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Abstract: Quantum chemical calculations at the B3LYP/6–31G* level of theory were 

employed for the structure-activity relationship and prediction of the antioxidant activity of 

edaravone and structurally related derivatives using energy (E), ionization potential (IP), 

bond dissociation energy (BDE), and stabilization energies (∆Eiso). Spin density 

calculations were also performed for the proposed antioxidant activity mechanism. The 

electron abstraction is related to electron-donating groups (EDG) at position 3, decreasing 

the IP when compared to substitution at position 4. The hydrogen abstraction is related to 

electron-withdrawing groups (EDG) at position 4, decreasing the BDECH when compared 

to other substitutions, resulting in a better antioxidant activity. The unpaired electron 

formed by the hydrogen abstraction from the C–H group of the pyrazole ring is localized at  

2, 4, and 6 positions. The highest scavenging activity prediction is related to the lowest 

contribution at the carbon atom. The likely mechanism is related to hydrogen transfer.  

It was found that antioxidant activity depends on the presence of EDG at the C2 and C4 

positions and there is a correlation between IP and BDE. Our results identified three 

different classes of new derivatives more potent than edaravone. 
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1. Introduction 

Edaravone or 3-methyl-1-phenyl-2-pyrazolin-5-one, EDV (Figure 1), is a novel neuroprotective 

agent that was approved for the acute therapy of embolic stroke, and has great potential to protect 

against toxicity induced by various radicals [1]. The neuroprotective effect of edaravone has been 

evaluated in several models of cerebral ischemia and two studies have reported that treatment with this 

compound reduces the increase of hydroxyl radical and superoxide anion levels induced after  

ischemia [2,3]. The pharmacological effect of EDV arises from its radical-scavenging activity. In fact, 

it is efficient to scavenge hydroxyl radical (HO•) and DPPH radical (DPPH•) [4]. Therefore, EDV 

scavenges DPPH radical through donating the H-atom at position 4. Their strong radical-scavenging 

activity results mainly from 2-pyrazolin-5-one and substituents have little influence on the activity, 

which provides new clues to modify EDV to give better antioxidants [5]. 

Figure 1. Chemical structure and numbering of edaravone. 
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We were encouraged to study the structure-activity relationship (SAR) as a means of characterizing 

the structural features of EDV and optimizing the structure with regard to its radical scavenging activity. 

For this purpose, we have studied the tautomerism influence on the antioxidant activity of EDV [6,7]. 

Now, we have shown the structure-activity relationship of EDV derivatives with various 

substituents such as electron-withdrawing groups (EWG), electron-donating groups (EDG), and  

π-conjugated groups at 1-, 3-, or 4-positions of the pyrazolone ring (Figure 2), using ionization 

potential and bond dissociation energy of various edaravone-related derivatives, and analyzed their 

characteristics as free-radical scavengers under several mechanisms. Nonetheless, previous works have 

indicated that lipophilic substituents were essential to show its lipid peroxidation-inhibitory  

activity [5]. Therefore, our purpose here is to contribute to a better understanding of the mechanistic 

features of these processes and in the development of drugs that can be more active than edaravone. 
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Figure 2. Chemical structure and numbering of edaravone. 
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2. Results and Discussion 

The stabilization energy (∆Eiso) is used as simple method to predict the ability of antioxidants to 

trap free-radicals of edaravone derivatives. In Table 1, ∆Eiso values are shown and according to these 

values, it is possible to establish the following relative stability for the radicals at specified positions: 

the introduction of a methoxy group, an electron donating group, at the para position in the phenyl ring 

increases the ∆Eiso due to the fact that more ether moieties can donate electrons to stabilize the 

semiquinone form. By the way, an addition of chlorine or nitro groups as electron withdrawing group 

(EWG) at the para position in the phenyl ring decreases ∆Eiso and lowers the scavenging capacity. 

The replacement of phenyl to cycle-hexanyl at the 1-position of the pyrazolone ring increases ∆Eiso. 

