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Background: Gastric cancer (GC) is a highly molecular heterogeneous tumor with poor
prognosis. Epithelial-mesenchymal transition (EMT) process and cancer stem cells (CSCs)
are reported to share common signaling pathways and cause poor prognosis in GC.
Considering about the close relationship between these two processes, we aimed to
establish a gene signature based on both processes to achieve better prognostic
prediction in GC.

Methods: The gene signature was constructed by univariate Cox and the least absolute
shrinkage and selection operator (LASSO) Cox regression analyses by using The Cancer
GenomeAtlas (TCGA) GC cohort. We performed enrichment analyses to explore the potential
mechanisms of the gene signature. Kaplan-Meier analysis and time-dependent receiver
operating characteristic (ROC) curves were implemented to assess its prognostic value in
TCGA cohort. The prognostic value of gene signature on overall survival (OS), disease-free
survival (DFS), and drug sensitivity was validated in different cohorts. Quantitative reverse
transcription polymerase chain reaction (RT-qPCR) validation of the prognostic value of gene
signature for OS and DFS prediction was performed in the Fudan cohort.

Results: A prognostic signature including SERPINE1, EDIL3, RGS4, and MATN3 (SERM
signature) was constructed to predict OS, DFS, and drug sensitivity in GC. Enrichment
analyses illustrated that the gene signature has tight connection with the CSC and EMT
processes in GC. Patients were divided into two groups based on the risk score obtained
from the formula. The Kaplan-Meier analyses indicated high-risk group yielded significantly
poor prognosis compared with low-risk group. Pearson’s correlation analysis indicated
that the risk score was positively correlated with carboplatin and 5-fluorouracil IC50 of GC
cell lines. Multivariate Cox regression analyses showed that the gene signature was an
independent prognostic factor for predicting GC patients’ OS, DFS, and susceptibility to
adjuvant chemotherapy.
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Conclusions: Our SERM prognostic signature is of great value for OS, DFS, and drug
sensitivity prediction in GC, which may give guidance to the development of targeted
therapy for CSC- and EMT-related gene in the future.
Keywords: gastric cancer, cancer stem cells, epithelial-mesenchymal transition, prognostic signature, drug
sensitivity prediction
INTRODUCTION

Gastric cancer (GC) is one of the most common malignant
tumors which have high morbidity and mortality, and it is the
fourth leading cause of cancer-related death. A total of 1,089,103
people were diagnosed with GC worldwide in 2020, and new
deaths increased to 768,793 which accounted for 7.7% of cancer-
related death (1, 2). Although overall GC incidence rates
continue to decrease in the majority of countries, including
high-incidence countries such as China, Korea, and Japan, the
absolute number of newly diagnosed GC cases and the incidence
in younger age groups (below age 50 years) are predicted to
continue to increase in both low- and high-risk countries (3).
Nowadays, different classification and staging systems such as
TNM staging, Lauren classification, and Borrmann classification
are extensively used to predict the outcomes and plan
personalized treatment strategies for GC patients in clinical
practice. However, the outcomes can vary significantly for the
patients with similar clinicopathological characteristics because
molecular heterogeneity has been shown in similar stages and
classifications, suggesting the current classification system is
insufficient to achieve precise prognostication and risk
stratification. Hence, novel strategies providing more precise
predictive value are strongly demanded for making
individualized treatment strategies.

Recently, some literature reports that the molecular
heterogeneity (gene expression, gene amplification, epigenetic
changes, chromosomal aberrations) between GC patients can be
used to develop molecular classification systems to stratify
patients to different molecular subtypes with different outcomes.
The Asian Cancer Research Group (ACRG) proposed amolecular
classification containing 4 molecular subtypes: MSS/TP53
activation, MSS/TP53 loss, microsatellite instability (MSI), and
MSS/EMT. The result of survival analysis between different
molecular subtypes illustrated that the MSI group had a better
prognosis and the MSS/EMT group had the worst prognosis (4).
Next-generation sequencing for tumor tissue has been widely used
in clinical practice to detect genetic alterations. The most widely
used molecular classification of GC is based on the human
epidermal growth factor receptor 2 (HER2) expression level,
which is the basis for selecting anti-HER2-targeted therapy.
Anti-HER2-targeted drugs have revolutionized the treatment of
HER2-positive GC and improved its outcome over the last decade.
However, although HER2-positive patients account for only
around 10% of all GC patients, it is necessary to develop novel
molecular biomarkers to guide targeted treatments in GC.

Epithelial-mesenchymal transition (EMT) is a biological process
allowing the epithelial cells to transform into mesenchymal cells,
2

and EMT plays a role in physiological and pathological processes,
which include embryonic evolution, wound healing, tumor cell
metastasis, and drug resistance (5, 6). Different signaling pathways
are involved in EMT: transforming growth factor-beta (TGF-b)
signaling pathway, Hedgehog signaling pathway, Wnt/b-catenin
signaling pathway, and Notch signaling pathway (7–9). The
changes of molecular expression levels in these pathways could
modulate the EMT-related transcription factors such as Snail,
Twist, Slug, and Zeb, leading to an increased expression of
mesenchymal cell markers (8). The EMT process could speed up
the invasion, dissemination, and migration rates of cancer cells,
which contributes to the rapid deterioration of disease and
chemotherapeutic resistance. EMT markers were proven to be a
critical prognosticator for different tumors, including glioma,
endometrial cancer, and also GC (10–12).

Cancer stem cells (CSCs) are a small population of tumor cells
playing a pivotal role in tumor progression, drug resistance, and
survival of tumor cells. CSCs cause chemotherapeutic resistance
and tumor recurrence through different mechanisms such as
exporting cytotoxic drugs out of the cell through multidrug
resistance (MDR) pumps, developing stronger DNA repair
mechanisms, and reducing sensitivity to redox stress to prevent
senescence (13–15). CSCs have been discovered to predict poor
prognosis in many solid malignancies, including GCs, and
inhibition of the CSC population may be an appropriate
therapeutic strategy to prevent tumor recurrence and
metastasis (16).

