariophyceae). Group β6 consisted of species subclass Bacil-
lariophycidae, class Bacillariophyceae (pennate raphid diatoms), order Bacillariales, and
pennate raphid Phaeodactilum tricornutum (Figure 3).

The γ-tubulins were separated into four groups (γ1–γ4) (Figure 4). The γ2–γ4 groups
were also formed as a result of polytomy. The γ1 group was formed by two centric
diatom species from the class Mediophyceae. The γ2 group included the centric diatoms
from the family Chaetocerotaceae (class Mediophyceae) and a single Coscinodiscophyceae
species, Dactyliosolen fragillisimus. The γ3 group contained centric diatoms from the class
Mediophyceae, and pennate diatoms (class Bacillariophyceae) formed the γ4 group.

2.3. Analysis of Specific Amino Acids in Different Groups

As a result of sequence analysis within the phylogenetic groups, positions can be
identified that are conserved within individual groups but differ from those of the outgroup
(Supplemental File S3; Table S6A). Some of the identified positions overlap between groups
(Figure 2; Supplemental Table S6A), while others are conserved within one specific group.
The characteristic conserved positions of group α-tubulins are presented in Supplemental
Table S6A and Figure 2, so for the α1 group, 4 a.a. are characteristic (G19, S80, R370 and
Q372) in N-terminal nucleotide-binding domain and intermediate domain. In the α2 group,
conserved amino acids are located only in the N-terminal nucleotide-binding domain (Q19,
S50), and in α4 in the intermediate domain (K372, M379). There are no such characteristic
conserved amino acids in the α3 and α5 group.

Among the phylogenetically distinguished groups of β-tubulins, 11 positions are
retained for each of them (Supplemental File S4; Figure 3; Supplemental Table S6B). The
number of such positions is less than forα- and γ-tubulins. The largest number of conserved
positions was found in β1 group (L84, M130, A145, V163, I170, C234, V315, T365, T371 and
T377), while in other groups they were single and localized only in one of the domains
N-terminal nucleotide-binding domain or the intermediate domain. It is interesting that
for β5 group, the characteristic amino acids were found in the C-terminal domain. No
characteristic conserved positions were found in group β4.

Due to the small number of diatom γ-tubulin sequences available for analysis it is
quite conditional to distinguish conserved positions for γ-tubulin all groups (Supplemental
File S5; Figure 4; Supplemental Table S6C). We did not define any specific conservative
amino acids for γ1 group, since it consists of only two sequences (Supplemental Table S6C;
Figure 4).

2.4. Analysis of Posttranslational Modification Sites

We performed a search for known post-translational modification sites in predicted
amino acid sequences from five α-tubulin groups, intending to use these results in conse-
quent theoretical and experimental reconstructions of cytoskeleton regulation on various
stages of the diatom cell cycle.

