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Aging has become an important topic for scientific research because life expectancy and the number of men 
and women in older age groups have increased dramatically in the last century. This is true in most countries 
of the world including the Republic of Korea and the United States. From a rehabilitation perspective, the most 
important associated issue is a progressive decline in functional capacity and independence. Sarcopenia is partly 
responsible for this decline. Many changes underlying the loss of muscle mass and force-generating capacity of 
skeletal muscle can be understood at the cellular and molecular levels. Muscle size and architecture are both 
altered with advanced adult age. Further, changes in myofibers include impairments in several physiological 
domains including muscle fiber activation, excitation-contraction coupling, actin-myosin cross-bridge 
interaction, energy production, and repair and regeneration. A thorough understanding of these alterations can 
lead to the design of improved preventative and rehabilitative interventions, such as personalized exercise training 
programs. 
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INTRODUCTION

Aging demographics
By 2050, the world’s population over 60 years will 

double from about 11% to 22% and there will be 2 billion 
people aged 60 or older living on this planet. Approxi-

mately 400 million will be 80 years or older [1]. Further, 
by 2050, 80% of older people will live in low- and middle-
income countries. This increase in the number of people 
in older age groups is associated with an increase in life 
expectancy. For example, in 2012 in South Korea, life 
expectancy was 81.4 years (84.8 for women and 78.1 for 
men), which puts South Korea in 14th place among 182 
countries in the world (Fig. 1). For comparison purposes 
it is worth noting that, during the same year, life expec-
tancy in the United States was 78.7 years [2].

The increase in the number of people in older age 
groups, per se, should not be considered a problem. 
However, aging is associated with an increased incidence 
of chronic health conditions and, perhaps more impor-
tantly, with an increase prevalence of impairment and 
disability. Visual and hearing impairments, cognitive de-
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cline, musculoskeletal disorders, frailty, and sarcopenia 
all reduce activity and restrict participation in personal, 
work-associated, and social activities. As a consequence, 
it has been estimated that, the number of older people 
requiring long-term care due to loss of functional inde-
pendence will quadruple by 2050 [1]. 

Functional changes in elderly
Aging is associated with changes in body composition 

(increase in body fat and decreases in muscle and bone 
mass) which together with a decline in cognitive, visual, 
and hearing function, sleeping disorders, depression, 
and increased fatigue lead to a decline in physical func-
tion and significantly increases the risk for disability and 
loss of independence [3]. 

The prevalence of mobility limitations in elderly is high 
and is associated with frequent transitions between in-
dependent and dependent states. Several studies [4,5] 
have shown that older men and women transition more 
frequently from intermittent to continuous mobility 
limitation, than from no mobility limitation to intermit-
tent mobility limitation. It is however possible to recover 
mobility after being disabled for 3 months (40% recovery 
rate) or even for 6 months (30% recovery rate). These 
findings suggest the road to disability in elderly is a dy-
namic process and offers several opportunities to restore 
function and recover independence [4-7]. 

Muscle strength is a strong predictor of severe mobility 
limitation, slow gait speed, increased fall risk, risk of hos-

pitalization, and high mortality rate. For example, older 
adults with low muscle strength have a 2.6-fold greater 
risk of severe mobility limitation, 4.3-fold greater risk 
for slow gait speed, and 2.1-fold greater risk of mortal-
ity compared to older adults with high muscle strength 
[8]. The loss of muscle strength in elderly cannot be ex-
plained only by the characteristic presence of skeletal 
muscle atrophy. Several recent research studies show that 
other factors such as changes in central nervous system 
drive, peripheral nerve dysfunction, alterations in the 
neuromuscular junction structure and function, fat infil-
tration, and a number of complex cellular and molecular 
changes at the level of single muscle fibers impair muscle 
force generation and power production [9]. In this brief 
review we will summarize and discuss the cellular and 
molecular changes at the level of muscle fibers (Fig. 2) 
that contribute to the above.