Literature surveys have revealed that there is an overlap
between EMT stimuli and CSCs; activation of EMT-related
transcription factors could increase the expression level of genes
involved in prompting CSC transformation. Vesna et al.
demonstrated that breast cancer cells would develop CSC
phenotypes under the influence of TWIST overexpression (17).
The tight connection between the EMT process and CSCs is
observed in GC as well. Yoon et al. reported that activation of
RTK-RAS signaling promoted EMT in GC cells, thus leading to
the acquisition of CSC phenotypes (enrichment of CD44
expression) and invasive capabilities (18). There is mounting
evidence suggesting that two processes may share common
signaling pathways including TGF-b, Wnt/b-catenin, Hedgehog,
Notch, and STAT3 (19). Considering the close relationship
between these two processes in regulating each other and the
common pathways they share, identifying molecular biomarkers
related to both processes can achieve higher prognostic value and
aid in the discovery of targeted treatment options.

Malta et al. used an innovative one-class logistic regression
machine learning algorithm (OCLR) to calculate mRNA
expression-based stemness index (mRNAsi), which indirectly
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reflected the activity of CSCs and the tumor differentiation state
(20). Previous studies demonstrated that mRNAsi was a
prognostic factor for GC (21). Therefore, it was reasonable to
screen differentially expressed genes (DEGs) between high- and
low-mRNAsi groups to identify stemness-related prognostic
genes. The SERM signature for prognostic and drug sensitivity
prediction was then developed by screening overlapped genes of
CSC and EMT processes through statistical analyses, followed by
the construction of a nomogram by integrating the signature and
other clinical parameters.
MATERIALS AND METHODS

Data Collection and Processing
RNA-sequencing matrix and clinical data of GC samples were
downloaded from TCGA database (https://portal.gdc.cancer.
gov/). “HT-Seq COUNT” and “HT-Seq FPKM” workflow types
of TCGA stomach adenocarcinoma (TCGA-STAD) were
downloaded, which included a total of 375 GC tissue samples
and 32 adjacent normal samples. Clinical information was
constituted by age, sex, TNM level, pathological stage, grade,
survival time, and survival states. The mRNAsi of TCGA-STAD
were obtained from Malta’s previous studies (20). Patients who
met the following criteria were included in the subsequent
analyses: (1) RNA-seq matrix sample ID name can be matched
to mRNAsi ID name from the literature; (2) patients with
completed clinical data for further analyses; and (3) clinical
follow-up time no less than 30 days. Thus, 296 patients (296
tumor samples and corresponding mRNAsi level) were included
in constructing CSC- and EMT-related prognostic gene
signature (Supplementary Table S1). The microarray matrix
and clinical data of GSE66229, GSE15459, and GSE26942 were
downloaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/). We extracted the data of GC cell lines mRNA
expression level and the information of different antineoplastic
drugs IC50 of 32 GC cell lines from the CCLE database (https://
sites.broadinstitute.org/ccle/).

Identification of CSC- and EMT-
Related Genes
Patients were categorized into low- and high-mRNAsi groups
based on the median value of mRNAsi. The differentially
expressed genes (DEGs) between low- and high-mRNAsi
groups were screened using the “edgeR” R package with false
discovery rate (FDR) <0.05 and |log2 fold change| >1. The
heatmap and volcano plot were drawn by the R package
“ggplot2” and “tinyarray” to visualized the differential analysis.
The gene set HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION was downloaded from the Molecular Signatures
Database (MsigDB), which included the EMT-related genes for
further analysis. To decipher gene signatures related to both
CSCs and EMT, we screened overlapped genes between filtered
DEGs and the EMT gene set. Based on the aforementioned
strategies, 60 genes representing CSC and EMT crosstalk were
finally identified.
Frontiers in Oncology | www.frontiersin.org 3
Construction of a 4-Gene-Based
Prognostic Signature
A total number of 296 STAD patients with complete clinical data
were enrolled in the construction of the CSC- and EMT-relevant
prognostic signature. The univariate Cox regression analyses
were conducted on CSC- and EMT-related genes and of which
a p-value of less than 0.05 were considered the genes that
significantly impact the survival of GC patients. The
aforementioned genes were collected and pooled into the least
absolute shrinkage and selection operator (LASSO) Cox
regression algorithm, which minimized multicollinearity
between different genes, to further reduce selected genes with
the “survival” and “glmnet” R package. A risk prognosis model
composed of 4 genes was established based on the linear
combination of regression coefficients obtained from
multivariate Cox regression analyses and gene expression
values. The risk score of each patient was calculated by the
formula that Risk score = sum of coefficients × gene expression
level. The median value of risk score was used to separate
samples into high- and low-risk groups in TCGA cohort. The
same cutoff value was applied in the validation cohorts.

Exploration of the Potential Biological
Pathways for the Prognostic
Signature in GC
To further explore the significant biological pathways potentially
involved in the high-risk patients compared with low-risk
patients, we conducted gene set enrichment analysis (GSEA)
by “clusterProfiler” R package in the TCGA-STAD and
GSE66229 cohorts between high- and low-risk patients. When
adjust p-value <0.05 and FDR <0.25 after performing 1,000
permutations in GSEA analysis, gene sets were considered to
be dramatically enriched. “Hallmark gene sets” were downloaded
from the MsigDB for GSEA analysis. We then chose the
upregulated genes in high-risk group to perform Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses using “clusterProfiler” R package with a p-value <0.05
and a q-value <0.05.

To demonstrate the close relationship between the gene
signature and EMT processes, we compared the risk score level
among four GC molecular subtypes (MSS/TP53 activation, MSS/
TP53 loss, MSI, and MSS/EMT) associated with distinct clinical
outcomes (4). Furthermore, Pearson’s correlation analysis was
performed between the risk score and the mRNA expression
level of EMT markers (TWIST1, TWIST2, CDH2, FN1, SNAI1,
SNAI2, MMP2, MMP9, ZEB1) (22).

Assessment and Validation of the
Prognostic Value of the Gene Signature on
OS and DFS in the Public Database
Kaplan-Meier survival analyses and log-rank tests were
implemented to evaluate the predictive value of the signature
by using the R package “survival.” With “survival ROC” R
package, time-dependent receiver operating characteristic
(ROC) curves were conducted to determine the sensitivity and
specificity of the risk score by measuring the area under the curve
January 2022 | Volume 11 | Article 799223
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(AUC) (23). Univariate and multivariate Cox regression analyses
of clinical characteristics and risk score were applied to evaluate
whether the risk model was an independent prognostic factor for
OS. The prognostic value of the established gene signature was
validated in external validation cohorts GSE66229 and GSE15459.