Nevertheless, the change of phenyl to heterocyclic pyridinyl at the 1-position of pyrazolone ring 

decreases ∆Eiso. 

Table 1. Theoretical properties of edaravone and its derivatives. 

Compound 
HOMO 

(eV) 
IP 

(kcal mol−1) 
BDECH 

(kcal mol−1) 
∆Eiso 

(kcal mol−1) 

EDV −5.73 173.0 82.1 0 
1 −5.27 161.0 81.3 −0.8 
2 −5.86 174.2 82.4 0.3 
3 −6.44 187.5 83.3 1.2 
4 −6.00 183.0 80.6 −1.4 
5 −6.01 179.8 82.8 0.7 
6 −6.22 184.7 81.0 −1.0 
7 −5.65 165.7 82.0 −0.1 
8 −5.44 158.9 82.1 0 
9 −6.06 174.8 81.8 −0.3 

10 −5.54 166.6 81.9 −0.2 
11 −5.59 165.8 81.8 −0.3 
12 −5.42 162.4 82.5 0.4 
13 −5.71 169.6 83.9 1.8 
14 −5.73 170.1 82.6 0.5 
15 −5.69 170.4 75.9 −6.1 
16 −5.71 169.8 73.3 −8.8 
17 −5.73 171.5 74.5 −7.6 
18 −5.73 173.0 83.8 1.7 

In general, substitution in the 3-position of the pyrazolone ring using an amide group increases 

∆Eiso, except for molecule 12. The same result was observed for a trifluoromethyl group. On the other 

hand, other alkyl substitutions in this position decrease ∆Eiso. 

The phenyl ring or alkyl groups connecting at the 4 position in the pyrazolone ring may stabilize the 

radical formed during oxidation, extending the conjugation via resonance effects and contributing to 

the increase of ∆Eiso. In fact, these compounds have the highest ∆Eiso values. In contrast, benzoylation 

at the 4-position in the pyrazolone ring does not seem to be important for ∆Eiso. 
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As a consequence, molecules that showed several resonance structures were more stable and have 

higher ∆Eiso values. The substitution in the 1 and 3 positions does not permit good electronic 

conjugation between the pyrazolone ring and other groups. Nonetheless, molecules substituted in the 

4-position with electron donating-groups (EDG) are characterized by a great electronic conjugation 

and the ∆Εiso values depend mainly on the pyrazolone ring and EDG in the 4-position. 

These results agree with physical tests since oxidation potentials of the edaravone and pyrazolone 

derivatives were measured by cyclic voltammetry in an aqueous solution [5]. In fact, during redox 

process, the derivatives with strong EWGs had relatively higher oxidation potentials. On the contrary, 

the derivatives with strong EDGs had relatively lower oxidation potentials. Other derivatives showed a 

wide variety of oxidation potentials regardless of the electronic properties of the substituents (Table 1). 

It is possible that the oxidation potentials were not only affected by the electron density on the 

pyrazolone ring but also by the stability of the resulting radical species with conjugated π-orbitals on 

the substituent or for the reason why these molecules have a poor solubility in water. In comparison, 

among the positions of the substituents, the substitution at positions 1 and 3 did not positively affect 

the reduction of the oxidation potential, whereas substitution at position 4 seemed to be more effective. 

Consequently, the compounds with higher ∆Eiso values will have lower reduction potential values. 

In fact, during the oxidative process, the conjugation and electronic delocalization depends on the 

position and EDGs in resonance stabilization, especially in the case of alkyl or phenyl ring. 

The influence of EDGs on nucleophilicity of these compounds is greater in the 4-position of the 

pyrazolone-ring. Since inductive and resonance effects have good participation over π conjugation 

between all substituents, this behavior can be increased by participation of other substituents at the  

4-position. These resonance effects can be observed in Figures 3,4. 