DEFINING SARCOPENIA

One of the most distinctive characteristics of older 
people is the presence of skeletal muscle weakness and 
atrophy. The term sarcopenia was used for the first time 
by Rosenberg [10,11] to refer to the loss of lean body mass 
with aging. More recently, the European Working Group 
on Sarcopenia in Older People has expanded the defini-
tion and suggested criteria for diagnosis [12] including 
the presence of muscle weakness (for example handgrip 
strength), a lower muscle mass (determined by bioelec-
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trical impedance or dual energy X-ray absorptiometry 
[DEXA]), and the presence of impaired performance 
(slow walking speed). The FNIH Sarcopenia Project 
Group [13] recently recommended normative values for 
muscle strength and lean body mass as follows: 1) grip 
strength in men <26 kg and in women <16 kg, or alternate 
grip strength adjusted for BMI <1.0 for men and <0.56 
for women; and 2) appendicular lean body mass in men 
<19.75 kg and <15.02 kg in women, or appendicular lean 
body mass adjusted for BMI in men <0.789 and <0.512 in 
women.

The prevalence of sarcopenia in the older population 
may range from 4% to 27% depending on the gender 
of the participants and country. In Korea, the preva-
lence of sarcopenia has been reported to be 11.9% in 
women and 12.1% in men [14]. The loss of muscle mass 
and strength in older people is of greater magnitude in 
longitudinal compared to cross-sectional studies [15]. 
Further, more muscle mass and strength is lost by men 
compared to women particularly in muscles of the lower 
limbs [15,16]. In fact older women have relatively well-
preserved strength in the muscles of the upper limbs. It 
must be noted that the loss of strength with advancing 
age is not a universal phenomenon and some individuals 
maintain muscle strength after 10 years of follow-up [17]. 
The explanation for this variability is not clear but it has 
been suggested that the level of physical activity is a con-

tributing factor. In addition to the well-described loss of 
force sarcopenia is also associated with the loss of muscle 
power (force×velocity), particularly in older people with 
mobility limitations [18]. Power correlates very well with 
function and its loss is a good predictor of impaired mo-
bility and falls. 

SATELLITE CELLS

The function of satellite cells in normal skeletal muscle 
is to maintain the skeletal muscle homeostasis and en-
able skeletal muscle regeneration. These muscle-specific 
Pax7-expressing adult stem cells are normally quiescent, 
but when stimulated by damage or stress, they become 
activated and enter the cell cycle to either form new 
muscle fibers or self-renew and replenish the satellite cell 
pool, that will be used in the future [19-21].

At the level of the individual muscle fiber, sarcopenia 
may be associated with a reduced number of satellite 
cells; especially those associated with fibers expressing 
type II (fast) myosin heavy chain [22]. This is relevant be-
cause the majority of the motor unit and fibers lost with 
advanced adult age are type II. Moreover, the satellite 
cell activation in response to muscle damage is blunted 
in older adult men. This phenomenon is mediated by 
interleukin-6 which is thought to be a positive regulator 
of satellite cells proliferation and is transiently increased 
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after acute exercise-induced trauma [23]. With aging, in-
terleukin-6 becomes chronically elevated and promotes 
muscle catabolism most likely via suppressors of cytokine 
signaling proteins. These events reduce the efficacy of 
anabolic signaling pathways such as insulin-like growth 
factor 1 (IGF-1). 

MUSCLE FIBER SIZE, STRENGTH, AND POWER

Normal adult muscle fiber size is reached between 
the ages 12 and 15 years. In normal muscle, there is less 
than 12% difference in the largest mean fiber diameter 
between all three muscle fiber types [24]. Both type I and 
type II (a and x) adult muscle fibers are larger in men 
than women. In men, type II muscle fibers are usually 
larger than type I fibers, whereas the opposite is true in 
women. 

The decline in muscle mass, most prominent in the 
lower limbs, is accompanied by a 30% to 40% decrease in 
muscle fiber number between the second and eight de-
cade [25]. Further evidence has suggested that apoptosis 
may play a considerable role in mediating the progres-
sion of muscle fiber loss in aging [26]. Mitochondrial-
mediated apoptosis has been postulated as one of the 
mechanisms associated with muscle fiber loss. Muscle 
fiber size is also affected but to a lesser extent. The re-
duction in muscle fiber size is fiber type specific, with 
10%–40% smaller type II fibers observed in muscle tissue 
collected from elderly compared with young controls [27]. 
In contrast, type I muscle fiber size is largely unaffected 
[22,28,29]. These fiber type specific changes can be ex-
plained by the age-related remodeling of motor units that 
result mostly in denervation of type II muscle fibers with 
collateral re-innervation of type I muscle fibers [30-32]. 

