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S u m m a r y  
Listeria monocytogenes is a facultative intracellular pathogen that grows in the cytoplasm of infected 
host cells. We examined the capacity of L. monocytogenes to introduce influenza nucleoprotein 
(NP) into the class I pathway of antigen presentation both in vitro and in vivo. Recombinant 
L. monocTtogenes secreting a fusion of listeriolysin O and NP (LLO-NP) targeted infected cells 
for lysis by NP-specific class I-restricted cytotoxic T cells. Antigen presentation occurred in the 
context of three different class I haplotypes in vitro. A hemolysin-negative L. monocytogenes strain 
expressing LLO-NP was able to present in a class II-restricted manner. However, it failed to 
target infected cells for lysis by CD8 + T cells, indicating that hemolysin-dependent bacterial 
escape from the vacuole is necessary for class I presentation in vitro. Immunization of mice with 
a recombinant L. monocytogenes strain that stably expressed and secreted LLO-NP induced NP- 
specific CD8 + cytotoxic T lymphocytes. These studies have implications for the use of L. 
monocytogenes to deliver potentially any antigen to the class I pathway in vivo. 

~steria monoc?togenes is a gram-positive facultative intra- 
cellular bacterium which has been used for decades as 

a model pathogen for the study of ceU-mediated immunity 
(1; for reviews see references 2-4). The immune response to 
L. monocytogenes is considered a paradigm of T cell-mediated 
immunity, as both the CD4 + and CD8 + T cell subsets con- 
tribute to the resolution of infection, whereas antibody plays 
no measurable role (2). Adoptive transfer studies have impli- 
cated CD8 + cells as the most critical effector T cell subset 
(5, 6) that secretes cytokines (7, 8) and actively lyses infected 
cells in vitro (9, 10). The induction of protective immunity 
to L. monocytogenes requires administration of live hemolytic 
bacteria (11, 12). 

During the past several years, a combination of genetic 
approaches and in vitro analysis of mutants using tissue cul- 
ture models of infection have led to a detailed description 
of the cell biology ofL. monocytogenes infection (13-15). The 
major findings are that, subsequent to internalization, bac- 
teria are found in vacuoles and shortly thereafter are free in 
the host cell cytoplasm. Once in the cytoplasm, bacteria grow 
rapidly and exploit a host system of actin-based motility to 
move from cell to cell without exposure to the extraceUular 
environment. Its intracytoplasmic life cycle makes L. mono- 
cytogenes an attractive candidate to introduce foreign antigens 
directly into the class I pathway of antigen presentation. 

Entry ofL. monocytogenes into the host cytoplasm is facili- 
tated by the secreted, pore-forming hemolysin listeriolysin 

O (LLO) 1 (14, 16). Like killed L. monocytogenes, LLO-nega- 
tire mutants fail to enter the cytoplasm and induce protec- 
tive immunity (8, 11). Although both LLO-positive and 
-negative L. monocytogenes target the class II pathway in in- 
fected macrophages, only macrophages infected by LLO-posi- 
tire bacteria are targeted for lysis by CD8 + T cells (8, 9). 
These results are consistent with a requirement of bacterial 
entry into the cytoplasm to induce CD8 + T cells. However, 
LLO itself is a target of the L. monocytogenes-specific immune 
response (17, 18), and recently, both class I- and class II-re- 
stricted T cell epitopes of LLO have been identified (18, 19). 

In this study, L, monocytogenes was engineered to secrete 
a fusion protein consisting of LLO and a model antigen, 
influenza nucleoprotein (NP). NP is an extensively studied 
antigen that plays a central role in the influenza-specific im- 
mune response in mice (20). A significant proportion of the 
influenza-specific CTL response ('~50% in BALB/c mice) are 
directed against NP epitopes (21). These CTLs are protective 
upon adoptive transfer (20, 22) and are crossreactive among 
all influenza A strains (21, 23). The class I- and II-restricted 
epitopes of NP are defined for a variety of MHC haplotypes 
(24-27). NP-specific CTLs are easily raised in mice by im- 
munization with the virus. In vitro stimulation of immune 

1 Abbreviations used in thisyayer: BMM, bone marrow-derived macrophages; 
LLO, listeriolysin O; NP, nucleoprotein. 
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splenocytes with the relevant class I-restricted NP peptide 
results in formation of a highly specific effector CTL popula- 
tion (28). 

The results of the present study show that L. monocytogenes 
can be engineered to secrete a fusion protein containing viral 
antigenic determinants that are appropriately processed into 
peptide epitopes in host cells and presented in vitro in the 
context of three different MHC class I haplotypes. Influenza 
NP-specific CTLs were able to recognize in a class I-restricted 
manner and lyse cells infected with recombinant L. mono- 
cytogenes. Action of LLO and escape ofL. monocytogenes from 
the vacuole were essential for presentation and recognition. 
NP-specific CTLs were induced in vivo after immunization 
with bacteria that secreted the fusion protein. 

Materials and Methods 

Bacterial Strains and Growth Conditions. The L. monocytogenes 
strains used in this study were derived from the wild-type strain 
10403S and are described in Table 1. Strain 10403S, a hemolytic 
strain of L. monocytogenes, belongs to serotype 1 and has an LDs0 
of "~3 x 104 in BALB/c mice (29). Bacteria were grown in brain- 
heart infusion medium (BHI; Difco Laboratories, Detroit, MI), 
broth, and agar. Strains containing plasmids were maintained and 
grown in BHI broth and agar supplemented with chloramphen- 
icol at a concentration of 10 or 25/zg/ml for DP-L2028. 