Except for OS, DFS is also a crucial indicator for evaluating
the disease progression, especially for the early stage of GC. The
precise and accurate prediction of DFS could guide clinicians in
formulating subsequent treatment plans. We wonder if the
prognostic gene signature could be applied to predict the DFS
of GC patients. In the GSE66229 cohort, survival curves between
high- and low-risk groups of patients were depicted and
compared using Kaplan-Meier estimates and log-rank test,
respectively. Whether the risk score was an independent
outcome predictor linked with DFS was determined by
univariate and multivariate Cox analyses.

Application of Quantitative Reverse
Transcription Polymerase Chain Reaction
in GC Cell Lines and Tissues
To further validate the prognostic value of gene signature, we
collected 126 GC patients who were diagnosed between 2007 and
2011 with complete clinical information from Fudan University
Shanghai Cancer Center. In these cases, the expression level of
genes that were included in the CSC- and EMT-related
prognostic signature was validated by quantitative reverse
transcription polymerase chain reaction (RT-qPCR) in gastric
cancer tissues of 126 patients. The clinical information and RT-
qPCR results of patients in our cohort are presented in
Supplementary Table S2. We also explored the mRNA
expression levels of four genes in eight human GC cell lines
(HGC-27, MKN-28, SGC-7901, BGC-823, MGC-803, AGS,
NCI-N87, MKN45) and gastric mucosal cell line GES-1. Total
RNAs were extracted from the GC cell lines and clinical tissue
specimens using TRIzol reagent (Invitrogen, Waltham, MA,
USA). First-strand cDNA was synthesized using the Evo M-
MLV RT Premix kit for qPCR (Accurate Biology, Hunan, China)
according to the manufacturer’s instructions. Relative RNA
levels determined by RT-qPCR were measured on a 7900 Real-
Time PCR System with the SDS 2.3 software sequence detection
system (Applied Biosystems, Waltham, MA, USA) using the
SYBR Green (Accurate Biology, Hunan, China) method. b-Actin
was employed as the internal control to quantify the mRNA
levels of model genes. The relative levels of RNA were calculated
using the comparative CT(2−DDCT) method. We listed the
specific primers for SERPINE1, EDIL3, RGS4, MATN3, and b-
actin in Supplementary Table S3.

Clinical Subgroup Analysis of the
Prognostic Signature
To investigate whether the prognostic gene signature had the
predictive power for OS and DFS in subgroups of patients with
different clinical characteristics, patients were divided into
subgroups based on age, gender, T stage, N stage, and TNM
stage. The p-value of the log-rank test obtained by comparing
survival outcomes between different risk levels of patients was
Frontiers in Oncology | www.frontiersin.org 4
used to measure the prognostic value of gene signature in each
clinical subgroup.

Construction and Assessment of the
Signature-Based Nomogram
A nomogram including age, gender, pathological parameters,
and risk score was constructed by “rms” R package to predict the
1-, 3-, and 5-year OS of GC patients. The concordance index (C-
index) and AUC of the nomogram were calculated by “rms” R
package to reflect the discrimination ability of the model. The
concordance between the predicted outcome and actual survival
outcome was reflected by plotting the nomogram calibration
curves. Decision curve analyses (DCA) were conducted to
evaluate the net benefit of nomogram at different threshold
values compared with other simple or complex models by
“ggDCA” R packages (24). We applied the same methods to
validate the accuracy of nomogram in the external validation
cohort GSE66229.

Assessment of the Gene Signature
Prognostic Value on Antineoplastic
Drug Sensitivity
Research advances have provided solid evidence for the
contribution of EMT and CSC activation to primary and
developed chemotherapeutic drug resistance (25). Therefore,
we speculated that the gene signature we developed, which was
related to CSC and EMT process, could predict the GC patients’
susceptibility to chemotherapeutic drug treatment. We
downloaded the data of GC cell line mRNA expression level
and the information of different antineoplastic drugs IC50 of GC
cell lines from the CCLE database. The risk score of each GC cell
line was calculated by the formula we developed. The
relationship between IC50 of drugs and risk score was then
analyzed by conducting Pearson’s correlation analyses. The
GSE26942 cohort, which was based on GPL6947 (Illumina
HumanHT-12 V3.0 expression beadchip) contained 202 GC
patients’ samples, including 106 patients treated with adjuvant
chemotherapy and 96 patients untreated after surgery. To
analyze the capacity of the signature on predicting
chemotherapeutic drug sensitivity, we chose the patients who
accepted the adjuvant chemotherapy for further analysis. The
previous formula was used to compute each patient’s risk score,
and patients were divided into high- and low-risk groups based
on the same cutoff applied in TCGA cohort. To test the
prognostic value of gene signature on chemotherapeutic drug
susceptibility, we applied Kaplan-Meier analyses between high-
and low-risk groups. We conducted multivariate Cox regression
analyses of clinical characteristics and risk score to assess
whether the gene signature was an independent prognostic
factor for drug sensitivity.

Statistical Analyses
R 4.1.0 software (https://www.R-project.org) and GraphPad
Prism 7 were used for statistical analysis and graphing in this
article. Wilcoxon test and Kruskal-Wallis were used for risk score
comparisons between EMT and non-EMT groups. Pearson’s
January 2022 | Volume 11 | Article 799223

https://www.R-project.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jia et al. Prognostic Model of Gastric Cancer
correlation analysis was implemented to analyze the correlation
between risk score and EMT markers and calculate the
correlation coefficient. Kaplan-Meier curve analysis with log-
rank test was conducted to compare survival differences between
different groups of patients. Statistical significance was
considered p < 0.05, and all p-values were two tailed.
RESULTS