Nevertheless, an alkyl or aryl moiety at the 3-position is important for conjugation over the 

pyrazolone ring. In fact, this is observed in compounds 4, 5, 7, 8, and 13. The additional contribution 

of the phenyl ring is important for better scavenging activity, as shown in compound 8. The planar 

orientations are affected by the extension of the π system changing the energy in accordance with alkyl 

or aryl groups at the 3-position. Thus, an alkyl or aryl substituted at the 3-position of pyrazolone ring 

and EDG has more influence over ionization potential (IP) values, as showed in Table 1. These results 

are correlated with calculated spin densities due to electron abstraction, where these substituents 

showed the highest contributions (Figures 5,6). 

The gas-phase BDECH for edaravone has been determined in previous theoretical studies [4] using 

the DFT/B3LYP method, with the value being 77.93 kcal mol−1. The IP value of 7.50 eV is also in 

agreement with the experimental result, 8.00 eV [8]. Values for bond dissociation energy of methylene 

group (BDECH) are shown in Table 1. 
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Figure 3. HOMO conformation of edaravone and its derivatives. 
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Figure 4. LUMO conformation of edaravone and its derivatives. 
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Nonetheless, we have observed slight agreement between ionization potential and experimental 

methods for compounds with high antioxidant activity. However, the introduction of EDG in 1, 3 or 4 

positions decreases the IP values when compared with edaravone, resulting in a better antioxidant 

activity. The introduction of EWG increases the IP values. These results suggest that for these 

compounds the hydrogen transfer mechanism is preferred for the scavenging process mediated by 

physical methods, such as cyclic voltammetry. 

In fact, the introduction of an EDG at the 4-position (molecules 15, 16 and 17) decreases BDECH, 

resulting in an increase of the antioxidant activity when compared to edaravone. 

In addition, we have observed a slight agreement between HOMO and experimental methods for 

compounds with high antioxidant activity. However, the better antioxidant activity does not depend on 

the nucleophilicity or electrophylicity. 

Pérez-González and Galano have shown the importance of ionization of C–H bond in the redox 

capacity of edaravone [9,10]. Furthermore, our experimental studies using DPPH and ABTS  

methods [11] have demonstrated that the scavenging activity of edaravone and its related analogues 

follows a different pattern by electron or hydrogen abstraction. It is clearly seen that the scavenging 

activity of edaravone and phenylbutazone is significantly higher than for antipyrine and dypirone. 

These results showed that molecules that have sp3 carbon atoms are significantly more active than 

those that have sp2 carbon atoms at 4-position of the pyrazolone ring. Therefore, our results have 

confirmed that the edaravone make the oxidation reaction by hydrogen abstraction in accordance with 

other works [4,5,9,10]. 

In fact, our theoretical results show lower BDECH values when phenyl ring or alkyl groups are 

connected to the 4 position in the pyrazolone ring in accordance with cyclic voltammetry. For these 

compounds, the molecules with BDECH lower than 82 kcal·mol−1 are more active than edaravone, 

while molecules with BDECH higher than 82 kcal·mol−1 are less active than edaravone. However, 

Nakagawa et al. [5] have found that edaravone derivatives with values of 227–275 mV (molecules 15–17) 

are more actives. In agreement with experimental results, our theoretical BDECH values for these 

molecules are lower than 76 kcal·mol−1. 

Therefore, maybe the effectiveness of edaravone derivatives depends not only on the stability of the 

pyrazolyl radical formed in the reaction, but also on the substituents at different positions with respect 

to the pyrazolone ring. For example, alkyl or aryl groups at the 4 position related to the pyrazolone ring 

can stabilize a carbon radical by inductive and resonance effects due to the electron-deficient radical site. 

In Figure 5, the calculated spin densities of the hydrogen abstraction from the methylene group 

showed a contribution at carbon C4 of 35–43%, 26–33% for oxygen of carbonyl moiety, and 2–18% 

for O6 and the N1 of hydrazide moiety. The lowest contributions in these positions are related to the 

highest scavenging activity prediction. In addition, alkyl and aryl moieties have the highest spin 

density contributions only when we have the substitution at position 4. 