Constructions/Plasmids. Plasmid pAM401 is a shuttle vector able 
to replicate in both gram-negative and -positive bacteria (30). It 
contains a gram-positive chloramphenicol resistance gene and gram- 
negative tetracycline resistance determinant. To construct plasmid 
pDP1659, the DNA fragment encoding the first 420 amino acids 
of the hemolysin gene along with the promoter and the upstream 
regulatory sequences was PCR amplified with L. monocytogenes 
genomic DNA used as a template and ligated into pUC19. PCtL 
primers used were 5'-GGCCCGGGCCCCCTCCTTTGAT-3' and 
5'-GGTCTAGATCATAATTTACTTCATCC-Y (Operon Technol- 
ogies Inc., Alameda, CA). The DNA fragment encoding the NP 

gene was similarly PCR amplified with linearized plasmid pAPR501, 
a gift of Dr. Peter Palese (Mr. Sinai Medical School, New York) 
used as a template (31), and subsequently ligated as an in-frame 
translational fusion into pUC19 downstream of the hemolysin gene 
fragment. PCR primers used were 5'-GGTCTAGAGAATTCC- 
AGCAAAAGCAG-3' and 5'-GGGTCGACAAGC~TATTTTTC- 
TTTAAT-3'. The whole fusion was then recloned into the EcoRV 
and SalI sites of pAM401. 

To obtain pDP1669, the pUC19 plasmid containing the fusion 
was treated with PstI and religated. This resulted in excision of 
the DNA sequence that codes for the COOH-terminal part of NP 
past amino acid 180. Subsequently, this shorter fusion was rectoned 
into the EcoRV and SphI sites of pAM401. 

Plasmids pDP1659 and pDP1669 were introduced into L. mono- 
cytogenes strain 10403S by electroporation of penicillin-treated bac- 
teria as described (32), and the resulting transformants were desig- 
nated DP-L1659 and DP-L1669, respectively. Plasmid pDP1659 was 
similarly introduced in DP-L2161, resulting in strain DP-L2320. 

Plasmid pDP'2028 was constructed by cloning the p~fA gene into 
the Sail site of pDP1659. Transformation of the prfA(-) strain DP- 
L1075 (33, 34) with pDP2028 resulted in strain DP-L2028, which 
secreted the fusion protein stably in vitro and in vivo. 

Cell Lines. The mouse monocyte-macrophage tumor cell line 
J774 (H-2 d) and fibroblastoma tumor cell line L929 (H-2 k) were 
maintained in DME supplemented with glucose (4500 mg/1), fetal 
bovine serum 7.5%, 2 mM r-glutamine, 50 U/ml penicillin, and 
50/zg/ml streptomycin. Two derivatives of the L929 cell line, one 
transfected with the K d molecule and one transfected with the D b 
molecule, were provided by Dr. Laurence Eisenlohr (Thomas 
Jefferson University, Philadelphia, PA) (35) and Dr. James Sheil 
(West V'lrginia University, Morgantown, WV), respectively. These 
lines are referred to as L929-K a and L929-DL L929-D b was origi- 
nally isolated by Dr. Stanley G. Nathenson (Albert Einstein Col- 
lege of Medicine, Bronx, NY). 

The mouse mastocytoma ceU line P815 (H-2 a) was maintained 
in RPM11640 medium supplemented with 7.5% fetal bovine serum, 
2 mM L-glutamine, 50 U/ml penidUin, and 50/zg/ml streptomycin. 

NP 10-3.1, an NP-specific CD4 + class II (I-Aa)-restricted hy- 

Table 1. Bacterial Strains and Relevant Characteristics 

L. monocytogenes 
strain Characteristics/plasmids Phenotype References 

10403S  Wild-type/none Wild-type (6) 
DP-L1659 pDP1659, encoding LLO aa Secretes a full-length fusion protein This study 

1-420, fused to NP aa 1-498 (105-kD) 
DP-L1669 pDP1669, encoding LLO aa Secretes a truncated fusion protein This study 

1-420, fused to NP aa 1-180 (180 aa of NP). 
DP-L2161 Deletion of the chromosomal Nonhemolytic; fails to escape the vacuole (55) 

hly gene 

DP-L2320 DP-L2161 ( p D P 1 6 5 9 )  Nonhemolytic; secretes the full-length This study 
fusion protein 

DP-L1075 Transposon insertion in the Low expression of LLO and other (33), (34) 
prfA gene virulence-related genes 

DP-L2028 DP-L1075 (pDP1659-prfA) Secretes high amounts of the LLO-NP This study 
fusion due to the presence of prfA 
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bridoma, was a gift of Dr. Charles Hackett (Immulogic Co., Palo 
Alto, CA) (36). It recognizes a peptide spanning amino acids 50-65 
of NP and was maintained in DME/high glucose medium as above, 
supplemented with 5 x 10 -s M 2-ME (Sigma Chemical Co., St. 
Louis, MO). 

Generation ofCTL Effector Populations. Spleen cells (10 s) from 
mice immunized intravenously with "o 1,000 hemagglutinin units 
(HAU) of influenza A/PR/8/34 virus at least two wk before killing 
were purified by passage over Lympholyte M (Cedarlane Laborato- 
ties, Ltd., Ontario, Canada) and incubated for 5 d in the presence 
of "o10 -6 M of the appropriate peptide corresponding to the K a, 
K k, or D b epitope, as described in reference 28. The optimal con- 
centration of the peptide for maximal expansion of the T cell popu- 
lation was determined by serial dilution. Splenocytes were incubated 
in a 25-cm 2 flask containing 20 ml of RPMI 1640 medium (JRH 
Biosciences, Lenexa, KS) with 10% FCS (Hyclone Laboratories Inc., 
logan, UT), 100 U/ml penicillin, and 100 #g/ml streptomycin 
(both, Sigma Chemical Co.) at 37~ in 10% COffair. The NP 
peptide 147-158/R156- corresponding to the Kd-restticted epitope 
(37) was added to the influenza-immune BALB/c splenocyte cul- 
tures; NP peptides 50-63 and 366-374 corresponding to the K k- 
and Db-restticted epitopes (24) were added to splenocytes derived 
from influenza-immune B10.BR and C57BL/6 mice, respectively. 