A reduction in whole muscle and individual fiber size 
is a contributor to sarcopenia but may not be the most 
important explanation for it. Changes in muscle fiber 
quality (force corrected for size) have been reported by 
several investigators [15,27,30,31]. In other words, loss 
of muscle strength and power with aging can in part be 
explained by reductions in intrinsic force-generating 
capacity of skeletal muscle fibers [32-36]. For example, 
Russ et al. [34] showed that older skeletal muscle exhibits 
a 34% reduction in its intrinsic force-generating capacity. 
The mechanism underlying this reduction includes age-
related alterations in cellular and molecular processes 

such as changes in the satellite cell population, excita-
tion-contraction coupling, myofilament interaction, mi-
tochondrial function, and adipocyte infiltration [37,38] 
(see below). 

Fiber type transformation
Muscle fiber type composition can change in response 

to various external stimuli in a fiber type-specific fashion. 
For example, type I fibers are more susceptible to inactiv-
ity and denervation-induced atrophy, while type II fibers 
are more affected with cancer, diabetes, chronic heart 
failure, and aging [39]. This difference in susceptibility 
can be explained by the activation and response to dif-
ferent signaling pathways. For example the peroxisome 
proliferator-activated receptor gamma coactivator 1-al-
pha (PGC1a) protects type I fibers from atrophy while 
the transforming growth factor beta (TGFb) family and 
the nuclear factor kappaB (NF-kB) predominantly affect 
type IIx fibers [39]. Aging is associated with a fast-to-slow 
fiber type shift, affecting mostly IIx fibers. As mentioned 
above, these muscle fiber changes are associated with 
age-dependent changes in motor unit composition [40].

Excitation-contraction coupling
Excitation-contraction coupling is a physiological pro

cess that converts the sarcolemmal action potential into 
muscle action and force generation. One of the key ele-
ments of this process are the dihydropyridine receptors 
located in the transverse tubule which are needed to 
activate calcium release from the sarcoplasmic reticulum 
through the ryanodine receptor. Once calcium is released 
into the myoplasm, it binds to troponin C and—through 
interactions with troponin I and T along with tropomyo-
sin—results in actomyosin interaction. Calcium is then 
pumped back into the sarcoplasmic reticulum or com-
petitively bound. Disruption or uncoupling at any step 
of this process may result in reduced muscle fiber activa-
tion, force generation, and lower whole muscle strength 
[41]. 

Aging causes a reduction in the number of dihydro-
pyridine receptors, uncoupling between these receptors 
and the ryanodine receptors, and deficits in calcium re-
lease [37,38]. One mechanism to explain this sequence 
of events is the reduction in the expression of the sarco-
plasmic reticulum junctional-face membrane (JP-45) [42] 
that alters the levels of specific dihydropyridine receptor 
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subunits [38,42] interfering with the protein-protein in-
teractions involved in excitation-contraction coupling 
[34]. 

Myofilament aging 
The importance of age-related changes at the level of 

the myofilaments has been recently discussed [43]. The 
majority of studies demonstrate that older men and wo
men have reduced single fiber maximal force even after 
adjustments for variability in fiber size. This is true in 
both type I and II fibers. Many molecular mechanisms 
have been proposed to explain such dysfunction includ-
ing a reduction in myosin protein content; this may be 
particularly true in immobilized muscle [32]. The latter 
may be related to gene transcription with abnormalities 
in the myostatin gene and/or reduction in translation 
and protein synthesis leading to a lower myosin concen-
tration per unit of muscle cell area. In addition, post-
translational modifications of myosin via mechanisms 
such as oxidation and glycosylation may be present. Oxi-
dative modification of myosin may disrupt the binding of 
the myosin head to the actin filament and, thus, reduce 
the number of actin-myosin cross-bridges in the strong-
binding state [44]. This will limit force and power genera-
tion. Other than receptor changes, structural alterations 
of myosin causing a change in the kinetics of the cross-
bridge cycle, has been suggested to contribute to age-
associated muscle weakness [45]. It is interesting that 
longitudinal studies suggest that clusters of fibers that 
are not lost during aging try to compensate for these age-
related differences in fiber size and quality [18,46,47] and 
although whole muscle performance is reduced, single 
muscle fiber properties may be relatively well preserved. 

