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Abstract: (1) Background: Radiogenomics is motivated by the concept that biomedical images
contain information that reflects underlying pathophysiology. This review focused on papers that
used genetics to validate their radiomics models and outcomes and assess their contribution to this
emerging field. (2) Methods: All original research with the words radiomics and genomics in English
and performed in humans up to 31 January 2022, were identified on Medline and Embase. The quality
of the studies was assessed with Radiomic Quality Score (RQS) and the Cochrane recommendation
for diagnostic accuracy study Quality Assessment 2. (3) Results: 45 studies were included in our
systematic review, and more than 50% were published in the last two years. The studies had a mean
RQS of 12, and the studied tumors were very diverse. Up to 83% investigated the prognosis as the
main outcome, with the rest focusing on response to treatment and risk assessment. Most applied
either transcriptomics (54%) and/or genetics (35%) for genetic validation. (4) Conclusions: There
is enough evidence to state that new science has emerged, focusing on establishing an association
between radiological features and genomic/molecular expression to explain underlying disease
mechanisms and enhance prognostic, risk assessment, and treatment response radiomics models in
cancer patients.

Keywords: radiogenomics; radiomics; genomics; genetic validation; cancer; survival; prognosis; risk
assessment; treatment response

1. Introduction

Imaging is an important technology in medical science, which is often used to aid
decision-making. The usage of medical imaging is swiftly evolving from it being primarily
a diagnostic tool to it playing a central role in the context of personalized medicine with
the advent of radiomics in cancer patients [1]. Radiomics refers to the qualitative and
quantitative extraction of data from clinical images, and the methodology used to convert
imaging features in a way that supports decision-making [2]. It has been used in the
field of oncology for outcome prediction, risk assessment, treatment response, tumor
staging, and assessment of cancer genetics, also known as tumor phenotyping [3,4]. Since
it first appeared in print in 2012, publications referring to “Radiomics” have increased
exponentially [5], numbering over 5000 when the term is searched in PubMed in early 2022.

Radiomics is motivated by the concept that biomedical images contain information
that reflects underlying pathophysiology, and these relationships can be revealed via
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quantitative image analysis that offers information on the disease microenvironment and
the disease state [6]. Through direct quantification of the tumor imaging phenotype at the
spatial scale within the resolution of the imaging technique used, radiomics aims to provide
indirect insight into multiple aspects of the disease, from tumor grading to diagnosing
the histologic and/or genetic subtype. These characteristics are reflective of alterations
occurring at different spatial scales to the data provided by radiomics (Figure 1). Hence, the
biological basis of the indirect relationships enabling radiomics predictions remains largely
unexplained in most studies. Without an underlying biological rationale, the black box-
like nature of “omics” methods significantly hinders its wider use and makes validation
particularly challenging. Providing the biological context of the informative radiomics
features will constitute an important step toward general acceptance of radiomics as a
standalone diagnostic, predictive, or prognostic method in both the radiology and oncology
communities [6]. Radiomics is not a panacea for clinical decision-making and there is
increased pressure for robust radiomics [1], including the need to develop guidelines for
standardized data collection, evaluation criteria, and reporting results. It is likely that
biological validation will also become a standard practice in the field, thus helping translate
basic science knowledge into clinical decision-making. This has led to a very specific
science or types of studies where the link between specific imaging traits, and specific
gene-expression patterns that inform the underlying cellular pathophysiology are studied.
This science, known as radiogenomics, is actively expanding in the molecular oncology and
clinical oncology fields, as cancer is a disease that involves genetic abnormalities caused
by hereditary or environmental factors [2]. The main reason for this is that first, access to
genomic information in conventional clinical procedures is based mainly on biopsy of focal
tissue samples and microarray genetic analysis. Second, gene expression profiling of only a
fraction of the tumor tissue cannot reflect the heterogeneity of the entire tumor [2], making
imaging an interesting substitute for this purpose, something that is being called a virtual
biopsy. Lastly, it has the potential that at multiple time points the optimal characterization
of a tumor can be achieved [1].

There are multiple reviews dealing with radiomics and radiogenomics advances in
many different cancer types. The most recent reviews on radiogenomics have focused
on the state of the science [7], its capacity for making an accurate diagnosis [8], and its
predictive value [2]. Zanfardino et al. (2019) published two reviews dealing with the
subject. In one they focused on the different methodologies that can be used to integrate
both genomics and radiomics into a multi-omics/multidisciplinary study [9], and in the
second one, their group explore the impact of public genetic and imaging databases have
on radiogenomics cancer research [9]. In addition, two reviews have focused on how deep
learning and artificial intelligence are helping to advance this science [10,11].

This systematic review search, analysis, and selection focused on papers that have
used genetics to validate their radiomics predictive model and outcomes in cancer patients;
and assessed their contribution to this emerging field. Furthermore, understanding the
biological basis of observed relationships, where possible, can strengthen conclusions and
provide additional validation and opportunities for research.



Int. J. Mol. Sci. 2022, 23, 6504 3 of 30
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 30 
 

 

 
Figure 1. The image shows how multiscale quantification provides complimentary tumor insight. 
Histologic and genomic analysis can provide specific small-scale insight, which is useful for the 
validation of radiomic results, focused on quantification of spatial patterns of size exceeding image 
resolution [6]. Reprinted with permission of RSNA. 

  

Figure 1. The image shows how multiscale quantification provides complimentary tumor insight.
Histologic and genomic analysis can provide specific small-scale insight, which is useful for the
validation of radiomic results, focused on quantification of spatial patterns of size exceeding image
resolution [6]. Reprinted with permission of RSNA.
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2. Results

We identified 81 studies that met our inclusion criteria, and after quality assessment,
45 studies were included in our systematic review. The excluded studies were deemed
to lack clarity regarding the radiomics process, recruitment, and selection of participants
or there was missing information for the flow and timing of the clinical outcome and/or
the genetical validation. The results for each stage of the search are demonstrated in the
PRISMA flow diagram (Figure 2).

1 
 

 
Figure 2. Flow diagram for the systemic review, which included searches of databases and
other sources.

2.1. Study Characteristics

All studies were published between 2014 and 2021, with a little more than 50% pub-
lished in the last two years (Figure 3). The included studies had a mean Radiomics Quality
Score (RQS) of 12, which ranges from 5 to 20. Regarding the imaging modality 21 studies
based their radiomics models on Computed Tomography (CT) images, 20 studies used
magnetic resonance imaging (MRI), and 4 studies used positron emission tomography
(PET) with CT.

The type of tumors found was very diverse. Fifteen articles studied brain tumors, eight
studies focused on lung and head and neck tumors, six studies studied renal cell carcinoma,
three studies investigated breast and ovarian cancer, respectively, and two studies focused
on esophagus cancer. Endometrial cancer, bladder cancer, prostate cancer, gastric cancer,
colorectal cancer, hepatocellular carcinoma, and melanoma had one study each. Lastly, one
article dealt with several different types of solid tumors (Figure 4).
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Figure 4. A pie chart of the different tumors studied in the articles included in the systemic review.

Eighty-three percent of the studies investigated the prognosis of the developed ra-
diomic models, 17% investigated the risk assessment capabilities, and only 7% investigated
treatment response. When the prognosis was tested, the most common outcome measure
determined was overall survival (OS), which was tested in 33 of the included studies. Nine
studies measured progression-free survival (PFS), three measured disease-free survival
(DFS) and progression-free interval (PFI), respectively, and one study measured disease-
specific survival (DSS), and recurrence-free survival (RFS), metastasis-free survival (MFS),
and relapse, respectively. Eight studies evaluated the utilization of radiomics models for
determining treatment response. Of those studies, four measured the response to treatment
based on survival measurement, one study used hyperprogression or time-to-treat failures
(TTF), one measured durable clinical benefit, and three studies determined response to treat-
ment based on pathologic complete response (pCR). Risk assessment based on radiomic
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models was tested in three studies, one measured risk of recurrence, another measured risk
of metastasis, and the other one measured early recurrence (Figure 5).
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Figure 5. Stacked column chart of the number of studies grouped by the utility of the radiomics
model and the outcome measure of the included articles in the systemic review. Abbreviations: MFS:
Metastasis-free survival, RFS: Recurrence-free survival, DFS: Disease-free survival, PFS: Progression-
free survival, PFI: progression-free interval, DSS: Disease-specific survival, OS: Overall Survival, pCR:
pathological complete response, DCB: Durable clinical benefit.