It was shown that lysine in homolog positions to H. sapiens α-tubulin methylation
and acetylation site is only retained in group α1. In other groups (α2, α3 and α5), some
of the sequences were replaced by nonpolar or uncharged polar amino acid residues
(Supplemental Table S7a). The polyglutamylation sites of α-tubulin E443 and E445 [65] are
retained in 35 and 46 cases of 83, respectively (Supplemental Table S7a). Polyglutamylation
site E443 in the similar positions is conserved in 35 out of 83 sequences [65]. The α1 group
has the largest number of sequences with conserved polyglutamylation sites, and the fewest
cases in the α4 and α5 groups in pennate species. The polyglycylation sites E446 and E448
in the sequences of diatom α-tubulins are almost not preserved. Glutamic acid is present
in sequences 13 and 17, respectively, and it was not possible to isolate a group for which
its presence would be necessary. In most cases, these positions contain aspartate, which
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also belongs to monoaminodicarboxylic (35 and 46 sequences, respectively) (Supplemental
Table S7a). The polyglycylation site of β-tubulin E437 is fully represented only in the β1
and β4 groups and in most of the sequences of the β2 group, while in the β5 and β6 groups
it is replaced by aspartic acid in most of the sequences. In the positions corresponding to
the polyglycylation site E439, in diatoms in most cases (44%) there is aspartate; glutamate
is present less frequently (36.7%). The polyglutamylation site of E441 in β-tubulins is
conserved only in the β3 group (retained in 13 sequences out of 14), while in other groups
it is present only in some sequences. Sites of detyrosination in C-terminal tyrosine (Y)
residue and polyglutamylation (addition of E to γ-carboxy group of E side chains and
chain elongation by further addition of E residues) or polyglutamylation (addition of
G to γ-carboxy group of E side chains and chain elongation by further addition of G
residues) are conserved for all groups (Supplemental Table S7a). However, glutamate
(E) was replaced with aspartate (D) in several sequences (Supplemental Table S7a). Sites
that are homologous to H. sapiens phosphorylation and ubiquitinylation tyrosine Y432
and lysine K304, respectively, are also conserved for all groups (Supplemental Table S7a).
Palmitoylation (addition of long-chain fatty acid palmitate) site that is homologous to H.
sapiens C376 is conserved in all groups of α-tubulin. Interacting amino acid pair responsible
for filament rigidity (homologous to K60 and H283 for H. sapiens) is strictly conserved in
α1, while other groups (α2-5) have some substitutions (Supplemental Table S7a).

β-tubulin amino acid sequences show remarkably high identity, both within groups
(β1-β6) and in general. A slightly higher variance is present in the CTT end (Supplemental
File S4 and Supplemental Table S7b). Analysis of functionally important modification sites
shows that acetylation, polyamilation and phosphorylation sites homologous to H. sapiens
K252, Q15, and S172 are strictly conserved. Polyglycylation site E435 is preserved in all
groups except for substitutions to aspartate in several sequences. Polyglycylation site E438
remains conserved only in the β4 group; in the β5 and β6 groups, with a single exception,
it is replaced by aspartate, in other groups it is non-conserved. In β4 glutamic acid (E) the
former position is more conserved (again, with substitutions to glutamate); polyglycylation
site E438 for β3 group is more variable and may contain monoaminocarbonic acids (G
and A), an amide of a monocarbonic acid (Q), as well as aromatic amino acids (Y and T)
(Supplemental Table S7b).

Phosphorylation is the only type of modification described for γ-tubulin (S80, S131,
T288 and S361). Analysis of the predicted diatom amino acid sequences shows that S131
and T288 are retained in all members of this group. Serine in position S361 is substituted
with monoaminomonocarbonic acid alanine (A) for all diatom sequences. S80 is mostly re-
placed with glycine, another monoaminomonocarbonic acid, but it is not strictly conserved
(Supplemental File S5 and Supplemental Table S7c).

3. Discussion
3.1. Features of Diatom Tubulin a.a. Sequences

Tubulins are highly conserved, and the substitution of a single amino acid in these
protein sequences can cause microtubule dysfunction and phenotypic changes [20,66]. Var-
ious tubulin isoforms are known to exist in nature [11,67], some of which have undergone
subfunctionalization [1,68]. However, mutagenesis represents an essential tool in the search
for novel approaches to the treatment of microtubule-related diseases [23,69].

Diatom genomes and transcriptomes have been found to encode α-, β- and γ-tubulins
(Supplemental Table S1), as described by previous studies [8,47–49]. Only a few species
appear to express γ-tubulin, although it is present in all genomes studied, which is likely
due to the relatively low expression level of γ-tubulin compared with the α- and β-tubulins.
γ-tubulin is a vital part of the acentriolar microtubule organization centre (MTOC) present
in diatoms [47]. As this structure is only duplicated at certain stages of the cell cycle, γ-
tubulin may not be expressed at other times, and thus not present in transcriptomic datasets.
To collect more diatom γ-tubulin sequences, it is necessary to produce either genomic
sequences or transcriptomes from synchronized cultures during MTOC duplication. It is
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likely that such datasets for all diatom species will include γ-tubulins. Long insertions
in the T1-T2 nucleotide binding domain and the beginning of the second domain may be
characteristic of diatom γ-tubulins (S5_Alignment3_Gamma_diatoms.fas). It is possible,
however, that these insertions are removed during protein maturation.