To induce influenza-specific CTL by in vivo immunization with 
L. monocytogenes DP-L2028, BALB/c mice were immunized intra- 
venously with either wild-type bacteria (10403S) at a dose of 
2.4 x 104 CFU/mouse (,ol LDs0) or with DP-L2028 at three 
different doses, 3.2 x 10 4, 3.2 x 10 s, or 3.2 x 106 CFU/mouse 
(0.001, 0.01, and 0.1 LDs0, respectively). After 8 d, spleens were 
removed, and splenocytes were purified over Lympholyte-M and 
cultured in a 96-well plate for 4 d in the presence of 10 -6 M of 
NP peptide 147-158/R156-. The number of splenocytes per well 
is indicated (see Fig. 8) (2.5 x 10 s to 2 x 10 6, in triplicates). At 
the end of the incubation period, cells were spun down, resuspended 
in 100/~1 of fresh medium, and labeled target cells were added as 
described in the SlCr release assays. 

Synthesis of Peptides. Peptides were synthesized as previously de- 
scribed (38, 39) by use of a standard manual solid-phase synthesis 
procedure on a polystyrene-co-l% divinylbenzene resin and tert- 
butyloxycarbonyl for all N-protection of amino adds. Couplings 
were carried out using N-N'-diisopropylcarbodiimide and were 
monitored by ninhydrin reaction (40). Simultaneous resin cleavage 
and side-chain deprotection was achieved by the high-low hydrogen 
fluoride method (41). The crude products were purified to 98% 
purity by reverse phase HPLC as previously described (38, 39), and 
peptide compositions were verified by amino acid analysis. 

SICr Release Assays. The SlCr release assay in J774 cells was 
adapted from that previously described (18). Target 0774) ceils were 
labeled for I h with ,o100 #Ci radioactive Na~CrO4 (ICN Radio- 
chemicals, Irvine, CA), washed, added (1-2 x 104/well) to a flat- 
bottom 96-well phte (Costar Corp., Cambridge, MA) in antibiotic- 
free medium, and allowed to adhere for 45 min. Overnight cultures 
(2 ml) of the various L. monocytogenes strains were washed in PBS 
and added to the target cells to achieve an infection of 5-10 bac- 
tetia/cell. In some cases, the number of bacteria/cell was varied 
as discussed in the text. Infection was allowed to proceed for 40 
rain, then cells were washed in medium containing gentamicin (30 
#g/m1) to kill extracellular bacteria. After 1.5-2 h, supematants 
were replaced with medium containing the bacteriostatic antibi- 
otic tetracycline (15 #g/ml) to inhibit further intracellular bacterial 
growth, which resulted in high spontaneous SlCr release. Serial 
dilutions of effectors were then added at the indicated E/T ratios. 
After 3-4 h, 100 #1 of supernatant was removed, and specific lysis 

was calculated as 100x [(X-S)/(T.-S)], where X is the expetimental 
counts per minute, S is the spontaneous counts per minute, and 
Tis the total (1% Triton-induced) counts per minute. All determi- 
nations were done in quadruplicate. As a positive control, J774 
cells were pulsed for 1 h with "o10 -4 M of the 147-158/R156- 
NP peptide, which corresponds to the Ka-restticted epitope before 
the addition of the effectors. Spontaneous release typically ranged 
between 18 and 33%. Data shown are representative of several ex- 
periments with similar results. For the experiment described in Fig. 
8, P815 cells were either pulsed with the NP peptide ('o10 -4 M 
for 1 h) or left untreated, labeled with slCr, and added as targets 
at a density of 104 ceUs/well. After 4 h incubation, 100/zl of su- 
pernatant was removed and the percentage of specific lysis was cal- 
culated as described above. 

Bacterial Release Assay. The in vitro cytotoxicity assay was 
adapted from Barry et al. (9). In this study, NP-spedfic cytotoxic 
cells (effectors) were generated as described above. Targets Were ei- 
ther the J774 or the L929 cell lines grown on round 12-mm-diameter 
glass coverslips (Propper Manufacturing Co. Inc., Long Island City, 
NY) at a density of "ol.5 x 104 cells/60-mm dish holding 15 cov- 
erslips. After overnight incubation at 37~ at which time each 
coverslip contained monohyers of "o10 s cells, the culture super- 
natant was removed and replaced with 6 ml antibiotic-free medium 
containing L. monocytogenes. 2-ml overnight bacterial cultures were 
washed and resuspended in PBS, then used to infect the target cells. 
In the case of the J774 calls, 4 x 106 CFU/dish (10403S), 1.5 x 
107 CFU/dish (DP-L1659, DP-L1669), or 5-10 x 104 CFU/dish 
(DP-L2320) were added and allowed to infect calls for 30 min. In 
the case of the various L929 cells, bacteria were added at a ratio 
of 1.2 x 10 s CFU/dish (10403S) or 1.2 x 109 CFU/dish (DP- 
L1659, DP-L1669) and allowed to infect cells for 60 min. The in- 
fection was adjusted so that the final number of CFU/coverslip 
would be the same for all strains. After the indicated times of in- 
fection, target cells were washed three times with PBS and kept 
in 6 ml of antibiotic-free medium for another 30 min before addi- 
tion of gentamicin (30 #g/ml) to prevent extracelhilar growth of 
bacteria. After dishes were incubated for 2-3 h, coverslips were 
transferred to 24-well dishes (one coverslip/well) with 1 ml of 
medium containing gentamicin (30/~g/ml) and tetracycline (15 
#g/ml) to inhibit further bacterial growth. Effectors were then added 
at the indicated E/T ratios. 3-4 h after the addition of the effector 
cell populations, the numbers of CPU/coverslip were determined 
by removing the coverslip from the well, hypotonically lysing the 
host cells in stetile water, and plating 10-fold serial dilutions of 
the lysate on Luria broth agar plates. Cytotoxic activity of the 
effectors results in exposure of the bacteria to gentamicin after lysis 
of the infected target cells and decreased numbers of CFU/cover- 
slip. Cytotoxicity was expressed as the percentage decrease in mean 
CFU/coverslip in the presence of effector cells relative to mean CFU 
counts in similarly treated coverslips not exposed to effector ceils. 
All experiments were done on triplicate coverslips and performed 
several times with similar results to the data presented in the figures. 
DP-L1659, DP-L1669, DP-L2320, and DP-L2028 were kept under 
chloramphenicol selection throughout the experiments. 