Most studies dealt with transcriptomics (54%) and/or genetics (35%), but 7% dealt with
epigenomics and only 3.5% with proteomics. Twenty-eight studies used RNA sequencing
or gene expression, 13 investigated specific mutation status and four determined the
O(6)-methylguanine-DNA methyltransferase promoter (MGMT) methylation status, and whole-
exome sequencing, respectively. One study evaluated the DNA copy number and one used
Fluorescence In Situ Hybridization (FISH). Regarding the use of public genetics databases,
24 out of 45 (53%) used them. The most used databases were The Cancer Genome Atlas
(TCGA) program and The Cancer Imaging Archive (TCIA), but several others were also
used (Figure 6).

The size of the data sets and the number of patients included just for the genetic
validation and the total sample of patients varies throughout the studies. The data set for
the genetic validation ranged from 24 to 681, with a mean of 163 and a median of 91 patients.
The number of patients included overall for all the analysis ranged from 24 to 1362, with a
mean of 289 and a median of 153 patients.
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The most pronounced limitation for the genetic validation of radiogenomics, as high-
lighted in Figure 7, is related to a lack of external validation (21%) and verification bias
(19%), which occurs when only a proportion of the study group receives confirmation of
the diagnosis by the reference standard. Most of the included articles in this systematic
review have only a small portion of the sample tested for genetic validation. As regards the
radiomics model development, the limitations were the lack of external validation (21%)
and observer variability (15%), because of variation in radiomic procedures including, but
not limited to image segmentation, features reduction and selection, model testing, etc., so
a radiomic model may not consistently yield the same result when repeated and a lot of the
studies did not perform any repeatability assessment. Additionally, the third most common
bias was the high dimensionality or also called small n-to-p bias (14%) that occurs both in
the radiomics feature and genomic analysis. Test technology bias (9%) and disease severity
bias (7%) were reported in 10 and 8 studies, respectively. Test technology bias is a result of
technological improvement due to time, meaning that estimates of test performance may be
affected, while disease severity bias refers to differences in disease severity among studies
that may lead to differences in estimates of test performance. Less commonly reported
limitations or biases in the included studies are population bias (4.5%), selection bias (3.6%),
and disease prevalence bias (1.8%), all related to how the sample or population was chosen
for the study. The last two reported biases only occur in one study each. They are clinical
review bias and arbitrary choice of the threshold value. These are biases that typically
occur during the interpretation or the analysis of the results. The full list of limitations and
biases evaluated for each study can be found in Appendix A. The summary of all included
studies and their characteristics can be found in Table 1.



Int. J. Mol. Sci. 2022, 23, 6504 8 of 30Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 30 
 

 

 
Figure 7. Pie chart of the limitations and bias of the reviewed publications. 

Table 1. Radiogenomics in practice—Studies Characteristics. 

Utility/ 
Outcome Measured 

Imaging 
Modality 

RQS Genetic Data 

Genetics 
Database 

Used/ 
Name 

Patients: 
Genetic  

Validation/ 
Total 

Limitations 
** 

Year/ 
[Ref.] 

Brain tumors: Gliomas/Astrocytomas 

Prognosis/OS MRI 8 
GBM gene expression 

(mRNA)/Transcriptomics 
Yes/TCGA 
and TCIA 

91/141 12 
2016  
[12] 

Prognosis/OS MRI 6 
Pathway 

activation/Transcriptomi
cs and Proteomics 

Yes/TCGA, 
TCIA, and 
cBioPortal 

85/85 1, 2 
2017 
[13] 

Prognosis/OS MRI 13 
Gene 

expression/Transcriptomi
cs 

Yes/TCIA and 
GDC 

46/137 1, 12 
2018 
[14] 

Prognosis/OS MRI 13 
MGMT 

methylation/Epigenomic
s 

No 105/105 2, 6 
2018 
[15] 

Prognosis/OS MRI 11 
Gene 

expression/Transcriptomi
cs 

Yes/TCGA 
and CGGA 

85/85 1 
2018 
[16] 

Prognosis/OS MRI 18 
RNA 

sequencing/Transcriptom
ics 

Yes/TCIA 115/115 2 
2018 
[17] 

Prognosis/OS 
FDG  

PET-CT 
16 

MGMT 
methylation/Epigenetics 

No 107/107 2, 7 
2019 
[18] 

Prognosis/OS MRI 13 
MGMT 

methylation/Epigenetics 
No 201/201 2 

2019 
[19] 

Prognosis/ 
OS 

MRI 13 
IDH1 (2 

mutations)/Genetics 
No 105/105 2 

2019 
[20] 

Prognosis/ 
OS 

MRI 15 
RNA 

sequencing/Transcriptom
ics 

No 144/144 1, 2 
2020 
[21] 

Figure 7. Pie chart of the limitations and bias of the reviewed publications.

Table 1. Radiogenomics in practice—Studies Characteristics.

Utility/
Outcome
Measured

Imaging
Modality RQS Genetic Data

Genetics Database
Used/
Name

Patients:
Genetic

Validation/
Total

Limitations
**

Year/
[Ref.]

Brain tumors: Gliomas/Astrocytomas

Prognosis/OS MRI 8 GBM gene expression
(mRNA)/Transcriptomics

Yes/TCGA and
TCIA 91/141 12 2016

[12]

Prognosis/OS MRI 6
Pathway

activation/Transcriptomics
and Proteomics

Yes/TCGA, TCIA,
and cBioPortal 85/85 1, 2 2017

[13]

Prognosis/OS MRI 13 Gene
expression/Transcriptomics

Yes/TCIA and
GDC 46/137 1, 12 2018

[14]

Prognosis/OS MRI 13 MGMT
methylation/Epigenomics No 105/105 2, 6 2018

[15]

Prognosis/OS MRI 11 Gene
expression/Transcriptomics

Yes/TCGA and
CGGA 85/85 1 2018

[16]

Prognosis/OS MRI 18 RNA
sequencing/Transcriptomics Yes/TCIA 115/115 2 2018

[17]

Prognosis/OS FDG
PET-CT 16 MGMT

methylation/Epigenetics No 107/107 2, 7 2019
[18]

Prognosis/OS MRI 13 MGMT
methylation/Epigenetics No 201/201 2 2019

[19]

Prognosis/
OS MRI 13 IDH1 (2 mutations)/Genetics No 105/105 2 2019

[20]

Prognosis/
OS MRI 15 RNA

sequencing/Transcriptomics No 144/144 1, 2 2020
[21]

Prognosis/
OS MRI 11

MGMT methylation,
RNA sequencing/Epigenetics

and Transcriptomics

Yes/TCGA and
TCIA 85/166 1, 2, 10, 12 2020

[22]

Prognosis/
OS MRI 19 IDH mutation

status/Genetics
Yes/TCGA and

TCIA 296/296 10, 15 2020
[23]

Prognosis/
PFS MRI 17

IDH mutation, RNA
sequencing/Genetics and

Transcriptomics
Yes/TCIA 125/203 1, 12 2020

[24]
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Table 1. Cont.

Utility/
Outcome
Measured

Imaging
Modality RQS Genetic Data

Genetics Database
Used/
Name

Patients:
Genetic

Validation/
Total

Limitations
**

Year/
[Ref.]