Most amino acid substitutions identified within the diatom α- and β-tubulin sequences
were found in the N-terminal domain and the CTT. The CTT is known to be positioned out-
side of the microtubule core and serves as a binding site for some microtubule-associated
proteins (MAPs) [70,71]. The CTT has also been shown to undergo various modifica-
tions [39]. In addition, the CTT domain affects microtubule polymerization and depoly-
merization kinetics [33]. We suppose that the substitutions identified within this domain
may affect some of these properties and the overall function of the microtubule apparatus.
Insertions in this region have previously been shown to cause the repositioning of essential
amino acids involved in GTP binding [72].

Tubulins are subject to numerous posttranslational modifications such as phosphory-
lation [73], acetylation [12,74], methylation [75], palmitoylation [76,77], ubiquitylation [78]
polyamination [79], and detyrosination/tyrosination [80]. We have considered it crucial to
study whether the sites of these modifications are preserved in diatom tubulin sequences.
It was noted above that K40 in H. sapiens α-tubulin was an important modification site.
Acetylation in this position protects microtubules from aging [81]. According to our results,
this site is only preserved in the diatom group α1, and replaced with incompatible amino
acids in other groups. Moreover, our findings revealed that in 93% of sequences, this site
is preserved in the diatom group α1 and is absent in the group α4, which may affect the
stability of the microtubules. It is likely that acetylation at this position is most significant
for the α1 group. This suggests that, at least outside α1, microtubule longevity is either
much lower than in humans, or regulated via a different mechanism.

Unlike K40, the C-terminal tyrosine and detyrosination site [80] and the glutamina-
tion and polyglutamination sites [82] are essential for microtubule flexibility and various
microtubule-regulating signals. These sites are conserved for all diatoms (assuming that
E-to-D substitutions are synonymous), pointing to an important role to microtubule func-
tioning. Nevertheless, despite the synonymy of these amino acids, their substitution in
some cases is still significant for the regulation of the properties of microtubules through
glutamination [83]. It is possible that tyrosine phosphorylation site (Y432) [71] and lysine
ubiquitination site (K304) [78] also retain their role. The site palmitoylation [76], a target of
growth factor in human cells, is retained in all diatom α-tubulin groups. Low identity of
this position in other groups suggests that growth factor is not an important microtubule
regulator in diatoms. On the other hand, rigidity regulation mechanism involving K60 and
H283 [81] is possible in diatoms, since these amino acids are conserved.

Most of β-tubulin modification sites are conserved (Supplemental Table S7b), suggest-
ing that diatom β-tubulin regulation is similar with other organisms [74,79,84]. The only
exception is provided by polyglycylation sites (E435 [85] and E438 [86]) which are more
variable (Supplemental Table S7b).

Only two phosphorylation sites are in diatom γ-tubulins, namely S131 and T288,
but four phosphorylation sites (S80, S131, T288, and S361 [87]) are known among other
organisms. Positions to be homologous to S80 and S361 contain entirely different amino
acids (aminomonocarbonic alanine and glycine instead of oxymonoaminocarbonic serine).
As the radicals of these amino acids are chemically different, they could not serve as
phosphorylation sites. However, these positions are conserved between diatom γ-tubulin
groups, hinting to their importance for some other function.