The spin density is an important parameter to characterize the stability of free-radicals, since the 

energy of a free-radical can be efficiently decreased if the unpaired electrons are highly delocalized 

through the conjugated system after hydrogen abstractions [12–18]. This agrees with Wang [4] who 

states that a possible explanation for the potential antioxidant activity of edaravone might be found in 

the possible stabilization of the radical that is formed after hydrogen abstraction. 
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Figure 5. Spin density of cation free-radical of edaravone and its derivatives. 
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Figure 6. Spin density of semiquinone free-radical of edaravone and its derivatives. 
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The prevalent contributions of BDECH, ∆Eiso, and spin densities are determinants for the biggest 

stable free-radical and more resonance structures, and show that the π-type electron system of 

pyrazolone derivatives substituted with EDGs at 4-position is the major modification related to the 

increase of the antioxidant activity of edaravone. Therefore, we clarify the possible link between 

hydrogen transfer antioxidant activity of edaravone due to the lowest contributions of HOMO and IP, 

and the highest contributions of BDECH and ∆Eiso. 

3. Computational Methods 

In this paper, all structures were submitted initially to a conformational search using the PM3 

method [19]. In addition, geometry optimizations of edaravone and related derivatives have been 

carried out using density functional theory (DFT) [20], for the reason of its excellent compromise 

between computational time and description of electronic correlation. The calculations were performed 

with the Gaussian 03 molecular package [21]. One hybrid functional of the DFT method, which 

consists of the Becke’s three parameters exact exchange functional (B3) combined with the non local 

gradient corrected correlation functional of Lee-Yang-Parr (LYP), denoted B3LYP [22,23] is used 

with 6–31G* basis sets [24,25] for the DFT geometry optimizations. The optimized structures were 

confirmed to be real minima by frequency calculation (no imaginary frequency). For the species 

having more conformers, all conformers were investigated. The conformer with the lowest electronic 

energy was used in this work. The ionization potential (IP) was calculated as the energy difference 

between the cation free-radical and the respective neutral molecule (Equation (1)). 

IP = [EPyr•+] – [EPyr] (1)

The bond dissociation energies (BDE) of the C–H group and its formation were calculated as the 

energy difference between the neutral molecule and the respective semiquinone plus hydrogen radical 

(Equation (2)). 

BDECH = [EPyr• + EH•] – [EPyrH] (2)

The radical stability was determined by the calculation of stabilization energies (∆Eiso), as shown in 

Equation (3) for the hydrogen transfer, where the edaravone derivatives are represented by Pyr and the 

edaravone molecule is represented by EDV. 

∆Eiso = [Pyr• + EDVH] − [PyrH + EDV•] (3)

The theoretical study of eighteen different edaravone derivatives was realized (Figure 2). We have 

therefore undertaken a systematic study of the influence of the alkyl or aryl substituted by EWG or 

EDG on the antioxidant activity of edaravone derivatives. To this aim, we have calculated: (i) the 

highest occupied molecular orbital (HOMO); (ii) ionization potential (IP); (iii) bond dissociation 

energy (BDE); (iv) Stabilization energy; and (v) spin density. These values are correlated to the 

experimental values of scavenging activity of the edaravone derivatives obtained with cyclic 

voltammetry by Nakagawa et al. [5]. The theoretical values are showed in Table 1. 
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4. Conclusions  

In this work, the antioxidant prediction of edaravone derivatives was investigated theoretically at 

the DFT/B3LYP level of theory. The electron-donating groups (EDGs) at 1, 3, or 4 positions have 

great importance in the resonance stabilization. The relative stability of the radical forms depends on 

specific positions, as alkyl or aryl groups at 4-position, and contributes to the resonance effect. The 

electron abstraction is related to EDGs at position 3, decreasing the ionization potential (IP) when 

compared to substitutions at position 4. The hydrogen abstraction is related to EDGs at position 4, 

decreasing the BDECH when compared to other substitutions, resulting in a better antioxidant activity. 

Our results showed that the hydrogen abstraction is more related to the scavenging activity of 

edaravone and its derivatives. 
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