Prognosis/
OS MRI 18 RNA

sequencing/Transcriptomics
Yes/TCGA and

TCIA 173/435 12 2021
[25]

Prognosis/
PFS and OS MRI 5 DNA copy-number subtypes

(CN1, CN2 or CN3)/Genetics Yes/TCGA 153/153 1, 2, 6, 10 2021
[26]

Lung and Head and Neck Cancers

Prognosis/OS CT 16 Gene
expression/Transcriptomics No 89/1019 1, 3, 12 2014

[27]

Treatment
Response CT 13 EGFR sensitizing

mutations/Genetics No 49/49 1 2016
[28]

Prognosis/
DFS and OS CT 8

Whole exome
sequencing/Genetics and

Transcriptomics
No 57/57 2, 3, 5, 10 2018

[29]

Prognosis/DFS CT 13 RNA
sequencing/Transcriptomics Yes/TCIA 79/554 2, 12 2020

[30]

Prognosis/OS CT 14 ctDNA TP53
mutations/Genetics No 24/24 1, 2 2020

[31]

Prognosis +
Treatment
Response/

PFS, TTF, and
DCB

FDG
PET-CT 17 EGFR mutation/Genetics No 681/837 5, 12 2020

[32]

Prognosis/
PFS and OS CT 11 Gene

expression/Transcriptomics No 103/399 12 2020
[33]

Prognosis/Relapse
+ Histotype

FDG
PET-CT 5 RNA

sequencing/Transcriptomics No 74/151 2, 12 2021
[34]

Breast Cancer

Risk
Assessment/

Risk of
recurrence

MRI 16 RNA
sequencing/Transcriptomics Yes/TCGA 84/84 2, 10 2016

[35]

Prognosis/
PFS and OS CE MRI 15

RNA-sequencing of tumor
and adjacent tumor

parenchyma/Transcriptomics

Yes/TCGA and
GSE 1456 423/1362 8, 12 2017

[36]

Response to
Treatment/

pCR
MRI 10 FISH and IHC/Genetics No 311/311 2 2020

[37]

Ovarian Cancer

Prognosis/OS CT 9

CCNE1 cyclin E1 gene +
CLOVAR transcriptomic

profiles/Genetics and
Transcriptomics

No 38/38 2 2017
[38]

Prognosis/
PFS and OS CT 5 BRCA mutation/Genetics No 88/88 2 2018

[39]

Prognosis/
PFS and OS CT 20 DNA sequencing of

tumors/Genetics Yes/TCGA 364/364 5 2019
[40]

Endometrial Cancer

Prognosis/RFS
and DSS MRI 12 RNA

sequencing/Transcriptomics Yes/TCGA 51/487 2, 7, 10, 12 2021
[41]



Int. J. Mol. Sci. 2022, 23, 6504 10 of 30

Table 1. Cont.

Utility/
Outcome
Measured

Imaging
Modality RQS Genetic Data

Genetics Database
Used/
Name

Patients:
Genetic

Validation/
Total

Limitations
**

Year/
[Ref.]

Renal Cell Carcinoma

Prognosis/MFS
and OS CT 12 Gene expression/Genetics

and Transcriptomics Yes/TCGA + TCIA 509/520 10, 12 2020
[42]

Prognosis/OS CT 11 Hypoxia-related
genes/Genetics Yes/TCGA + TCIA 419/419 3, 5, 17, 2021

[43]

Prognosis/PFI CT 15
Gene mutations and gene
expression/Genetics and

Transcriptomics
Yes/TCGA + TCIA 78/214 1, 5, 10, 12 2021

[44]

Prognosis/
PFI and OS CT 6

Differentially expressed genes
and enriched

pathways/Transcriptomics

Yes/TCGA +
Array-Express

database
261/261 5 2021

[45]

Prognosis/
OS CT 14

mRNA subtype, miRNA
subtype, VHL

mutation/Genetics and
Transcriptomics

Yes/TCIA 267/443 2, 12 2021
[46]

Prognosis/
OS CT 14

Mutated genes (VHL, BAP1,
PBRM1, SETD2), four mRNA

patterns/Genetics and
Transcriptomics

Yes/TCGA + TCIA 279/382 12,19 2021
[47]

Bladder Cancer

Prognosis/
PFI 21 8 RNA

sequencing/Transcriptomics Yes/TCGA + TCIA 62/62 1, 2 2019
[48]

Prostate Cancer

Risk Assess-
ment/Risk of

metastasis
MRI 10 RNA

expression/Transcriptomics No 64/64 1, 2, 5 2019
[49]

Esophagus Cancer

Treatment Re-
sponse/pCR CT 17 RNA

sequencing/Transcriptomics No 40/231 1, 12 2020
[50]

Prognosis +
Treatment Re-
sponse/DFS,
OS and pCR

CT 17 Gene
expression/Transcriptomics No 28/106 1, 7, 12 2021

[51]

Gastric Cancer

Prognosis +
Treatment
Response/

PFS and OS

CT 11 RNA
sequencing/Transcriptomics

Yes/
TCIA 47/475 12 2021

[52]

Colorectal Cancer

Prognosis/
OS CT 8 BRAF mutation/Genetics No 145/145 10 2020

[53]

Hepatocellular Carcinoma

Risk Assess-
ment/Early
recurrence

MRI 7 Gene
expression/Transcriptomics No 48/48 1, 2, 10 2020

[54]

Melanoma

Prognosis/
OS

FDG
PET-CT 7

RNA sequencing.
Whole-exon sequencing for
common oncogenes. BRAF
mutation/Genomics and

Transcriptomics

No 33/52 2, 3, 7, 12 2021
[55]
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Table 1. Cont.

Utility/
Outcome
Measured

Imaging
Modality RQS Genetic Data

Genetics Database
Used/
Name

Patients:
Genetic

Validation/
Total

Limitations
**

Year/
[Ref.]

Solid tumors *

Prognosis +
Treatment
Response/
PFI and OS

CT 9 Gene expression
(CD8 cells)/Transcriptomics Yes/TCGA 254/491 3, 4, 8, 12 2018

[56]

Abbreviations: CGGA: Chinese Glioma Genome Atlas, CT: computerized tomography, DCB: Durable clinical
benefit, DFS: Disease-free survival, DSS: Disease-specific survival, FDG: fluorodeoxyglucose, GDC: Genomic Data
Commons, GSE: Gene Expression Omnibus, MFS: Metastasis-free survival, MRI: magnetic resonance imaging,
OS: overall survival, pCR: pathological complete response, PET: positron emission tomography, PFI: Progression-
free survival, PFS: Progression-free survival, RFS: Recurrence-free survival, TCGA: The Cancer Genome Atlas,
TCIA: The Cancer Imaging Atlas, TTF: time-to-treatment failure. * Head and neck-squamous-cell carcinoma
(HNSC), lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD), liver hepatocellular carcinoma
(LIHC), bladder endothelial carcinoma (BLCA), sarcomas, etc. ** Limitations: 1: High Dimensionality/Small
n-to-p Data lung adenocarcinoma (LUAD), liver hepatocellular carcinoma (LIHC), bladder endothelial carcinoma
(BLCA), sarcomas, etc. ** Limitations: 1: High Dimensionality/Small n-to-p Data bias, 2: Lack of external
validation, 3: Population bias, 4: Spectrum bias, 5: Disease severity bias, 6: Disease prevalence bias, 7: Selection
bias, 8: Detection bias, 9: Test execution variation, 10: Test technology bias, 11: Treatment paradox, 12: Verification
bias, 13: Inappropriate reference standard bias, 14: Review bias, 15: Clinical review bias, 16: Incorporation bias,
17: Observer variability, 18: Handling of indeterminate results, 19: Arbitrary choice of a threshold value, and 20: Hot
stuff bias. The full list and explanation of limitations and biases evaluated for each study can be found in Appendix A.

2.2. Brain Tumors (Gliomas/Astrocytomas)

A total of 15 studies addressed radiomic features in various subtypes of gliomas and
examined correlations with a wide range of genomic data (see complete data in Table S1 in
Supplementary Materials). They all focused on survival prediction and almost all studies
extracted their radiomic features from MRI imaging. Only one study used radiomic features
extracted from FDG-PET [18]. All studies included a decent number of patients (85–435,
mean 165). RQS varied in the studies (5–19, mean 12) but had a mean score similar to the
included studies in this review.