SDS-PAGE/Western Imraunoblotting. TCA precipitation of cul- 
ture supernatant fluid and subsequent SDS-PAGE (7% polyacryl- 
amide) was performed as previously described (29). For Western 
blotting, proteins were transferred to nitrocellulose (Schleicher & 
Schuell, Inc., Keene, NH) with an electroblotter (TRANSPHOR; 
Hoefer Scientific Instruments, San Francisco, CA). All subsequent 
steps were performed in 50 mM Tris, pH 7.5, 2 mM EDTA, 0.15 
M NaC1, 0.5% NP-40, and 1% calf serum. The nitrocellulose filter 
was first treated for 1 h with 5% skimmed milk, then incubated 
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for 1 h with either a rabbit polyclonal anti-LLO antiserum (a gift 
of Dr. Pascale Cossart, Institut Pasteur, Paris, France) or a mouse 
monoclonal anti-NP antibody (H19-524-4; a gift of Dr. W. 
Gerhardt, The Wistar Institute, Philadelphia, PA). The nitrocellu- 
lose filters were then washed and reacted with 12SI-labeled protein 
A or nSI-labeled sheep anti-mouse Ig (Amersham Corp., 
Arlington Heights, IL), respectively. After extensive washing, the 
filter was exposed to x-ray film at - 70~ in the presence of two 
intensifying screens. 

Cell Separations. Separation of CD4 § or CD8 + cells was done 
with the MACS streptavidin-conjugated iron microbeads as de- 
scribed in reference 42. Spleen cells were obtained from BALB/c 
mice immunized with influenza A/PK/8/34 as described above, 
purified over Lympholyte M and stimulated in vitro with the 
147-158/K156- NP peptide as described above for 5 d. At that 
time, 2 x 107 live cells were washed and resuspendcd in 1 ml PBS 
containing 1% BSA (Sigma Chemical Co.). 60 #1 of either biotin- 
conjugated rat anti-mouse CD8o~ mAb or biotin-conjugated rat 
anti-mouse CD4 mAb (GIBCO BKL, Gaithersburg, MD) was 
added to the cell suspension and incubated on ice for 25 rain. Cells 
were washed, resuspended in 180 #1 PBS/BSA 1%, and then 20 
#1 of streptavidin-conjugated iron microbeads (Miltenyi Biotech 
Gmbh, Bergisch Gladbach, Germany) were added and incubated 
on ice for 15 min. At the end of the incubation, 2 #1 of strep- 
tavidin-FITC conjugate (GIBCO BRL) was also added, and incu- 
bation proceeded for another 5 min. Cells were washed, resuspended 
in 500 #1 PBS/1% BSA, and passed through the MACS iron-wool 
separation column in magnetic field. The column was rinsed with 
1.5 ml PBS/1% BSA and the eluates collected. These cells repre- 
sent populations that were depleted ofCD4 + or CD8 + cells. Sub- 
sequently, retained cells were recovered by removing the column 
from the magnetic field and washing it with 1.5 ml PBS/BSA 1%. 
These cells represent the CD4 +- or CD8+-enriched populations. 
Depletion or enrichment was confirmed by FACS | analysis (Becton 
Dickinson & Co., Mountain View, CA). Depleted popuhtions were 
>90% negative for CD4 + or CD8 + cells, respectively. Enriched 
cell populations were 89% CD4 § or 82% CD8 +, respectively. 
The resulting populations were applied to a bacterial release assay 
as described above. The results presented are representative of three 
experiments performed. 

Presentation to the CD4 + T Cell Hybridoma. Bone marrow- 
derived macrophages (BMM) or J774 macrophage-like cells were 
resuspended in antibiotic-free DME/high glucose medium, added 
to 96-well flat bottom plates (Costar Corp.) at a density of 
"~10S/well and left to adhere for 1 h. Overnight cultures of bac- 
teria (10403S, DP-L1659, DP-L2161, or DP-L2320) were washed 
in PBS and added to the macrophages. 2.5 x 106, 5 x 106, or 
2 x 107 CFU were added per well and allowed to infect cells for 
40 rain. Cells were then washed in medium containing gentamicin 
(30 #g/ml). After 3 h incubation, tetracycline (15 #g/m1) was added 
to stop further bacterial growth, and the CD4 § class II-restricted 
NP-speeific T cell hybridoma was added (2 x 10Vwell). After 
24 h, the supernatants were collected and assayed for IL-2 activity 
by their ability to maintain the proliferation of CTL/L cells (Amer- 
ican Type Culture Collection, Rockville, MD). CTL/L cells (5 x 
103/we11) were cultured in complete RPMI 1640 medium con- 
taining 10% FCS in 96-well flat-bottom plates with 25 gl of su- 
pernatants in a total volume of 200 #1 for 24 h at 37~ and 10% 
COy The cultures were then pulsed with [~H]thymidine (0.5 
#Ci/well) for 8-12 h and harvested on glass filter paper with an 
automatic cell harvester (Inotech Biosystems International, Inc., 
Lansing, MI). [3H]thymidine incorporation was quantitated with 
a liquid scintillation counter (model LS3801; Beckman Instruments, 