Construction of the SERM Prognostic
Signature
We conducted this study methodically based on the steps
presented in the flow chart (Figure 1). We screened 1,315
DEGs (1,100 downregulated, 215 upregulated) between high-
and low-mRNAsi group; heatmap reflecting differential gene
expression patterns and volcano plot which directly identify
significantly differentially expressed genes among two groups
were exhibited in Figure 2A, B. PCA plot presented the
differences in gene expression between high- and low-mRNAsi
groups (Figure 2C). The Venn diagram indicated the overlapped
genes between DEGs and EMT gene set (Figure 2D). Univariate
Cox regression was applied on overlapped genes with p-value less
than 0.05 (Supplementary Table S4), after which, 29 genes were
subjected to LASSO Cox regression analyses to construct a
prognostic signature based on CSC and EMT processes for
evaluating the prognosis of GC patients (Figures 2E, F).
Ultimately, a prognostic gene signature including SERPINE1,
EDIL3, RGS4, and MATN3 four genes (SERM signature) was
constructed. The formula of calculating prognostic risk score
could be indicated as: 0.211372 × (expression level of SERPINE1) +
0.103095 × (expression level of EDIL3) + 0.071508 × (expression
level of RGS4) + 0.210286 × (expression level of MATN3). The
coefficients of the four genes in the prognostic model were all
greater than zero, which indicated that they were all predictors of
poor prognosis. GC patients in the TCGA-STAD cohort were
split into high- and low-risk groups based on the median risk
score which was identified as −0.018421. Patients in validation
Frontiers in Oncology | www.frontiersin.org 5
cohorts were separated into two groups based on the same
cutoff value.

Enrichment and Statistical Analysis
Revealed the Potential Mechanisms of the
SERM Signature
We obtained ranked gene lists between high- and low-risk
groups by using “limma” R package and then conducted GSEA
analysis using “hallmark gene sets” downloaded from MsigDB.
GSEA analysis indicated that in addition to powerful activation
of EMT process, the enrichment of angiogenesis process,
hypoxia, TGF-b pathway, Hedgehog pathway, and KRAS
signaling pathways was observed in the high-risk group of GC
patients in both TCGA and GSE66229 cohorts (Figure 3A).
Accumulating evidence indicates that TGF-b and Hedgehog
pathways play significant roles in EMT process and formation
of CSCs, suggesting that the signature has a strong association
with both processes (19, 26, 27). What is more, KRAS signaling
pathway, hypoxia, and angiogenesis processes were
demonstrated to accelerate tumorigenesis and metastasis, thus
leading to disease progression and poor prognosis in GC (18, 28,
29). The results of KEGG enrichment analyses for gene signature
are shown in Figure 3B. Protein digestion and absorption, focal
adhesion, ECM-receptor interaction, complement, coagulation
cascades, and PI3K-Akt pathways were five top significant
KEGG pathways related to high-risk group in both cohorts.

To further elucidate and demonstrate the close relationship
between the gene signature and EMT process, we performed a
Kruskal-Wallis test to investigate the differential risk score value
among four molecular subtypes (MSS/TP53 activation, MSS/
TP53 loss, MSI, and MSS/EMT) proposed by the ACRG group in
TCGA-STAD cohort. Wilcoxon test was used to compare the
risk score value between MSS/EMT group and other subtypes. In
the TCGA-STAD cohort, the risk score level was significantly
higher in the MSS/EMT group compared with MSS/TP53
activation, MSS/TP53 loss, and MSI subtypes (p < 0.05)
(Figure 3C). To make the results more reliable, we applied the
same analyses in the GSE66229 cohort and the results turned out
FIGURE 1 | The flowchart presenting the procedure and processes of our study.
January 2022 | Volume 11 | Article 799223
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to be identical with TCGA cohort (Figure 3D). Furthermore, we
conducted ROC analysis to further elucidate the remarkably
differential risk score value between EMT and non-EMT
subtypes. The result of ROC analysis illustrated that the
established gene signature based on CSC and EMT processes
showed good discriminatory ability between EMT and non-EMT
subtypes (Figure 3E). Additionally, we computed the correlation
index between the mRNA expression level of EMT markers and
risk score value in the TCGA and GSE66229 cohorts using
“ggpubr” R package by Pearson’s correlation analysis. Recent
studies have shown the signaling pathways involved in the EMT
process change the gene expression through modulating the
transcription factors such as Snail, Twist, and ZEB (8).
The changes of EMT-related transcription factors could
increase the expression level of mesenchymal cell markers and
matrix metalloproteinases (MMP), especially MMP-2 and
MMP-9 (30). Therefore, We chose EMT-related transcription
factors and their downstream proteins as EMT markers in our
study. The results were presented in Supplementary Figure S1.
We could conclude that the mRNA expression level of all EMT
markers we investigated in our study showed obvious positive
correlations with risk score (p < 0.001).

Assessment and Validation of the
Prognostic Value of SERM Signature on
OS and DFS in the Public Database
The result of survival analysis between high- and low-risk groups
is presented in Figure 4A, the high-risk group exhibited
significantly shorter OS compared with the low-risk group (p <
0.0001). The predictive value of the four-gene-based model was
Frontiers in Oncology | www.frontiersin.org 6
evaluated by calculating the AUC value under the time-
dependent ROC curve. The 1-, 3-, and 5-year AUCs were
0.621, 0.664, and 0.749, respectively (Figure 4D). To validate
the prognostic ability of gene signature, the risk score was
calculated by the same formula in the GSE66229 and GSE15459
cohorts. To divide patients into different groups, the same cutoff
of risk score was used in two validation cohorts. In the GSE66229
cohort, 162 patients belonged to the low-risk group and the
remaining 138 patients were categorized as high-risk group. Two
groups owned the same number of patients in the GSE15459
cohort, whichmeant 96 patients were included in each group. The
difference in survival time between high- and low-risk groups was
also statistically significant in two validation cohorts (Figures 4B,
C). In the GSE66229 cohort, the AUCs of 1-, 3-, and 5-year ROC
were 0.663, 0.655, and 0.647, respectively. The 1-, 3-, and 5-year
AUCs were 0.657, 0.699, and 0.716 in GSE15459, showing a good
prognostic discrimination of the SERM signature (Figures 4E, F).
Univariate Cox regression analysis of risk score showed that it
was an adverse prognostic factor for GC. Furthermore,
multivariate Cox analysis in three cohorts indicated that the
risk score was an independent prognostic factor for GC patient
OS (Supplementary Tables S5-S7). These results demonstrated
that the gene signature we derived by LASSO Cox regression for
OS prediction could be used as a valuable prognostic marker. The
distributions of risk score, survival status, and heatmap of gene
signature expression levels of the TCGA-STAD, GSE66229, and
GSE15459 cohorts are shown in Figures 4G–I.