3.2. Diatom Tubulin Structure and Evolution

The conserved a.a. identified in the predicted sequences showed that there was
common a.a. for all groups, while almost every group contained a.a. characteristic only for
their group (Supplemental Table S6A–C). A comparison of phylogenetic reconstructions
(Figures 2–4) and these conserved a.a. positions in diatoms showed that changes occurred
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in the primary structure of proteins from one phylogenetic group of tubulins to another.
However, there were distinctive amino acids that were not conserved. This finding clearly
confirms that each of the tubulin classes had an ancestral form in which some of the
positions were formed and supported by selection. Thus, for α-tubulins, these are C75, Y87,
I92, T141, S168, S172, T201, L209, V212, A232, T303, V378, L388, and A400 (Supplemental
File S3, Supplemental Table S6A; Figure 2). β-tubulins have 12 such positions: M139,
Y167, Q198, A201, A230, A232, T236, C248, C313, S323 A351, W378 (Supplemental File
S4; Supplemental Table S6B; Figure 3), while such positions have γ-tubulins nineteen, but
there are too few data on this tubulin class and changes may occur with an increase in the
sample (Supplemental File S5, Supplemental Table S6C; Figure 4). In all tubulin classes, the
groups of pennate species, which are the youngest in the evolution of diatoms (α5, β5, β6,
and γ4), have the maximum difference. In β-tubulins, of the 31 positions we identified in
this work for the β1 group, 12 positions in β6 are retained in the evolutionarily subsequent
groups. A.a. that were most supported by selection during the diatom evolution were
indicated in phylogenetic reconstructions (Figures 2–4). Since some of these a.a. occurred
in evolutionarily older α1 and β1, and some, upon the emergence of subsequent groups
and are supported in younger ones, we assume that they may be of functional importance
and, possibly, are one of the factors influencing the species-specificity of tubulins and their
role in the morphogenesis of diatoms. This conclusion is also confirmed by a division of
tubulins between centric (classes Coscinodiscophyceae and Mediophyceae) and pennate
(class Bacillariophyceae) diatoms.

In γ-tubulins, due to the small sample of sequences, it is difficult to reliably identify
conserved a.a. positions. However, even in this case, there is a noticeable difference in
the composition of conserved a.a. more evolutionarily earlier and later groups. Thus, we
can suppose that during the evolution of diatom tubulins, some amino acid residues were
formed that are characteristic of individual groups of a certain systematic position. In the
absence of experimental data, we cannot presume the function of each of them; however,
we believe that maintaining conservatism in these positions may indirectly indicate their
functional significance.

Based on the identified diversity of tubulin groups and the analysis of the a.a. se-
quences, we have assumed that tubulins of diatoms evolved independently (Figure 5).
Diatoms with radial symmetry from class Coscinodiscophyceae, the earliest class, contain
three α-tubulin groups (α1, α2, and α3), three β-tubulin groups (β1, β2, and β4), and a
single γ2-tubulin group. The class Mediophyceae appears later, inheriting the same three
Coscinodiscophyceaeα-tubulin groups (α1–α3), four β-tubulin groups (β1–β4), and three
γ-tubulin groups (γ1–γ3). Our dataset includes only one species from the subclass Urneio-
phycidae (basal araphids), Asterionellopsis glacialis. This species has inherited the α3 and α4
groups of α-tubulin and the β4 group of β-tubulin and acquired the α4 group of α-tubulin
during its evolution. The divergence of Urneiophycidae was followed by the formation of
the class Bacillariophyceae, subclass Bacillariophycidae, in which all previously presented
tubulin groups disappeared and new α5, β6, and γ4 tubulin groups surfaced. The youngest
diatoms core araphids from the subclass Fragilariophycidae inherited the α4 group of
α-tubulin, β4 and β5 groups of β-tubulin, and γ4 group of γ-tubulin.

The analysis performed allows us to trace changes in the structure of tubulin in
diatoms. The presence in the same genomes of some species of different groups of α- and
β-tubulins (Leptocylindrus danicus, T. pseudonana) confirms their independent evolution in
diatoms of the class Mediophyceae. It is possible that some tubulins of certain groups as
a result of duplication could acquire different properties, which subsequently led to the
formation of a new tubulin group. The most surprising results regard the diatom species of
the class Bacillariophyceae (Figure 5). For this class, the evolution of α-tubulins becomes
dependent and excludes the presence of two groups of tubulins. It is noted that the diatom
species of the class Bacillariophyceae (Figure 5) are characterized by the presence of only
one group of α-, β-, or γ-tubulins. Most likely, the absence of any variations in tubulins
in the Bacillariophyceae diatom genomes indicates the need for compatibility of the α-
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and β-tubulins. Thus, diatom tubulins could evolve both concurrently between α- and
β-tubulins (Bacillariophyceae), as suggested for insect tubulins [88], and independently
(Mediophyceae), which was previously shown [8].
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4. Materials and Methods
4.1. Identification of Diatom Tubulin Sequences