Carlsbad, CA). Stimulation of the hybridoma with macrophages 
without bacteria resulted in 550 cpm (background) for the experi- 
ment described (see Fig. 7). Data presented are representative of 
three experiments performed with similar results. 

Results 

Construction of L. monocytogenes Strains Secreting NP. LLO 
is normally expressed and secreted in a host vacuole by L. mono- 
cytogenes and is required for escape of the bacteria into the 
cytoplasm (14, 16). Moreover, LLO itsdf is a target of the 
class I- and class II-restricted antilisterial response (17, 19), 
and infected cells present LLO epitopes in the context of both 
class I and II MHC molecules (18, 19). Therefore, it was 
reasoned that a fusion protein consisting of LLO and a for- 
eigu protein would be expressed during infection of host cells 
and potentially target the class I pathway of antigen presen- 
tation. Accordingly, DNA fragments encoding either the full- 
length A/PR/8/34 influenza NP or its first 180 amino acids 
were cloned as in-frame fusions with LLO. A sequence en- 
coding the first 420 amino acids of LLO, its promoter, and 
the upstream regulatory sequences was PCR amplified from 
L. monocytogenes chromosomal DNA and ligated to PCR- 
amplified DNA encoding A/PR/8/34 NP, derived from 
plasmid pAPR501 (31). The construction resulted in an in- 
frame fusion plus the addition of two amino acids at the site 
of the fusion junction. The fusion was cloned into the shuttle 
plasmid pAM401 and introduced into wild-type L. monocyto. 
genes (strain 10403S) by electroporation, resulting in strain 
DP-L1659. An in-frame deletion of the DNA sequence en- 
coding the COOH-terminal part of NP was generated, re- 
sulting in a fusion gene encoding the first 420 amino acids 
of LLO and the first 180 amino acids of NP. This construc- 
tion was also introduced into wild-type L. monocytogenes, re- 
sulting in strain DP-L1669. Lastly, we cloned the prfA gene 
of L. monocytogenes into the shuttle vector along with the 
full-length fusion protdn gene and used this plasmid to com- 
plement a prfA(-) strain, resulting in strain DP-L2028. 

The recombinant strains were clearly able to express and 
secrete the fusion proteins as determined by Western blot anal- 
ysis of secreted proteins (Fig. 1). The LLO-NP fusion pro- 
teins were secreted and migrated on SDS-PAGE as predicted 
at 105 or 68 kD, Both reacted with the anti-LLO polyclonal 
antiserum, but only the fusion containing the full-length NP 
reacted with the anti-NP mAb. It should be noted that the 
majority of the fusion protein was degraded, as multiple lower 
molecular mass polypeptides can be seen reacting with the 
anti-LLO antiserum. The presence of a multicopy plasmid 
with the fusion gene under the control of the LLO promoter 
had only a slight effect on bacterial growth rate in vitro. How- 
ever, it did result in reduced secretion of the chromosomally 
encoded LLO, but not to the extent that it prevented escape 
of the bacteria from the vacuole or subsequent intracytophsmic 
growth (data not shown). 

Specific Lysis ofJ774 Cells Infected with L. monocytogenes Ex- 
pressing NP by Influenza-immune Splenocytes. The ability of 
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Figure 1. Western blot of L. monocTtogenes-secreted proteins reacted 
with antilisteriolysin O antiserum (A) or an anti-NP mAb (B). Superna- 
tants were derived from cultures of the following L. monocytogenes strains: 
lane I, strain 10403S; lane 2, strain DP-L1075, a mutant strain that ex- 
presses minimal levels of listeriolysin O and other virulence-related genes; 
lane 3, DP-L1659; lane 4, DP-L1669; and lane 5, DP-L2028. 

the recombinant strains to deliver NP into the class I pathway 
of antigen presentation was evaluated by use of the J774 cell 
line as host cdls. This H-2 a macrophage-like call line was 
chosen as the primary target cell because it is readily infected 
by L. monocytogenes, but is not listericidal, unlike primary 
cultures of routine peritoneal macrophages (43). Effector cells 
were bulk splenocyte cultures of influenza A/PR/8/34- 
immunized BALB/c mice. Splenocytes were stimulated in vitro 
for 4-5 d with a synthetic NP peptide corresponding to the 
Ka-restricted epitope (147-158/R156-) (37). 

Two different assays were used to evaluate T cell-mediated 
cytotoxicity. The first assay was a standard 5tCr release assay, 
comparing specific lysis of target cells infected with wild- 
type L. monocytogenes or strains expressing the fusion proteins 
(Fig. 2 A). It is clear that both recombinant strains targeted 
the J774 cells for recognition by influenza-specific splenocytes, 
while wild-type L. monocytogenes did not. As a positive con- 
trol, targets pulsed with the NP peptide corresponding to 
the H-2a-restricted NP epitope were also lysed. DP-L1669, 
which expresses the first 180 amino acids of NP, presented 
as well as DP-L1659, which expresses the full-length NP. 
This was expected, since both express the Kd-restricted NP 
epitope, which spans amino acids 147-155. Targets infected 
with DP-L2028 were lysed by influenza-immune splenocytes 
as effectively as those infected with DP-L1659 (data not 
shown). 