We tested the prognostic value of SERM signature on DFS of
GC patients in the GSE66229 cohort. The same cutoff value
(−0.018421) was used for dividing GC patients in the GSE66229
A B

D E F

C

FIGURE 2 | Construction of a four-gene-based SERM prognostic signature for GC. (A, B) Heatmap (A) and volcano plot (B) reflected DEGs between high- and
low-mRNAsi groups. (C) PCA plot presented the differences in overall gene expression level between high- and low-mRNAsi group. (D) Venn diagram indicated the
overlapped genes between DEGs and EMT gene set. (E) LASSO coefficient profiles of 29 prognostic genes. (F) Ten-fold crossvalidation for tuning parameter
selection in the LASSO model.
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cohort into high- and low-risk groups to analyze the survival
differences between two groups by Kaplan-Meier plot with the
log-rank test. The result is shown in Supplementary Figure S2A,
which suggested the SERM signature owning a strong predictive
power for DFS of GC patients who undergo a radical operation.
We then performed time-dependent ROC analysis to evaluate
the prognostic accuracy of the model and observed the values of
1-, 3-, and 5-year AUC were 0.653, 0.66, 0.695, respectively
(Supplementary Figure S2B). Multivariate Cox regression
indicated the risk score was an independent prognostic factor
for predicting DFS of GC patients (Supplementary Figure S2C).
The distributions of risk score, survival status, and heatmap of
gene signature expression levels of the GSE66229 cohort are
shown in Supplementary Figure S2D.

RT-qPCR Validation of SERM Signature
Gene Expression in Both GC Cell Lines
and the Fudan Cohort
We measured the mRNA expression level of EDIL3, SERPINE1,
RGS4, and MATN3 with RT-qPCR in GC cell lines and Fudan
cohort. The results formembers of SERM signature gene expression
Frontiers in Oncology | www.frontiersin.org 7
level in different GC cell lines are presented in Supplementary
Figure S3, which to some extent would provide guidance for us to
choose GC cell lines for underlying molecular biological
mechanism detection in further study. To validate the prognostic
ability of gene signature on OS prediction, the risk score was
calculated for each patient in our cohort according to the formula
and coefficient obtained from multivariate Cox regression analysis
in the TCGA cohort. We applied the same cutoff of the risk score in
our validation cohort. In total, 52 and 74 patients were divided into
high- and low-risk groups, respectively. The Kaplan-Meier analysis
between the two groups demonstrated that compared with the low-
risk group, the OS in the high-risk group was significantly poorer
(Figure 5A). Univariate Cox regression analysis indicated risk score
was an important marker influencing the OS of GC patients (p <
0.001).Multivariate Cox regression analysis based on risk scorewith
other clinical parameters suggested risk score was an independent
poor prognostic marker for OS (Figure 5B). The prognostic value
of the risk model on DFS prediction in Fudan cohort was also
analyzed. The risk score was computed for each patient in our
cohort with the formula and coefficient obtained from TCGA
cohort. Patients were separated into high- and low-risk groups
A B

D
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C

FIGURE 3 | Exploration of the potential biological pathways for the prognostic signature in GC. (A) GSEA analysis was carried out to investigate the enrichment
score and p-value of hallmark gene sets between the high- and low-risk groups in TCGA-STAD and GSE66229 cohorts. (B) KEGG enrichment analysis for
upregulated genes in the high-risk group. (C, D) Risk score value were evaluated among four molecular subtypes (MSS/TP53 activation, MSS/TP53 loss, MSI, and
MSS/EMT) in both TCGA-STAD (C) and GSE66229 (D) cohorts. (E) The ROC curves were used to testify the ability of risk score level in discriminating EMT and
non-EMT molecular subtypes in the TCGA-STAD and GSE66229 cohorts.
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according to the same cutoff and each group owned 29 and 41
patients, respectively. Furthermore, we conducted the Kaplan-
Meier analysis between two groups, and the results indicated the
DFS in the high-risk group was significantly poorer compared with
the low-risk group (Figure 5D). The p-values of the risk score of
Frontiers in Oncology | www.frontiersin.org 8
univariate and multivariate Cox analyses were both lower than
0.001, indicating it was an independent prognostic marker for DFS
(Figure 5E). Time-dependent ROC analysis suggested the
signature’s good performance on predicting OS and DFS in GC
patients (Figures 5C, F).
A B

D E F

G

I

H

C

FIGURE 4 | Assessment and validation of the SERM prognositc signature on OS prediction. (A–C) Kaplan-Meier analysis of OS between the high- and low-risk
groups based on the SERM signature in the TCGA-STAD (A), GSE66229 (B), and GSE15459 (C) cohorts. (D–F) Time-dependent ROC curves of the SERM
signature in the TCGA-STAD (D), GSE66229 (E), and GSE15459 (F) cohorts. (G–I) The distributions of risk score, survival status, and heatmap of the SERM
signature expression levels in the TCGA-STAD (G), GSE66229 (H), and GSE15459 (I) cohorts.
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Assessment of the Prediction Power of the
SERM Prognostic Signature in Clinical
Subgroups by Kaplan-Meier Plot
We demonstrated the predictive power of gene signature in
different clinical subgroups based on age, gender, T stage, N
stage, and TNM stage in the GSE66229 cohort. According to the
previous risk score cutoff, patients in subgroups were split into
high- and low-risk groups, and the Kaplan-Meier analyses were
conducted to detect if the signature could be used as a prognostic
indicator for OS and DFS in clinical subgroups. As shown in
Figures 6A–J, patients with high risk had a worse prognosis of
OS than patients with low risk in patients >65 years (p < 0.001),
female (p = 0.0015), male (p = 0.043), T1-2 (p = 0.02), N0-1 (p =
0.048), N2-3 (p = 0.0084), stage III-IV (p = 0.013) subgroups;
however, the prognostic signature was incompetent in
distinguishing the OS of the high risk from the low-risk group
in age ≤65 years (p = 0.054), T3-4 (p = 0.18), and stages I–II (p =
0.37) subgroups. In Figures 6K–R, patients with high risk had a
worse prognosis of DFS than patients with low risk in patients
>65 years (p = 0.0014), ≤65 years (p < 0.001), male (p < 0.001),
female (p = 0.0012), T1-2 (p < 0.001), N0-1 (p < 0.001), stages I–
II (p = 0.011), and stages III–IV (p = 0.0098). While in T3-4 and
N2-3 subgroups, p-values of the Kaplan-Meier plot were 0.092
and 0.19, respectively.
Frontiers in Oncology | www.frontiersin.org 9
Construction and Validation of the SERM
Signature-Based Nomogram for OS
Prediction in GC
To make the model more applicable in clinical use, we next
established a nomogram, which integrates age, gender, TNM
stage, and risk score to achieve the purpose of optimizing current
indicators for long-term OS prediction by multivariate Cox
regression in TCGA-STAD cohort (Figure 7A). The validation
cohort GSE66229 was used to test the predictive accuracy of the
nomogram. The nomogram-combined clinical characteristics
and the SERM signature were used to predict 1-, 3-, and 5-
year survival probabilities. Each patient would get a unique score
based on the constructed nomogram, and the higher the score
was, the worse the prognosis. The discrimination degree,
concordance, and clinical usefulness of the nomogram were
quantified by time-dependent ROC curve, nomogram
calibration curve, and DCA.