Two studies assessed the value of radiomics extracted from MRI imaging to predict
MGMT-methylation status and IDH genotypes in grade II-IV astrocytomas [15,20]. Wei et al.
found that four single radiomics signatures (T1-WI-tumor, T2-FLAIR-tumor, T1-WI-oedema,
T2-FLAIR-tumor) had significantly different expressions in the MGMT methylated and
unmethylated groups. These findings were consistent in both the training and the validation
cohort (AUC > 0.7). The study also concluded that ADC-tumor and ADC-oedema did not
perform well to predict MGMT-methylation. The best prediction performance proved to be
a combination of the four signatures (AUC > 0.925, 95%CI (0.861, 0.989)). The combined
signatures also turned out to be a significant predictor of survival in high-risk and low-
risk subgroups. In the study that assessed IDH-genotypes [20], it was found that a model
comprising CE-T1WI + T2-FLAIR + ADC MRI sequences showed the best performance in
predicting IDH for low- and high-risk groups in grade II and grade III-IV astrocytomas. The
training cohort showed an AUC of 0.874 and 0.928, respectively, in the low- and high-risk
group, and an AUC of 1.000 and 0.722 in the validation cohort (95%CI [0.886–0.916] in
training, [0.845–0.930] in validation). The combined model of the three MRI sequences did
also provide statistically significant discrimination between the high- and low-risk groups.
These findings suggest that a combination of single signature radiomic profiles can provide
a diagnostic and prognostic value in grade II-IV astrocytomas.

Four studies focused on the significance of IDH mutation and MRI-based radiomics
in the survival prediction of patients with gliomas [13,16,21,45]. They all found that both
the radiomic features and IDH are independent prognostic parameters that correlate with
survival. One study determined that the most significant radiomic feature to predict
survival was based on the heterogeneity in glioblastoma (GBM) [13], while another found
the most relevant feature to be related to shape [21]. Qian et al. found a nomogram,
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constructed of radiomic, clinical and molecular risk factors (23 genes described in the
article), to be the most efficient tool to estimate survival [16]. The last study found that
several selected radiomic features could effectively divide gliomas into two survival-related
subgroups, where the subgroup with superior survival and lower malignancy-rate, had a
higher probability of IDH-mutation [22]. The findings of these studies, however different,
show a correlation trend between IDH-mutation, radiomics, and survival outcome.

Two studies assessed the correlation between MGMT-methylation, radiomics, and
survival in patients with gliomas and glioblastomas. The features were extracted from
FDG-PET and MRI images [18,19]. The study using FDG-PET images found the radiomics
model to be performing best in predicting methylation status in both the training and the
validation group. The findings were compared to the clinical signature and the combined
model of the radiomic and clinical signature [18]. The other study that extracted the features
from MRI images, found limited use of radiomics to predict MGMT-methylation status,
but found a good correlation between survival and radiomics [19]. One study supported
the positive findings on survival prediction with MGMT-methylation, IDH-mutations, and
radiomic features [24]. It showed that combining the two mutations in the prognostic
model improved the performance.

Two studies examined the correlation between subgroups of either radiomic features
or gene expression to predict survival [23,26]. One used a clustering method to identify
imaging prognostic biomarkers, by dividing GBM patients into three groups depending on
their MRI radiomic features [23]. Cluster 1 was characterized by heterogeneity in signal
intensity and associated with lysosomal activity and autophagy; cluster 2 was characterized
by shape/texture and was associated with chemotaxis and pro-inflammatory response.
Cluster 3 was characterized by the complexity of the texture and showed decreased activity
in the MAPK pathway, which is one of the frequently altered pathways in GBM. Cluster 3
exhibited the most favorable prognosis.

The other study divided lower-grade glioma (LGG) patients into subgroups according
to their DNA copy-number subtypes (CN1–CN3). The expression of IDH-mutations and
1p19q codeletion (combined loss of the short arm chromosome 1) were different in the three
subgroups. CN1 was associated with hemorrhage, poorly defined margin and volume,
CN2 with extranodular growth and width, and CN3 was associated with necrosis/cystic,
hemorrhage, poorly defined margin, and frontal lobe tumors. CN2 turned out to be the
subgroup associated with the shortest median PFS and OS. These findings and methods
exhibit a correlation between the genomic signature and radiomics, whether the patients
are grouped by tumor features or tumor gene expression [26].

Five studies had a more unique assessment of radiomics and genomics in glioma
patients [12,14,17,24,25]. One concerning GBM patients used six metagenes (WDR72,
C14orf39, TIMP1, CHIT1, ROS1, EREG) derived from a differentially expressed gene (DEG)
analysis and four machine learning algorithms on radiomic features to examine a correlation
with survival [14]. They found that the algorithm GBDT (gradient boosting decision tree)
had the highest accuracy for predicting patients with under or over 1-year survival time. All
six metagenes had significantly different expression levels in short versus long term survival
patients, and three of the metagenes (TIMP1, ROS1, EREG) were positively correlated with
nine image features, but the study does not state whether the radiomic algorithm is a
significant predictor of the genomic status in patients. A study also concerning GBM
patients identified 192 DEGs in two groups, low-risk and high-risk groups, obtained
from a radiomic risk score (RRS) [17]. The analysis revealed that the low-risk group was
associated with BMP4 gene expression when compared to the high-risk group. TP53-
inducible proteins and TP73-AS1 expression were also statistically different between the
two groups. These two studies show a clear development in the genetic profile of radiomic
studies and enlighten the complexity of the radiogenomic analysis.

Another study classified GBM patients by performing a pathway analysis based on
gene expression profiles from 1740 different genes, and divided them into four subgroups;
proneural, neural, classical, and mesenchymal. Based on MRI, the extracted features have



Int. J. Mol. Sci. 2022, 23, 6504 13 of 30

the following characteristics; Necrosis (NE), Contrast Enhancement (CE), Edema (ED),
Tumor Bulk (TB), and Total Tumor Volume (TV) [12]. The results showed that three features
(NE, CE, and TB) performed best in predicting overall survival and assessing low and
high-risk survival groups. ED and TV were the strongest predictors of subtypes, but
the overall prediction of subgroups by features performed poorly. A similar study also
used pathway analysis to classify subgroups [25] and extracted 30 key genes for genomic
analysis. The genes are not specified in the article but are divided into red and blue modules.
The red module is characterized by immunity, inflammation, and proliferation, and the
blue model by cellular signaling pathways. They are both correlated with 13 prognostic
MRI extracted radiomic features. The findings in these two studies show a more complex
genomic correlation as multiple genes are implemented in the radiomic signature.

One study examined the genetic profile of a hypoxia-derived pathway [17]. The
authors identified 21 genes that are implicated in the hypoxia pathway of GBM, for ex-
ample, the vascular endothelial growth factor (VEGFA) gene, angiopoietin-like 4 (ANGPTL4),
and galectin-3 (8LGALS3). The top eight radiomic features extracted from MRI imaging
were found to be significantly associated with survival. They also found that high radiomic
feature expressions corresponded to a high hypoxia enrichment score. Low radiomic
feature expressions corresponded to a low hypoxia enrichment score. Since the extent of
peritumoral hypoxia was related to prognosis, hypoxia monitoring could be a possible
contributor to clinical practice by the evaluation of treatment response and resistance.

In summary, specific radiomic signatures show promising potential to become an
important clinical tool for noninvasive diagnostics and prediction of prognosis in patients
with gliomas.

2.3. Lung and Head and Neck Cancers

There were eight studies addressing lung, head, and neck cancer (see complete data in
Table S2 in Supplementary Materials). All of the studies used CT-derived radiomic features
and two studies [32,34] also had PET FDG-derived radiomic features. Though there was
a high proportion with a decent number of included patients (24–837, mean 310), most
studies had few patients with genetic data and only one study had data on multiple genes
for more than 100 patients [33]. The studies had a varied RQS (5–17, mean 12) with a mean
score equal to the mean of the other studies in the review.