The StCr release assay has the disadvantage that it requires 
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Figure 2. Specific lysis of L. raonocyto- 
genes-infected J774 calls by NP-specific 
T cells. (A) Lysis was measured by a stan- 
dard slCr release assay. Targets were in- 
fected with wild-type L. monocytogenes 
(solid squares), DP-L1659 (open squares), 
DP-L1669 (open circles), or pulsed with the 
Kd-restricted NP peptide (open triangles). 
(B) Lysis was measured in a bacterial release 
assay. The mean bacterial CFU/coverslip 
• SE is shown. Targets were infected with 

wild-type L. monocytogenes (solid squares), 
DP-L1659 (open squares), or DP-L1669 (open 
circles). Reductions in CFU of DP-L1659 
and DP-L1669 are significant (p <0.004 by 
Student's t test), whereas wild-type CFU 
do not change significantly (p >0.62). (C) 
Results of B were expressed as the per- 
centage of reduction in bacterial CFU. 
Targets infected with wild-type L. 
monocytogenes (solid bars), DP-L1659 (open 
bars), or DP-L1669 (hatched bars). 



the majority of cells to be infected and therefore is not ideal 
for use with many adherent cell lines that are not readily in- 
fected (see below). Another disadvantage is that infection with 
L. monocytogenes, especially at high levels, causes an increase 
of spontaneous release of SlCr by cells. Therefore, we 
adapted a previously described assay (9), which can accurately 
measure specific lysis even when a small fraction of the cells 
are infected. This assay, called the bacterial release assay, 
measures the reduction in bacterial CFU that results after 
lysis of the target cells by an effector population. The de- 
crease in CFU is caused by gentamicin, which has been added 
to the tissue culture medium. Gentamicin has no effect on 
the growth or viability of intracellular bacteria in intact cells 
(29), but is rapidly bactericidal in lysed cells. Specific lysis 
results in reduction of bacterial CFU. The results from the 
bacterial release assay (Fig. 2, B and C) are comparable to 
the SlCr release results, showing that cells infected with the 
strains expressing NP are targeted for lysis by influenza-specific 
splenocytes. In Fig. 2 B, the mean bacterial numbers per cov- 
erslip are presented in the presence or absence of splenocytes. 
The data are also presented as the percentage of reduction 
in bacterial CFU (Fig. 2 C). 

The Effector Population Consists of Class 1-restricted CD8 + 
T Cells, To examine the MHC restriction of the effector 
population, we used infected L929 cells as targets in a bac- 
terial release assay. L929 ceils are of the H-2 k haplotype and 
are dass II negative. These cells were not capable of presenting 
antigen to NP-specific effector cells derived from BALB/c mice 
(H-2a). In contrast, a L929 done transfected with the ap- 
propriate class I molecule (K a) (35) was able to present the 
K d epitope consistent with the MHC dass I restriction of 
the effector population (Fig. 3). Furthermore, T cell deple- 
tion studies revealed the CD8 + CD4- nature of the effectors 

(Fig. 4). The bulk primary splenocyte cultures were depleted 
of or enriched with CD8 + cells or depleted of CD4 + cells. 
The extent of depletion or enrichment was verified by FACS ® 
analysis. The resulting populations were used in the bacterial 
release assay described above, and the percentage of reduc- 
tion in CFU was calculated (Fig. 4). Even though equal 
numbers of cells were used in each case, Fig. 4 clearly shows 
that the absence of CD8 + cells resulted in a population of 
cells incompetent to lyse bacterially infected targets. This was 
in contrast to the cell population depleted of CD4 + cells, 
which displayed greater cytotoxicity than whole splenocytes. 
It is dear that the cytotoxic population is exclusively or pre- 
dominantly of the CD8 + CD4- phenotype. 

1-1-2 k- and H-2b-restricted Class I NP Epitopes Are Also 
Generated by Recombinant L. monocytogenes. The previously 
described experiments were repeated in the context of H-2 k 
and H-2 b mouse MHC haplotypes. In the case of the H-2 k 
haplotype, the K k class I molecule presents an NP epitope 
that is found in the region spanning amino acids 50-63 of 
NP. In the case of the H-2 b haplotype, the D b molecule 
presents an NP epitope spanning amino acids 366-374 (24). 

The H-2k-restricted effectors were splenocytes derived 
from B10.BtL mice immunized with influenza A/PR/8 /34  
and restimulated in vitro with an NP peptide corresponding 
to the K k epitope. Targets were L929 cells infected with ei- 
ther wild-type or recombinant L. monocytogenes in a bacterial 
release assay (Fig. 5 A). It should be noted that DP-L1659 
and DP-L1669 presented equally well, since both secreted fu- 
sion proteins contain the Kk-restricted epitope. 

The H-2b-restricted effectors were splenocytes from 
C57BL/6 mice immunized with A / P R / 8 / 3 4  and restimu- 
lated in vitro with a peptide corresponding to the D b- 
restricted epitope. Targets were L929 cells transfected with 
the appropriate H-2 b molecule (Db). The results (Fig. 5 B) 
show that DP-L1659 expressing the full-length NP targeted 

Figure 3. Class I restriction of the effectors. Lysis of infected L929 
(H-2 k) cells by BALB/c (H-2d)-derived CTL occurred only when they 
were transfected with the appropriate class I molecule (K~). L929 cells 
infected with 10403S (dark stippled bars); L929 cells infected with DP-L1659 
(light stippled bars); L929-K a cells infected with 10403S (solid bars); L929- 
K a cells infected with DP-L1659 (open bars). 