For the constructed nomogram in the training cohort, the C-
index of the nomogram for survival prediction was 0.70 and the
AUCs of 1-, 3- and 5-year ROC were 0.719, 0.722 and 0.815,
respectively (Figure 7B). The C-index of nomogram built with
age, gender, TNM stage, and risk score in the GSE66229 cohort
was 0.72. The AUC values of ROC were 0.787 at 1 year, 0.762 at 3
years, and 0.759 at 5 years (Figure 7C). The nomogram
A B

D E F

C

FIGURE 5 | Evaluation of the prognostic value of SERM signature on OS and DFS prediction in Fudan cohort. OS: (A) Kaplan-Meier analysis of OS according to risk
score value. (B) Multivariate Cox regression analysis of clinical parameters and risk score. (C) Time-dependent ROC curves of the SERM signature for 1-, 3-, and 5-
year OS prediction. DFS: (D) Kaplan-Meier analysis of DFS according to risk score value. (E) Multivariate Cox regression analysis of clinical parameters and risk
score. (F) Time-dependent ROC curves of the SERM signature for 1-, 3-, and 5-year DFS prediction.
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FIGURE 6 | Subgroup analysis of OS and DFS in the GSE66229 cohort. OS Kaplan-Meier plot: (A) age ≤65, (B) age >65, (C) male, (D) female, (E) T1 + T2, (F) T3 +
T4, (G) N0 + N1, (H) N2 + N3, (I) stage I + II, and (J) stage III + IV; DFS Kaplan-Meier plot: (K) age ≤65, (L) age >65, (M) male, (N) female, (O) T1 + T2, (P) T3 + T4,
(Q) N0 + N1, and (R) N2 + N3.
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 11 | Article 79922310

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jia et al. Prognostic Model of Gastric Cancer
calibration curves of training and validation cohorts presented in
Figure 7D exhibited a good consistency between nomogram-
predicted OS and the actual observation at 1-, 3-, and 5-year OS,
which further demonstrated the accuracy of the nomogram.
Shown by the DCA curve in Figure 7E, the nomogram yielded
a better net benefit compared with individual predictive factors
and the model without risk score, illustrating the combined
Frontiers in Oncology | www.frontiersin.org 11
nomogram could give guidance to clinicians to make a better
prediction on patient OS prognosis. Compared with age, gender,
TNM stage, and model without risk score, the combined
nomogram exhibited the largest AUC for 1-, 3-, and 5-year OS
prediction in both training and validation cohort, suggesting
integrating risk score into Cox model could improve the
discrimination capacity of the model (Figure 7F).
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FIGURE 7 | Construction and assessment of a nomogram for OS prediction. (A) A nomogram integrating age, gender, TNM stage, and risk score was constructed
in the TCGA-STAD cohort. (B, C) Time-dependent ROC curves of the nomogram for 1-, 3-, and 5-year OS prediction in the TCGA-STAD (B) and GSE66229
cohorts (C). (D) Calibration curves of the nomogram for 1-, 3-, and 5-year OS prediction in the TCGA-STAD and GSE66229 cohorts. (E) DCA curves were
performed to evaluate the net benefit of the nomogram, age, gender, pathological characteristics, and risk score in the TCGA-STAD and GSE66229 cohorts.
(F) Time-dependent ROC curves of the nomogram, age, gender, TNM stage, risk score, and model without risk score for 1-, 3-, and 5-year OS prediction in the
TCGA-STAD and GSE66229 cohorts.
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The Developed SERM Signature Could
Predict Antineoplastic Drug Sensitivity in
GC Cell Lines and GC Patients
Pieces of evidence have demonstrated that phenotypical changes
associated with EMT process and stem cell characteristics lead to
a reduced response of GC to chemotherapy. The upregulation of
EMT markers (vimentin and N-cadherin), which may be
regulated by the activation of TGF-b pathway, was reported to
cause a worse response of GC to 5-FU (31). CD133 has been
identified as a significant marker of CSCs in various cancers,
including GC. GC patients with a high expression level of CD133
treated with an adjuvant cisplatin/5-FU therapy had shorter OS
and DFS than those CD133-low patients, which indicated that
CD133 seemed to contribute to chemoresistance in GC (32).
Thus, we reasonably speculated that the established SERM
signature could predict GC patients’ susceptibility to
chemotherapeutic drugs. To confirm our conjecture, we
analyzed the prognostic value of gene signature on drug
sensitivity in both GC cell lines and patients. Pearson’s
correlation tests were used to assess the relationship between
antineoplastic drugs IC50 and riskscore of 32 GC cell lines. We
screened the results of Pearson’s correlation test with a p-value
Frontiers in Oncology | www.frontiersin.org 12
<0.1; the results showed that the risk score was positively related
to IC50 of most antineoplastic drugs, which indicated that the
higher level of risk score was associated with drug resistance
(Figure 8A). As shown by Figures 8B, C, IC50 of carboplatin
and 5-FU chemotherapeutic drug was positively correlated with
the risk score value. Additionally, We chose 106 patients who
were treated with adjuvant chemotherapy in GSE26942 cohort to
assess the capacity of the signature on predict ing
chemotherapeutic drug sensitivity. We selected DFS as an
indicator reflecting pat ients ’ response to adjuvant
chemotherapy. The distributions of risk score, survival status,
and heatmap of gene signature expression levels of the GSE26942
cohort were shown in Figure 8D. The Kaplan-Meier plot
illustrated that the patients with high risk score had shorter
DFS compared with patients with low-risk score (p = 0.054)
(Figure 8E). The results of Kaplan-Meier analysis for 3- and 5-
year DFS between high- and low-risk groups are presented in
Figure 8F (p = 0.040) and Figure 8G (p = 0.033), respectively.
The result of univariate (p = 0.012) and multivariate Cox
analyses suggested the signature was an independent
prognostic factor for predicting GC patients’ susceptibility to
adjuvant chemotherapy (Figure 8H).
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FIGURE 8 | The prognostic value of the signature on drug sensitivity in GC cell lines and GSE26942. (A) Risk score was positively related to IC50 of most
antineoplastic drugs in GC cell lines. (B, C) Risk score was positively related to IC50 of carboplatin (B) and 5-flurouracil (C). (D) The distributions of risk score,
survival status, and heatmap of CSCs and EMT-related gene signature expression levels in GSE26942. (E) Kaplan-Meier analysis of DFS for patients who received
adjuvant chemotherapy between high- and low-risk groups in GSE26942 cohort. (F, G) Kaplan-Meier analysis for 3- (F) and 5- year (G) DFS prediction between high-
and low-risk groups in patients received adjuvant chemotherapy. (H) Multivariate Cox regression analysis of clinical parameters and risk score in the GSE26942 cohort.
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DISCUSSION