The studies choose many different ways to focus on lung cancer. In one study [31],
only late-stage patients were included. Two studies [29,51] only included early-stage lung
cancer patients. The rest of the lung cancer studies had a mix of patients dominated by
early-stage patients.

The studies included different subtypes of lung cancer, and small cell lung cancer
was typically excluded. Only two studies allowed small cell lung cancer [31,33], though
one [33] only had 3% cases with this subtype. One study focused on adenocarcinomas [51]
and one focused on squamous cell carcinomas [29]. The rest of the studies had a mixture
of non-small cell lung carcinomas (NSCLC). Only one study [28] included head and neck
cancer patients, and it also included lung cancer patients.

The handling of genetic data in the studies on lung cancer can be divided into three
subgroups. Two studies [28,32] focused solely on the EGFR mutation, three studies [31,33,34]
looked for correlations with multiple single genes and three studies [28,29,51] focused on
correlation to gene pathway alteration.

The only study with head and neck cancer (H&N) data [27], was the oldest in the
review and was published in 2014, one of the first-ever studies published on radiogenomics.
The authors generated a four feature radiomic signature on a lung cancer data set and
tested it on two H&N cohorts. They found a high and similar performance in H&N1 and
H&N2 (both CI = 0.69, p < 0.001) and better performance than in their lung validation
data set (CI = 0.65, p < 0.001). They found that 15% of the radiomic features derived from
their lung cancer training set were significant for survival in all three validation data sets.
Unfortunately, they only had genetic data on NSCLC patients.
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Most studies chose to look at overall survival, disease-free survival or both, and they
all found significant associations between their radiomic models and survival. In one
study [32] these continuous data were handled in a dichotomous way and it was found
that hyper progression (time-to-treatment failure (TTF) < 2 months) and durable clinical
benefit (DCB, PFS ≥ 6 months) were associated with their model. Kirienko et al. [34] tried
predicting cancer histotypes and relapse. Aerts et al. [28] tried to predict response to the
EGFR inhibitor Gefitinib treatment and found that no features were predictive on post-
treatment scan (p > 0.08), but the change in features between the pre-and post-treatment
scans was strongly predictive (significant feature AUC-range = 0.74–0.91,) for response to
Gefitinib. This proves that radiomic features can be a possible supplement in discriminating
the true response from cancer pseudoresponse.

One of the studies focusing on the EGFR gene [28] found that the Laws energy feature
was significantly predictive of EGFR-mutation status (AUC = 0.67, p = 0.03). Laws energy
emphasizes edge, spot, ripple, and wave patterns. In the other EGFR gene study, [32] made
a deep learning model (convolutional neural network) and hence did not extract single
radiomic features. The authors found that their EGFR-mutation prediction model yielded
AUC of 0.83, and 0.81 in the validation, and external test cohorts, respectively.

In the group of studies looking at multiple genes, the smallest study only had 24 pa-
tients [31]. They found the TP53 gene to be significantly correlated to their high-risk
patient cluster and showed that the amount of free circulating TP53 DNA two weeks after
chemotherapy was correlated to their model. Both EGFR and IDH1 mutations were only
found in their high-risk cluster. Perez-Morales et al. [33] found six genes associated with
their model, three of which were uncharacterized. The other three were FOXF2, TBX4, and
TM4SF1, which are all involved in cell proliferation or cell growth. The third study looking
at multiple genes [34] was different from the others in that the authors did not use gene
data to validate their radiomics model but developed different models for radiomics, genes,
and radiogenomics. They analyzed 238 genes. Their combined radiogenomic model for
predicting histotype (squamous cell carcinoma or adenoma) contained the same two genes
(HIF1A and TP63) as their best model based on genes alone and no radiomic features. Their
best performing model in predicting relapse (yes/no) built on the genes CXXC4, PAK3, and
GHR gene and the LRLGE (low/high gray-level emphasis) radiomic feature; it had an AUC
of 0.87.

The studies using gene set enrichment analysis found correlations between radiomic
models and biological functions that intuitively are associated with survival in cancer
patients. One study [27] found that two of the four studied radiomic features are mea-
surements of intratumor heterogeneity, and they strongly correlated with cell cycling
pathways, indicating an increased proliferation of more heterogeneous tumors. Another
study found that the authors’ radiomic model was associated with metabolic processes and
the immune system [30], and the third study found a correlation between apoptosis and
proliferation-related genetic pathways [29].

2.4. Breast, Ovarian, and Endometrial Cancer

In the present review, three studies were focused on breast cancer, three on ovarian
cancer, and one on endometrial cancer (see complete data in Table S3 in Supplementary
Materials). Breast cancer studies were all based on radiomic features extracted from MR
images, two of which analyzed dynamic contrast-enhanced MR images [35,36]. The gene
expression profiles were assessed through genetic databases, i.e., the TCGA or/and the GSE
for partial or total data collection in two of the studies [35,36]. The study population varied
(n = 84–1362, mean 586), but with a generally high proportion of patients with genetic data.
The mean RQS was higher than the mean RQS across all studies included in the review
(10–16, mean 14).

The clinical outcome ranged from the risk of recurrence [35], prognosis/survival [36],
and pathological response after therapy [37]. The genetic data also varied and were based
on gene pathway analysis in one study [36], multigene analysis in another [35,37], and
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lastly single-gene analysis in the third study focusing solely on the human epidermal growth
factor receptor 2 (HER2) gene and its protein [37]. As for limitations and risk of biases, two
of the three included studies did not receive external validation [35,37], while one study
suffered from detection and verification bias [36].

To assess the risk of cancer recurrence, Li et al. investigated the correlation be-
tween MR computer-extracted image phenotypes, including tumor size and enhance-
ment texture patterns, and the risk of breast cancer recurrence using gene expression
assays of MammaPrint, Oncotype DX, and PAM50 which showed significant associations
(R2 = 0.25–0.32, r = 0.50–0.56, p < 0.0001) [35]. Wu et al. focused on finding signaling path-
ways associated with prognostic tumor-adjacent parenchymal imaging features from MR
imaging. They found that tumor-adjacent parenchymal imaging features were associated
with tumor necrosis signaling pathway and poor breast cancer survival [46]. Lastly, the
prediction of the pathologic response to neoadjuvant chemotherapy was investigated by
Bitencourt et al. They demonstrated, with a diagnostic accuracy of 83.9% (52/62), that
MRI-based clinical and radiomic features coupled with machine learning were able to
predict pathologic response after neoadjuvant chemotherapy in HER2 overexpressing
breast cancer patients [37]. These studies shed valuable light on the ability of radiomic and
radiogenomics models of breast cancer to predict clinical outcomes and potential selection
of treatment strategies.

Three studies addressed ovarian cancer and the radiomic features were all extracted
from CT images. Only one of the ovarian studies assessed partial data collection of gene
expression profiles through genetic databases [40]. The study population varied amongst
the studies (38–364, mean 163) but all included patients who received genetic validation.
The mean RQS of studies on ovarian cancer was lower than the mean RQS across all
included studies and varied considerably (5–20, mean 11).

Survival (progression-free survival/overall survival) was the primary clinical outcome
of focus in all of the included ovarian cancer studies. The genetic data were based on gene
pathway analysis in one study [40], whereas the remaining two studies focused on single
gene analysis, that is either BRCA mutation status [39] or Classification of Ovarian Cancer
transcriptomic (CLOVAR) subtypes (differentiated, immunoreactive, mesenchymal, and
proliferative), and amplification of 19q12 involving cyclin E1 gene (CCNE1) [38].