Other mechanical properties are also altered in older 
human. An increased in instantaneous stiffness (reduc-
tion in elasticity) has been reported in whole muscle as 
well as in single fibers [33]. This may be due to an in-
crease in the number of cross-bridges in the weak-bind-
ing state but other factors such as changes in cross-bridge 
compliance and sarcomeric elements like titin may con-
tribute. As previously noted, the role of this important 
protein in muscle actions has been recently reviewed [48]. 
In conclusion, independent of the mechanism(s) limiting 
normal myofilament interaction, substantial evidence 
supports the idea that muscle impairment in older peo-
ple is, at least partially, a functional and not a quantita-

tive problem. 

Adipocyte infiltration 
Aging is associated with increases in both intra- and in-

ter-muscular adipose tissue and it has been showed that 
increased muscle fat content is associated with reduced 
muscle strength [49,50]. However, a direct relationship 
between increased intermuscular fat and age-related 
muscle weakness has not been established [51]. One 
of the potential mechanisms explaining how fat tissue 
decreases muscle force is the increased tumor necrosis 
factor alpha (TNF-a) production. It can be suggested 
that TNF-a may act directly on muscle fibers disrupting 
excitation-contraction coupling by altering intracellular 
calcium stores. This has been demonstrated to be the 
case in cardiac myocytes [52]. 

Mitochondrial function
Another example of the age-related alterations in mus-

cle cell organelles is the loss of mitochondrial content 
and function [53]. Mitochondria respond to multitude of 
intracellular signals by modulating their function: ATP 
production, reactive oxygen species (ROS) production, 
and sensitivity to permeability transition. In aging mus-
cle, the question is whether alterations in mitochondria 
represent a primary organelle defect versus a secondary 
(potentially adaptive) response to a changing cellular en-
vironment. Sensitization to permeability transition and 
release of mitochondrial-derived proapoptotic factors 
seems to be a constant finding in aging muscle regardless 
of the level of physical activity [54]. There are two pos-
sible mechanisms underlying these intrinsic mitochon-
drial changes: 1) mitochondrial genome damage that ac-
cumulates over the years and leads to impaired synthesis 
of mitochondria or synthesis of mitochondria with im-
paired function [55] and 2) disruption of mitochondrial 
turnover—mitochondrial removal and replacement—
which results in accumulation of damaged mitochondria 
with impaired function [56]. Apart from this intrinsic 
alteration in mitochondrial function, extrinsic factors 
known as ‘aging milieu’ including oxidative stress and 
muscle fiber denervation may play a very important role 
in mitochondrial dysfunction [54]. It is interesting to note 
that the loss in mitochondrial function can be partially 
reversed by exercise training [57]. This is supported by 
the higher levels of oxidative enzyme and of molecular 
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targets associated with mitochondrial biogenesis seen in 
endurance octogenarian athletes. 

CONCLUSION

Clinical implications of muscle fiber aging
Sarcopenia is considered by many investigators, clini-

cians, and public health experts as an emerging threat 
because it leads to a loss of functional capacity, mobil-
ity, and independence. As a result, much research has 
focused on interventions to slow down or reverse sarco-
penia in elderly. Abundant scientific evidence supports 
an important role for physical exercise in the prevention 
and rehabilitation of age-related functional decline and 
development of disability. However, a better understand-
ing of the cellular changes associated with sarcopenia 
is needed before more specific interventions can be de-
signed. In this brief review we have considered the evi-
dence showing important intrinsic changes at the level of 
single muscle fibers that result in muscle weakness and 
atrophy in elderly. 

In summary, age-related muscle changes are very com
plex and involve multiple features and mechanisms in-
fluenced both by intrinsic and extrinsic/environmental 
conditions. These muscle changes may look quite differ-
ent than those associated with injuries, chronic diseases, 
and immobilization, so the therapeutic approach must 
be tailored to the individual case considering the changes 
at the muscle cell level. In order to prevent and treat sar-
copenia effectively, future research is needed to elucidate 
where the targeted area at the muscle fiber level is for 
each individual. 
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