The traditional prognostic systems such as TNM staging systems
could be inaccurate under some conditions for predicting GC
patients’ survival, so exploring specific and sensitive markers for
survival prediction of GC patients remains an exigency. Evidence
shows that EMT is closely related to the function of CSCs in
addition to playing an important role in the metastasis of various
tumors. Moreover, under the influence of the EMT process,
tumor cells may acquire cancer stem-like properties, which leads
to drug resistance, increased relapse, and metastasis in multiple
kinds of tumors (26, 33). In addition, accumulating evidence
verifies that there is an overlap between pathways mediating two
processes, including TGF-b, Hedgehog, Wnt/b catenin, and
Notch pathways (19). Choi et al. reported that the expression
level of EMT markers (E-cadherin, b-catenin, Snail, vimentin)
was correlated with stem cell marker expression level (34). CSC
and EMT processes were proven to cause disease progression,
poor prognosis, and drug resistance in lung cancer, esophageal
cancer, breast cancer, and also GC (35–38). Thus, considering
the common pathways and mechanisms two processes share and
the same clinical impact they have, identification of
transcriptional markers for these two processes will achieve a
better prognosis and may give guidance to targeted therapies in
GC patients.

In this study, we screened out CSC- and EMT-related mRNAs
and identified a novel four-gene-based SERM signature and
validated the prognostic value of signature in both public and
Fudan cohorts. We calculated the risk score of patients using the
formula we mentioned in the Results part. Patients were then
divided into high- and low-risk groups based on the median
value of risk score. The results of Kaplan-Meier survival analyses
and time-dependent ROC curves in different cohorts indicated
that the signature could effectively predict the survival and drug
sensitivity to adjuvant chemotherapy of GC patients. To improve
the clinical use of the gene signature, we combined clinical
parameters with the risk score and build a nomogram to
predict each GC patient’s OS in 1, 3, and 5 years. Discrimination
degree, concordance, and clinical usefulness of nomogram were
evaluated in TCGA and GEO cohorts, the results of which suggest
its potential application values in patient’s risk stratification.