Lu et al. built a radiomics-determined mathematical descriptor from CT images of ep-
ithelial ovarian cancer that consisted of four radiomics features and demonstrated that it can
be utilized to predict survival and associated with a stromal phenotype and DNA-damage
response pathways [40]. The study suffered from possible selection bias, and further in-
vestigation into heterogeneity for bilateral ovarian tumors is needed. The remaining two
studies focused on inter-site texture heterogeneity between/across different metastatic
sites in patients with high-grade serous ovarian cancer and reported associations between
inter-site heterogeneity texture metrics and clinical outcomes including survival [38,39].
Furthermore, Vargas et al. found that amplification of CCNE1 predominantly occurred in
patients with more heterogeneous inter-site textures [38], whereas the study conducted
by Meier et al. did not find significant associations between texture metrics and BRCA
mutation status [39]. Neither of studies received either internal or external validation.

There was only one included study focusing on endometrial cancer with an RQS
of 12 and MRI-derived radiomics features from patients with endometrial cancer [41].
The study population was large (n = 487) but only a small portion had full genetic data
(n = 51) and was partly assessed through the TCGA database. Hoivik et al. generated
radiomic clusters composed of patient groups with differential risk profiles and linked these
radiomic clusters to differential gene expression and demonstrated that whole-volume
tumor radiomic profiling from manual tumor segmentation could identify patients with
high-risk histological features and poor survival. In addition, they reproduced the same
radiomic prognostic groups with radiomic profiling by automated tumor segmentation.
Furthermore, an 11-gene high-risk signature was defined and associated with poor survival
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(copy-number-high/p53-altered). The study suffered from selection, test technology and
verification bias, as well as a lack of external validation.

2.5. Urogenital Cancers (Kidney, Bladder, and Prostate)

There were six studies on renal cancer, one study investigating bladder cancer, and
one on prostate cancer (see complete data in Table S4 in Supplementary Materials). The
six studies of clear cell renal cell carcinoma (ccRCC) were all based on radiomic features
extracted from CT images and all of them made use of the TCGA- and/or TCIA-database
for partial or total data collection. Concerning all included articles in this review, the
ccRCC studies generally presented large study populations (214–520, mean 373) and low to
moderate RQS (6–15, mean 12). Five out of six studies had external validation. The most
frequent limitation was verification bias (4 of 6 studies) but otherwise, the limitations of the
six studies were various.

All of the ccRCC studies showed significant results regarding the radiomic and ra-
diogenomics models’ ability to predict outcomes in the form of PFI [44,45], MFS [42], and
OS [42,43,46,47]. Zeng et al. integrated radiomics with genomics, transcriptomics, and
proteomics into a multi-omics model which was significantly better in terms of predict-
ing 1-year, 3-year, and 5-year OS compared to models formed by single omics and the
radiogenomics model, which shows potential, but, as the authors outline, the correlation
between different omics features is complex and needs to be investigated further [47].

The genetic validation in the ccRCC studies ranged from gene expressions found
correlated to the radiomic features [42,44–47] and hypoxia-related genes associated with
survival [43]. Several of the studies showed associations between radiomics features and
molecular functions in the form of mRNA expression [46,47] and biological pathways such
as T cell activation [44] and proteasome, cell cycle, and p53 signaling pathway genes [45].
Regulatory T cells play an essential role in the progression of ccRCC in internal and
peripheral tissues [57,58]. Furthermore, several drug–target relationships between radiomic
feature-associated gene expression and tumor response were identified in pT1 ccRCC-
patients with postoperative metastasis [42], which could pave the way for radiogenomics
models to predict or monitor response to immunotherapeutics in patients with ccRCC.

The few studies of BLCA [48] and prostate cancer [49], and the mutual limitations
of the included articles in the form of small study populations (62 and 64 patients each),
no external validation, and low RQS score (8 and 10), can indicate that the research in
radiomics regarding outcome assessment with genetic validation in these types of cancer is
still in the commencement phase.

The study by Lin et al. [48] was the only one investigating urothelial bladder carcinoma
(BLCA) included in the review. It was found that the CECT radiomics signature was a highly
significant prognosticator for PFI, and gene functional enrichment analysis showed that
angiogenesis was the most significant radiomics signature-associated biological process.
Angiogenesis plays a significant role in the development of cancer owing to the need
for an adequate supply of sustenance and removal of metabolic waste to and from the
tumor site [59], and angiogenesis has been utilized as a therapeutic target in urothelial
carcinoma [60]. Another study dealing with BLCA [61] was excluded due to incomplete
information regarding the type of radiologic modality used for feature extraction, but they
presented seven signature radiogenomics models to reveal the m6a methylation status
which was correlated to the outcome for BLCA patients.

The only included study focusing on prostate cancer was Hectors et al. [49], which
showed a significant correlation between MRI radiomic features and gene signatures. The
Post-Operative Radiation Therapy Outcomes Score (PORTOS) signature had the strongest
correlation, and this signature has previously been demonstrated to be associated with the
risk of the development of distant metastasis [62]. Only one other article about prostate
cancer [63] came up in our database search, but it was excluded due to a lack of clinical
outcome assessment.



Int. J. Mol. Sci. 2022, 23, 6504 17 of 30

2.6. Gastrointestinal Tumors (Esophagus, Gastric, Colon Cancer, and Hepatocellular Carcinoma)

In the present review, six articles in total dealt with gastrointestinal tumors, two
studies were focused on esophagus cancer, one study dealt with gastric cancer, one on
colorectal cancer, and lastly one on hepatocellular carcinoma (see complete data in Table
S5 in Supplementary Materials). The two studies that dealt with esophagus cancer were
based on radiomic features extracted from CT images and focused on gene expression for
the pathophysiological explanation of the models. Both articles included a good number
of included patients (106–231, mean 168), but had small samples for the genetic analysis
(28–40, mean 34). Both studies had very high RQS (both 17) in comparison to the mean of
included studies in the review, and although both had external validation, they still had
high dimensionality bias, also known as small n-to-p bias, especially in the genetic data.

Both studies focused on the use of radiomic models to predict treatment response in pa-
tients with esophageal squamous cell carcinoma after neoadjuvant chemotherapy.
Hu et al. [50] developed a model integrating intratumoral and peritumoral radiomics features
that achieved improvement in predictive performance (AUC 0.852, 95%CI [0.753–0.951]) com-
pared with the conventionally constructed model merely using intratumoral radiomics
features (AUC 0.730, 95%CI (0.609–0.850)) to estimate pathological complete response.
Gene sets associated with the combined model mainly involved lymphocyte-mediated
immunity. The association of the peritumoral area with response identification might be
partially attributed to type I interferon-related biological processes and this underlined
the potentially important role of the surrounding stroma or peritumoral tissue in therapy
resistance. The study shows that peritumoral radiomics may provide an additional predic-
tive value for treatment response estimation in esophageal squamous cell carcinoma and it
underlines its significance in assessing treatment response in clinical practice [50].

The study by Xie et al. included a two-time-point delta radiomics analysis in a
prognostic prediction model in conjunction with a biological underpinning feature selection
method. One delta radiomic feature (correlation from GLCM families) was significantly
more predictive of patients’ survival than the study’s changes in tumor volume. This is
similar to the outcome of previous studies, which have shown that change in radiomic
features could outperform the volume measures for disease evaluation [28,64–66]. The
study differs from other studies included in the review, in that the genomic association was
a useful method for the radiomic feature selection. The authors, instead of analyzing the
underlying biological process by gene enrichment analysis, used these genomics data as a
new feature selection filter to assure biological robustness [51].

The study addressing gastric cancer provided evidence that a prognostic radiomics
signature could capture tumor cell intratumor heterogeneity, which was also associated
with underlying gene expression patterns. The authors built a radiomics signature for
predicting the overall survival (AUC 0.803) and disease-free survival (AUC 0.753) of
patients with complete resection of their gastric tumor to further identify candidate benefits
from adjuvant chemotherapy (p < 0.001). The radiomics trait-associated genes captured
clinically relevant molecular pathways and potential chemotherapeutic drug metabolism
mechanisms, including chemokine regulation [31].