Figure 4. Characterization of the effector population. BALB/c-derived 
influenza-immune splenocytes were restimulated in vitro with the K d- 
restricted NP peptide and used in a bacterial release assay on J774 cells 
infected with DP-L1659 at an E/T ratio of 15:1. Whole splenocyte culture 
(open bar); CD8 +-depleted splenocytes (solid bar); CD8 +-enriched spleno- 
cytes (hatched bar); CD4+-depleted splenocytes (stippled bar). 
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normally, but DP-L1669 failed to target infected cells, since 
its fusion protein does not contain the Db-restricted epitope. 

Presentation Requires Functional LLO. LID-negative mu- 
tants of L. monocytogenes fail to escape from the vacuole in 
J774 cells and are unable to target infected cells for lysis by 
L. monocytogenes-specific CD8 + T cells (8, 9). A LID- 
negative mutant of L. monocytogenes was transformed with 
plasmid pDP-L1659, which encodes the LLO-NP fusion pro- 
tein, resulting in strain DP-L2320, which secreted the fu- 
sion protein at similar levels to DP-L1659 (data not shown). 
It should be noted that the part of the LLO sequence (420 
amino acids) that is present in the fusion protein does not 
confer hemolytic activity. Thus, DP-L2320 is still a LID- 
negative mutant that secretes the NP-containing fusion pro- 
tein but is unable to escape from the vacuole or grow in- 
traceUularly. This strain failed to target J774 cells for lysis 
by influenza-immune splenocytes in either a SlCr release 
assay (Fig. 6 A) or a bacterial release assay (Fig. 6 B), even 
when the target cells were infected with high levels of bacteria. 

One possible interpretation of these results is that the LID- 
negative mutant did not present the antigen because the non- 
growing bacteria confined in the vacuole failed to express the 
fusion protein. Accordingly, we asked whether the fusion 
protein would be presented in a class II-dependent fashion. 
BMM infected with DP-L2320 or DP-L1659 were equally 
able to present in a dass II-restricted manner to NP 10-3.1 

A 
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Figure 5. Presentation of NP epitopes in the 
context of different class I haplotypes. (A) L929 
cells (H-2 i) were infected and used as targets 
in a bacterial release assay. Effectors were cul- 
tures of splenocytes from influenza-immune 
B10.BR (H-2 k) mice added at an E /T  ratio of 
25:1. Targets infected with 10403S (solid bar), 
DIXL1659 (open bar), or DlXL1669 (hatched bar). 
(/3) L929 cells transfected with the D b mole- 
cule were infected and used as targets in a bac- 
terial release assay. Effectors were cultures of 
splenocytes from influenza-immune C57BL/6 
(H-2 b) mice added at an E /T  ratio of 40:1. In- 
fected with I0403S (solid bar), DP-L1659 (open 
bar), or DP-L1669 (hatched bar). 

(36), a CD4 + NP-specific T call hybridoma (Fig. 7). Pre- 
sentation was reduced when the infection and subsequent in- 
cubation was done in the presence of tetracycline, which in- 
hibits bacterial protein synthesis (data not shown). The data 
suggest that the fusion protein was in fact being made inside 
the vacuole by DP-L2320. J774 cells infected with DP-L2320 
were also able to present NP in a class II-restricted manner 
(data not shown). These results are consistent with the no- 
tion that listerial entry into the cytoplasm is required for 
delivery of antigen to the class I pathway of antigen presen- 
tation. 

Generation of Influenza-specific CTL by In Vivo Immuniza- 
tion with DP-L2028. DP-L1659 and DP-L1669 proved to be 
unstable in vivo. In fact, almost all colonies recovered from 
organs 48 h after immunization with these recombinants had 
lost the plasmid. To solve this problem, we complemented 
a prfA(-) L. monocytogenes mutant with a plasmid containing 
prfA and the LLO-NP fusion (pDP2028), thus selecting for 
the retention of the plasmid in vivo. This strain (DP-L2028) 
was able to induce potent NP-specific CTL activity, which 
was easily detectable in secondary splenocyte cuhures (Fig. 
8). Splenocytes from DP-L2028-immune mice were able to 
lyse NP peptide-pulsed targets, in sharp contrast to those 
isolated from 10403S-immune mice. P815 cells that were not 
peptide pulsed were not lysed by either splenocyte population 
(data not shown). The NP-specific CTL activity was evident 
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Figure 6. Antigen presentation by non- 
hemolytic L. monocytogenes expressing NE 
J774 cells were used as targets in a stan- 
dard StCr release assay (.4) or a bacterial re- 
lease assay (B) with influenza-immune 
splenocytes from BALB/c mice used as 
effectors. (A) Targets wexe J774 cells 
with 10403S (solid squares), DP-L1659 (open 
squares), DF-L2320 (solid triangles), or DP- 
L2320 at eight times the usual infection 
(open triangles). (B) Targets were J774 cells 
infected with 10403S (solid bar), DP-L1659 
(open bar), DP-L2320 (hatched bar), or DP- 
L2320 at a high infection rate of"~30 bac- 
teria/cell (heavily batclg~l bar). The E/T ratio 
was 50:1. 
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Figure 7. Class ll-restricted presentation by LLO-positive and -negative 
bacteria expressing NE BMM were infected at three different infection 
ratios with L. monocytogenes strains and used as described in Materials and 
Methods to stimulate NP 10-3.1, a class II-restricted CD4 + NP-specific 
T cell hybridoma. Supernatants were used in a CTLL proliferation assay. 
cpm values _+ SD are shown. BMM cells infected with 10403S (solid squares), 
DP-L2161 (solid triangles), DP-L1659 (open squares), or DP-L2320 (open tri- 
angles). 

even after relatively low immunization doses (0.001LDs0); 
it should be noted that DP-L2028 has an LDs0 of ~3  x 107 
CFU/mouse, compared with 3 x 104 for 10403S. 