Tubulin sequences were identified in the published genomes of Fragilaria radians (Syne-
dra acus subsp. radians (Kützing) Scabitchevsky), Phaedactylum tricornutum, Thalassiosira
pseudonana, Thalassisosira oceanica, Pseudo-nitzschia multiseries, Pseudo-nitzschia multistrata,
and Fragilariopsis cylindrus, and in transcriptomic assemblies provided by MMETSP (Marine
Microbial Eukaryotic Transcriptome Sequencing Project) [89] (Supplemental Table S1) using
BLAST at the e-value cutoff of 1 × 10−35. Only sequences with complete, uninterrupted
open reading frames (ORFs) were included for the analysis of MMETSP data [90]. We
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used the α- (GeneBank: NP_001257328), β- (GeneBank: NP_110400), and γ- (GeneBank:
NP_001061.2) tubulin sequences from H. sapiens and Arabidopsis thaliana to query these
genomes. Sequence identities were calculated on the ExPASy web server using Clustal
Omega [91].

4.2. Alignment and Comparative Sequence Analysis

All identified amino acid sequences for diatom tubulins were aligned with MAFFT
v7 [92]. The alignments of the identified diatom α-, β-, and γ-tubulins are available in the
Supplementary Files (Supplemental File S3, Supplemental File S4, and Supplemental File
S5, respectively). Structural conservation mapping (Figure 1B–D) was performed on the
ConSurf 2016 webserver [93]. All variable positions are numbered according to the human
α- (GeneBank: AAA91576.1), β- (GeneBank: BAB63321.1), and γ- (GeneBank: NP_001061)
tubulin positions that they align with.

Posttranslational modification sites in predicted amino acid sequences were found
using previously published information on the position and functional importance of these
sites in α-, β-, and γ-tubulins of other organisms [2,12,73–81,87], and other references in
discussion.

4.3. Phylogenetic Analysis

Sequence alignment for phylogenetic analysis was obtained using MAFFT v7 [92]
with the parameter—maxiterate 1000, and gaps were removed with trimAL [94], at a gap
threshold of 0.75. Maximum likelihood trees were built using IQ-TREE v 1.6.12 [68], with
the substitution model selected using the built-in ModelFinder method [95]. Branch support
was tested using SH-like aLRT, with 10,000 replicates number of bootstrap replications
10,000, minimum threshold to keep branches in the consensus tree 0.7. Tubulin isoforms
from H. sapiens and A. thaliana, which were obtained from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database [96], were used as an out group. The phylogenetic trees
were visualized using the server i-TOL v5.7 [97].

5. Conclusions

Tubulins and other elements of the cytoskeleton are currently becoming one of the
significant objects in the study of molecular and cellular mechanisms of diatom morphogen-
esis. This work, based on the analysis of the predicted amino acid sequences of diatom α-,
β- and γ-tubulins, allowed us to identify tubulin group characteristic of certain classes and
subclasses of diatoms. Groups of α1, β1 and γ1 (or γ2) tubulin centric diatoms were the first
to form from the ancestral forms of these proteins. We assume that the α- and β-tubulins of
diatoms of the classes Coscinodiscophyceae and Mediophyceae had a single ancestral form
and subsequently evolved in parallel. The data indicate that during evolution in α-, β-,
or γ-tubulins, specific post-translational modification sites and characteristic amino acid
positions were maintained by selection. Along with this, each of the groups had its own
amino acids, which became conserved for the particular group. The molecular evolution of
α-, β-, or γ-tubulins of diatoms is comparable to the evolution of diatoms themselves and
could be one of the pathways in the formation of morphological diversity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23020618/s1.
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