The study by Negreros-Osuna et al. explores the potential of radiomics texture fea-
tures to enable the identification of the presence of BRAF mutation and the prediction of
5-year OS advance stage (IV) colorectal cancer (CRC). They found that CRC tumors with
BRAF mutation show lower values of the derived radiomics texture features standard de-
viation and mean value of positive pixels of the tumor region of interest on CT images in
comparison with wild-type BRAF. This also showed that the CRC tumors with less radiomics
texture heterogeneity behave more aggressively than those showing more heterogeneity,
and this was associated with unfavorable 5-year OS survival [53]. This provides evidence
that radiomics can potentially differentiate wild-type BRAF CRC tumors from those with
BRAF mutation and predict OS in advanced-stage disease.

Hectors et al. [54] was the only included study focusing on hepatocellular carcinoma
(HCC), and it showed a correlation between MRI radiomic features and PD1 and CTLA4
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at mRNA expression level, and the significant predictive ability of the radiomic features
regarding early HCC recurrence, but it did have some limitations and a moderate risk
of bias. The study population was small (48 patients), there was no internal or external
validation, the RQS was low (7), and it displayed small n-to-p bias. The study did not
produce a radiomics model because several of the MRI scans were inadequate.

2.7. Others (Melanoma, Solid Tumors)

In this last section, we present studies that did not fit with any of the previous cate-
gories but were still included due to the interesting results. These results related both
to molecular oncology and the possible applications of radiomics biomarkers in can-
cer patients, as both focused on CD8 cell expression (see complete data in Table S6 in
Supplementary Materials).

The first study assessed prognostic biomarkers in 52 patients with late-stage melanoma
(III/IV) that underwent pre-treatment PET-CT scans. Using a non-invasive tumor assess-
ment, widely available in radiology practices, we found a prognostic signature derived
from PET-CT imaging that represented a “hot” tumor immune microenvironment. They
showed that CT parameters, high mean of positive pixels (MPP4), and high standard
deviation (SD3), were associated with patient survival. These biomarkers appeared to
have better prognostic value than primary tumor ulceration status, which forms part of the
staging system. They also identified a correlation between the radiomics parameters and
tumor biology (BRAF status, immune signatures, and CD8 expression) [55]. As late-stage
patients often have multiple tumors in difficult access sites, this technique could allow
patients with the unresected disease to be treated with a precision medicine approach as
radiomics parameters are derived from routine images, including BRAF inhibitor and/or
other immunotherapy treatments for melanoma.

Sun et al. [56] presented a CT radiomics-based biomarker of tumor-infiltrating CD
8 cells in patients with solid tumors treated with anti-PD-1 and PD-L1 immunotherapy.
The solid tumors included a long list of different cancer types in various organs (lung,
gynecological, breast, head and neck, etc.), which caused a heterogeneous study population,
but the authors prevented overfitting to a particular subset of the tumors by selecting
statistically different cohorts for training and testing of the biomarker. The biomarker
was successful in predicting the gene expression signature of CD8 cells (AUC 0.67, 95%CI
(0.57–0.77), p = 0.0019), response to anti-PD1 and PD-L1 treatment, and overall survival.

3. Discussion

There is enough evidence to state that new science has emerged, a novel research
field focusing on establishing an association between radiological features and genomic or
molecular expression to shed light on the underlying disease mechanism and enhance prog-
nostic, risk assessment, and treatment response models toward personalized medicine [11].
The oldest study included only dates to 2014 [27] and shows that there has been exponential
growth in the last couple of years. Fifty percent of our included studies were published
between 2020 and 2021.

On their own, these studies are very unique; they use two big data sciences, radiomics,
and genomics, to pursue clinical outcomes (Figure 8). The study design of these studies
is very complex and currently does not fit with any of the known types of studies and
could become a new category by itself. We have represented it graphically as a three-side
study or a triangle. The normal radiomics workflow, which starts with the acquisition of
raw images and continues with some form of pre-processing of the information, extraction,
and selection of features, and developing models for a particular outcome is one side.
The second side includes finding or discovering a relation between the image-extracted
features against a genomic variable that can be exploratory or hypothesis-driven. The third
side of the study validates or determines a biological explanation between the radiomic
models and the pre-determined outcome. To accomplish such studies, multidisciplinary
coordination is required between the different groups that work on them. It requires a team
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where oncologists, radiologists, radiographers, nurses, geneticists, molecular biologists,
etc., but also statisticians, data analysts, and medical engineers carry off the different tasks
demanded by the studies.

Convincing evidence has emerged showing that there is an association between dif-
ferent radiomic models and genomic data from various tumor types to assess different
outcomes (Table 1, Supplementary Tables), bringing biological meaning and genetic val-
idation to imaging features. Several genetic sciences were applied to the studies with
transcriptomics playing a doming role, and the cancer types with most radiogenomics stud-
ies were glioblastoma, lung cancer, and renal cell carcinoma. This is interesting in the sense
that these cancer types are not the most common tumors out there, but recent research on
oncogenesis, including cell-of-origin patterns, oncogenic processes and signaling pathways,
is probably fueling possible premises and allowing hypothesis-driven research in these
specific tumors.
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We also need to point out that there are two major factors facilitating the development
of these studies. One is the use of artificial intelligence (AI) through both machine learning
and deep learning at different steps of the radiogenomics process. The second one is the
availability of both genetic and imaging databases. The Cancer Genome Atlas (TCGA), a
landmark cancer genomics program, allows researchers to access information that otherwise
would be impossible to access. It has helped to establish the importance of cancer genomics,
transformed our understanding of cancer, and even begun to change how the disease is
treated in the clinic. The impact goes even further as it extends to other research fields,
such as radiogenomics [9].

We found many of the same limitations as reported and established by other
authors [2,11,67]. One of the major challenges is the lack of reproducibility and gener-
alizability of the reported radiomics signatures (features and models). Sources of variation
exist in each step of the workflow; some are controllable or can be controlled to certain
degrees, while others are uncontrollable or even unknown [66]. These are very well-known
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limitations of radiomics, and genomics not only brings the same problems to radiomics
studies but also increases the high dimensionality and small n-to-p data bias. Although
this was an important bias in our limitations list, it was not listed often in the reviewed
articles. This is because the studies applied the technique to limit the effect of multiple
testing, feature reduction, and gene selection this bias was not recorded. Therefore, even
if it is underreported in our review, it is still a big concern, especially because one of the
running hypotheses is that biological validation could reduce these limitations [6].

Despite the rapidly increasing body of publications, there is no real clinical use of a
developed radiomics signature so far. This is not surprising when one realizes that there is a
low level of evidence throughout the entire field and all the included studies are categorized
as level 4 of evidence, even though all included studies had good methodologies, robust
statistics, and thorough result reporting (Oxford Centre for Evidence-Based medicine 2011
Level of Evidence, http://www.cebm.net/index.aspx?o=5653, accessed on 2 May 2022).
The difference in their quality was most evident in the type of analysis that was conducted,
and we classified them broadly into exploratory versus hypothesis-driven studies. Most
of the included studies that were exploratory in nature, often feasibility studies and very
few had a clear objective or were hypothesis-driven studies. None of the included studies
were prospective in nature, and none used a previously developed radiogenomics or
radiomics model.

Insufficient transparency in reporting radiomics studies further prevents translation of
the developed radiomics signatures from the laboratory into the clinic. Our research team
was stunned by the amount of underreported data or missing data. A lot of the information
needed to complete the risk of bias analysis was difficult to find; some information was
found in supplemental material or previously published studies, but some data was never
found, and it is stated as such in the result tables. Editors and peer-review journals will need
to adapt to this type of research, as massive amounts of data are used and many steps are
undertaken before a radiomics model is developed and analyzed with their corresponding
genetics data. Missing data hinders the process and obstructs the possible translation of
these studies into the clinical setting and the capacity to be evaluated properly making
reproducibility a bigger issue.