Discussion 

The results of this study show that L. monocytogenes can 
be engineered to secrete influenza NP, a viral antigen. Infec- 
tion of cells with hemolytic L. monocytogenes secreting NP 
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Figure 8. Generation of NP-specific CTL after immunization with 
L. monoc2/togenes stably expressing LLO-NP. Splenocytes from L. monocyto- 
genes-immunized mice were cultured in vitro at the indicated cell densi- 
ties/well with the Kd-restricted NP peptide and used as effectors against 
P815 cells pulsed with the peptide in a SlCr release assay. Splenocytes from 
mice immunized with 2.4 x 104 CFU 10403S (solid squares), 3.2 x 104 
CFU DP-L2028 (open squares), 3.2 x 10 s CFU DP-L2028 (open circles), 
or 3.2 x 106 CFU DP-L2028 (open triangles). P815 cells not pulsed with 
the NP peptide disphyed negligible amounts of lysis in all cases (not shown). 

resulted in efficient in vitro presentation of viral epitopes to 
CD8 + class I-restricted T cells specific for the viral 
pathogen. Presentation required the action of listeriolysin and 
escape from the vacuole, as it did not occur in a L I D ( - )  
mutant. In contrast, expression of the same fusion protein 
in a LLO(-)  background resulted in presentation to class II- 
restricted NP-specific CD4 + cells. Immunization of mice 
with L. monocytogenes expressing NP resulted in induction 
of a potent CTL response specific for the viral protein. 

The antigen used in this study consisted of an in-frame 
fusion between LLO and NP, which was readily secreted into 
the cytoplasm. The data are consistent with its secretion within 
a vacuole and directly into the host cytoplasm. Presentation 
of NP epitopes occurred in the context of three different class 
I haplotypes, which has implications for the ability of this 
vector to present antigens in outbred populations. It has not 
been formally proven that bacterial protein secretion was 
essential for delivery to the class I pathway, but it is very 
likely that secretion is necessary as intracytoplasmic bacteria 
are viable and remain intact, so that internal bacterial antigens 
would have no access to the host cytoplasm. Consistent with 
this notion, all three L. monocytogenes antigens known to be 
recognized by immune CD8 + T cells are secreted antigens 
(17, 18, 44). Also, in a previous study (45), we showed that 
L. monocytogenes expressing nonsecreted 3-galactosidase was 
capable of inducing a ~-galactosidase- specific CD8 + re- 
sponse in vivo; however, these bacteria were unable to target 
infected J774 calls for class I-restricted lysis (Schafer, R., 
D. A. Portnoy, and Y. Paterson, unpublished results). 

It is generally accepted that there are two distinct pathways 
of antigen presentation: the exogenous pathway and the en- 
dogenous pathway (46). Our results with CD8 + T calls are 
consistent with presentation via a cytoplasmic route subse- 
quent to bacterial secretion of de novo synthesized antigen. 
However, there are a few examples in which antigen can enter 
macrophages through the exogenous route and still present 
antigen to CD8 + T cells. Indeed, pathogens, such as 
Salmonella, that reside in vacuoles are able to induce CD8 + 
T ceils in vivo (45), although the same strain of Salmonella 
is not recognized by CD8 + T cells while intracellular during 
in vitro assays (47-49). One possible explanation for the pre- 
sentation of exogenous antigen to the class I pathway was 
recently described in which primary macrophages "regurgi- 
tated" processed antigen, which was then presented by neigh- 
boring calls (50). In another report, antigen linked to beads 
was efficiently introduced into the class I pathway upon phago- 
cytosis by macrophages (51). Whereas these latter examples 
are provocative, it is clear that secretion by L. monocytogenes 
is a highly effective system for the direct delivery of poten- 
tially any foreign antigen into the cytoplasm of both phago- 
cytic and nonphagocytic cells. Indeed, nonhemolytic L. mono- 
cytogenes confined to a vacuole failed to reach the class I pathway 
and target infected cells for lysis. It is also well established 
that L I D ( - )  mutants of L. monocytogenes that fail to escape 
the vacuole also fail to evoke protective immunity against 
L. monocytogenes challenge (11). 

During the past few years, a number of different bacterial 
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species have been proposed and developed as live vaccine vectors, 
most notably Salmonella and Bacillus Calmette-Gu&in. Both 
systems have shown considerable promise in the induction 
of CD8 + T cells in vivo (47, 52). L. monocytogenes is par- 
ticularly attractive as a vaccine vector for the induction of 
ceU-mediated immunity. It grows in the host cell cytoplasm 
and delivers antigens directly into the class I pathway of an- 
tigen presentation (8). L. monocytogenes is a natural inducer 
of IL-12, which is thought to bias the immune response to- 

wards cell-mediated immunity (53, 54). It is also amenable 
to genetic manipulation, which may facilitate the design of 
rationally attenuated mutants (13) and the optimal expres- 
sion of foreign antigens. For example, by use of a L. mono- 
cytogenes mutant lacking LLO, antigens were delivered ex- 
clusively into the class II pathway of antigen presentation. 
Thus, at least in vitro, foreign antigens can be directed into 
the class II pathway or to both class I and class II pathways 
simply by use of the suitable L. monocytogenes mutant. 
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