Four members in the signature were related to adverse clinical
outcomes of GC patients, and they all have been reported as
EMT-related negative predictors in various kinds of tumors.
GSEA results in our study indicated that four members involved
in the gene signature may have a crucial role in regulating TGF-
b, Hedgehog, and Wnt pathways to promote the formation of
CSCs through the EMT process in GC patients. Except for the
mentioned pathways, we noticed the enrichment of angiogenesis
process, hypoxia, and KRAS signaling pathways in the high-risk
group. Literature demonstrated the compact association between
these pathways and EMT or CSC-related processes. Twist1 was a
transcription factor playing a crucial role in EMT and cancer
stemness; Chen et al. indicated that in addition to traditional
angiogenesis, the activation of the Twist-Jagged1-KLF4 axis
could induce tumor-associated endothelial differentiation (39, 40).
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Previous literature indicated that the concurrent activated KRAS
and depletion of p53 could reprogram EMT-like phenotypes and
increase the expression of cancer stemness genes including CD133,
EpCAM, and CD24 in prostate cancer (41). Changhwan et al.
demonstrated the RTK-RAS signaling could enhance the activation
of EMT signal and promote the expression of stemness-related
transcription factors in human tumor-derived GC cells (18). Of
note, hypoxia-inducible factor-1a (HIF-1a) were proven to
regulate expression of EMT markers and EMT transcriptional
factors (42). Recent studies conducted by Komal et al. discovered
CSC accumulation in hypoxic niches and the anoxic conditions
promoted the self-renewal ability of CSCs (43). We observed the
upregulation of PI3K-Akt pathway-related genes in KEGG
enrichment analysis, and previous studies indicated that this
pathway was involved in both CSC and EMT processes (44). The
results of GSEA and KEGG enrichment analyses revealed the
potential molecular mechanisms of the gene signature, which
might give guidance to the development of targeted therapy.
SERPINE1 gene encodes a protein called plasminogen activator
inhibitor-1 (PAI-1), which is a key regulator of the urokinase-
type plasminogen activator (uPA) system. Previous reports
demonstrated that the upregulation of SERPINE1 in breast
cancer and pancreatic cancer tissue could be induced by TGF-b
pathway activation (45–47). However, the pathway influencing
SERPINE1 expression level in GC needs more investigation.
Bhat-Nakshatri et al. discovered all-trans retinoic acid (ATRA)
reduced themammosphere-forming ability of cell lines by reducing
the expression level of SERPINE1 in CSCs, suggesting SERPINE1
may be a pivotalmolecule related toCSC formation (48). Increasing
sherds of evidences have revealed that SERPINE1 was significantly
upregulated in GC tissues compared with normal tissues and could
lead to a poor prognosis. McCann et al. pointed out the poor
prognosis caused by overexpression of SERPINE1was related to the
imbalance between fibrin deposition and fibrin degradation,
inhibiting PAI-1 expression with miR-30c imitated enhanced
plasmin activity by fibrin zymograms (49). EDIL3 is an
extracellular matrix protein containing three EGF-like domains
and the second domain could allow the interaction of EDIL3 with
integrins. EDIL3 acts as a proangiogenic factor, a mediator of
angiogenesis, and a regulator of endothelial cell adhesion and
migration (50–52). The overexpression of EDIL3 was observed in
several tumor types, including breast, bladder, liver, and lung
carcinomas, and it associates with drug resistance and poor
prognosis (53–56). Overexpression of EDIL3 in hepatocellular
carcinoma could induce the phosphorylation of SRC, ERK, and
SMAD2, leading to the activation of ERK and TGF-b signaling. The
activation of these pathways could increase the transcription
efficiency of mesenchymal markers and integrins, resulting in cell
acquisition of the molecular andmorphologic changes of CSCs and
EMT (57). RGS4, is a kind of regulator of G-protein signaling (RGS)
proteins that catalyze the dephosphorylation of guanosine
triphosphate into guanosine diphosphate. Guda et al. found that
silencing RGS4 in glioma cancer stem cells (GSCs) decreased the
expression, secretion, and activity of MMP2, suggesting decreased
invasive andmigratory abilities of GSCs (58). However, Cheng et al.
suggested that overexpression of RGS4 in NSCLC cells inhibits
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MM2/9expression, thus leading todecreased invasionandmigration
(59). Itwas verified thatRGS4wasupregulated inmesenchymal stem
cells compared with diffuse-type GC, which may suggest that
increased expression level of RGS4 may lead to cell EMT transition
(60).Theprognostic valueofRGS4 inGCisnotyet clear.MATN3 is a
protein-coding gene encoding amember of vonWillebrand factor A
domaincontainingprotein family,which is involved in the formation
of filamentous networks in the extracellular matrix (61). Wu et al.
performed bioinformatics and immunohistochemistry to prove that
compared with a normal control group,MATN3 protein expression
level was significantly higher in the GC tissue group. Furthermore,
they found MATN3 was an independent factor to predict
unfavorable prognosis in GC patients (62).

Although the prognostic signature was tested and validated in
several different cohorts and the results turned out to be stable, our
study still has some limitations. Firstly, the TNM stages recorded
in TCGA and GEO cohorts were not computed according to the
latest edition of AJCC staging system. It was difficult for us to
unify the standard of the TNM stages because of the insufficient
data recording. Secondly, although we developed a prognostic
gene signature related to both CSC and EMT processes and
demonstrated its accuracy, scientists should carry out more
research on how these genes influence both pathways and how
they are connected in GC. A legible understanding of biological
mechanisms can give better guidance for clinical use. Thirdly, the
GSE26942 cohort we used to demonstrate the prognostic value of
gene signature on drug sensitivity and resistance only contained
the microarray data before adjuvant chemotherapy treatment, so
the change of gene expression level after treatment remained
unknown. Therefore, it was difficult for us to analyze the
relationship between the signature and developed drug resistance.
Furthermore, the prognostic effect of the gene signature on
chemotherapeutic resistance for advanced GC patients who
received palliative chemotherapy needs more exploration. Of
note, GC patients always received combination chemotherapy, or
sometimes with targeted agents, so the mechanism of
chemoresistance will be quite complicated and elusive.
Consequently, we should attach more importance to the
exploration of basic biological mechanisms for chemotherapeutic
resistance in GC. Fourthly, except for mRNA level, the protein
expression level of genes could also be powerful prognostic markers
of patient survival. Further investigations and researches are needed
to explore the relationship between the protein expression level of
four genes and GC patients’ survival.

In conclusion, we developed the SERM prognostic signature
related to CSC and EMT processes for predicting OS, DFS, and
drug sensitivity in GC patients. Enrichment analysis to some
extent unmasked a part of molecular mechanisms of the gene
signature in GC, which might give guidance for developing
targeted therapies. The nomogram-combined clinical
characteristics and gene signature for OS prediction could
improve the prognostic accuracy of the traditional TNM staging
system. We anticipate that the SERM signature will offer a brand-
new reference for current prognostic prediction and give more
guidance in developing tailored therapy in GC patients.
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Supplementary Table S5 | Univariate and Multivariate Cox regression of TCGA
cohort with different clinical parameters and Risk score.

Supplementary Table S6 | Univariate and Multivariate Cox regression of
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GSE15459 cohort with different clinical parameters and risk score.

Supplementary Figure S1 | Pearson’s correlation analyses between mRNA
expression level of EMT markers and risk score value in TCGA-STAD and
GSE66229 cohorts.
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Supplementary Figure S2 | Assessment of prognostic value of gene signature
on GC DFS in GSE66229 cohort. (A) Kaplan-Meier analysis of DFS between high-
and low-risk groups based on CSCs and EMT-related gene signature. (B) Risk
score time dependent 1-, 3-, 5- year ROC of DFS. (C) Multivariate Cox regression
analysis of clinical parameters and risk score. (D) The distributions of risk score,
survival status, and heatmap of CSCs and EMT-related gene signature expression
levels.

Supplementary Figure S3 | RT-qPCR result of SERPINE1 (A), EDIL3 (B), RGS4
(C), MATN3 (D) mRNA expression levels in eight GC cell lines (HGC-27, MKN-28,
SGC-7901, BGC-823, MGC-803, AGS, NCI-N87, MKN-45) and gastric mucosal
cell line GES1.
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