Because of the large variability in the radiogenomics process, reading and under-
standing these studies is challenging and this highlights the need for guidelines and tools
that facilitate the integration of these sciences [9]. New technology can improve current
problems and surely the use of AI and deep learning will keep expanding. Currently, the
radiomic quality score (RQS) is the only known tool of this kind for radiomics studies,
to the knowledge of the authors. We used it as a standardized method to evaluate the
different steps taken to develop the radiogenomic signatures and models, as it also takes
into account that non-radiomic variables (for example, BRAF mutation) are used in the
multivariable models to provide a more holistic model. It also considers that biological
correlates are used in the study to demonstrate phenotypic differences or deepened the
biological understanding of the radiomic models. It is often criticized because of the ways it
categorizes and scores the studies, even though it is often used to give guidance, as we have
used in our study. The total score is 36 points; no study came near that; the highest score
was 20 in our review. In addition, many criteria from the tool are unrealistic to achieve in
one study at a time, as many could be a study by itself or implicate multiple hypotheses.
There is no doubt that there is a need for such tools, but the current one needs to adapt
better to what is possible and be pragmatic as well.

Ultimately, it is important to comment on future directions for this new science,
commenting on exciting results from different studies from both included and excluded
articles from the review. Another limiting factor is the number of patients that have tissue
samples available and genetic data extracted from them; it is not only expensive but requires
high levels of expertise. This was a limitation in almost 20% of the studies, where not
all patients received genetic validation. A study by Latafa et al. [31] solved this problem
by performing a liquid biopsy of cell-free DNA (cfDNA). Not only did they extract the
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data prospectively, but they also extracted it at several time points to test the response to
treatment in patients with advanced lung cancer. A study that focused on the development
of radiomic signatures from perivascular adipose tissue to improve cardiac risk predictions
utilized adipose tissue biopsies from patients undergoing cardiac surgery [68]. This study
is exciting as a creative way to obtain tissue samples and illustrates how radiogenomics
can be applied to other diseases other than cancer. There are examples of the application of
radiomics methodology to cardiovascular disease [69], and in the aging population [70], so
it is a matter of a short time before radiogenomics moves into other diseases.

Traditionally, cancers are grouped and treated by site or organ system. One study
grouped patients by a common alteration and not by the type of cancer [56]. We believe
this is an interesting study design, as a common mutation allows for a common therapy
target across various cancers. Target therapy matched to underlying alterations improves
outcomes [71,72]. In the era of precision medicine to tailor therapies, predicting tumor
genomics using noninvasive techniques is the desired aim, especially in patients with the
advanced-stage disease, who may benefit from a specific molecularly targeted agent or a
combination of such agents [53].

4. Materials and Methods
4.1. Search Strategy

This review followed the methods described in a published protocol in the PROSPERO
register (ID 310058). To identify relevant articles the PubMed, and EMBASE electronic
databases were searched using relevant search terms which included radiomics and ge-
netics. The syntax used to search the databases is detailed in Table 2. Publications were
included until 31 January 2022. Filters for Humans and English were applied.

Table 2. Search syntax for electronic databases.

Database Syntax

PubMed (“radiomic *” [All Fields] AND (“genetic *” [All Fields] OR “genomic *” [All Fields]))
OR “imaging genomic” [All Fields] filters: human and English language 1

EMBASE (radiomics.mp AND exp genetics/) OR imaging genomics.mp filters: human and
English language 2,3

1 word * meaning search for all word endings. 2 Exp word/meaning search as entree word. 3 word.mp meaning
search in title, abstract, heading word, etc.

4.2. Inclusion and Exclusion Criteria

Studies were included if: (1) they were radiomics studies with complex feature extrac-
tion performed in any imaging technique including MRI, CT, US, PET-CT but not limited to;
(2) relevant clinical outcome was assessed including survival, treatment response, progno-
sis or risk-stratification; (3) biological validation of the clinical outcomes and/or radiomic
phenotype with genetic data; and (4) the study was performed in cancer patients or a
specific tumor. To achieve a more homogenous group of articles, studies that have used
both the radiomic and genetic data to improve predictive models were excluded. Studies
were also excluded if they were case reports, conference abstracts, conference proceedings,
reviews/systemic reviews, study protocols, editorials, and other non-original research
articles. Lastly, short communications were also excluded because they do not provide
sufficient information to assess the radiogenomics methodological quality.

4.3. Selection Process

After the initial search in the electronic databases performed by two authors (FB
and KH), the abstracts and metadata were transferred to rayyan.ai, a systematic reviewer
software (https://www.rayyan.ai/, accessed on 28 March 2022). After eliminating dupli-
cates, five reviewers (AA, FB, LH, KH, and SR) screened titles and abstracts to determine
eligibility. Screening of the full text of publications was performed if the abstracts provided

https://www.rayyan.ai/
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insufficient information to judge eligibility. All included studies were approved by at least
two authors and uncertainties were resolved in consensus.

4.4. Data Extraction and Quality Assessment

The full text of included studies was divided and read among all five reviewers,
who examined and analyzed the articles for risk bias and their quality. Qualified articles
were read in full and relevant data was extracted, including first author, year and type of
publication, country, funding source, imaging modality, disease/type of cancer, sample
size, outcomes measured, genetic validation, and statistics used.

Given that the focus of the systemic review is on Radiomic Studies, the Radiomic
Quality Scores (RQS) tool (https://www.radiomics.world/rqs, accessed on 25 April 2022)
was used to assess the quality of the radiomics study design first. Studies with low or
questionable methodology were excluded. The risk of bias was then assessed according
to the Cochrane recommendation for diagnostic accuracy study Quality Assessment 2
(QUADAS-2). The QUADAS-2 tool was used to evaluate the diagnostic and/or predictive
nature of the radiomics studies. The difference is that the reference standard questions of
the QUADAS-2 tool were applied to both the radiomics and genetic parts of the articles
being evaluated in the systematic review. Each reviewer applied tools independently.

The data of high-quality literature that meet the standard was summarized and
analyzed and evaluated for limitations and biases that affected each study. The full list
of limitations and biases can be found in Appendix A. Lastly, we evaluated whether the
studies were exploratory research (sometimes called hypothesis-generating research) or
confirmatory research (also called hypothesis-testing).

5. Conclusions

There is no doubt that radiogenomics is an exciting and promising new field of re-
search. With the advance of next-generation sequencing techniques and machine learning
algorithms, there are increasing high-throughput omics data. While genomics and ra-
diomics have been studied individually, the integration of genomic and radiomic data
into multi-omics-based machine learning models could provide new scope for precision
oncology, which would aid a more comprehensive understanding and management of
cancer diseases [51]. It takes around 15 to 20 years to transfer an innovation to the clinic,
so it is not a surprise that radiogenomics has no clinical applications yet. To be able to
translate this research into clinical development researchers in the field need to start asking
themselves how to build knowledge to support its use beyond the outcome’s potential
and feasibility. There is a need to determine the fidelity, acceptability, sustainability, costs,
efficiency, and effectiveness of such technology, and it is wrong to think that if we develop
it, clinicians will use it.
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Abbreviations

ADC Apparent diffusion coefficient
AUC area under the curve
ATRX mutation X-linked helicase II
BMP4 Bone morphogenetic protein 4
BRAF mutation proto-oncogene B-Raf
BRCA mutation breast cancer gene
ccRCC clear cell renal cell carcinoma
CE Contrast-enhanced
CGGA Chinese Glioma Genome Atlas
CI confidence interval
C-index Concordance index
COX Cox proportional hazards model
CT computerized tomography
CTLA4 cytotoxic T lymphocyte antigen 4
DCB Durable clinical benefit
DFS Disease-free survival
DSS Disease-specific survival
EGFR epidermal growth factor receptor
FDG fluorodeoxyglucose
FISH Fluorescence In Situ Hybridization
GBM glioblastoma multiforme
GDC Genomic Data Commons
GSE Gene Expression Omnibus
GSEA Gene Set Enrichment Analysis
HER2 Human epidermal growth factor receptor 2
HR hazard ratio
HU Hounsfield units
IDH mutation isocitrate dehydrogenase
IHC Inmunohistochemestry
HES hypoxia enrichment score
KMA Kaplan–Meier analysis
KEGG pathway enrichment analysis
MFS Metastasis-free survival
MGMT methylation status O(6)-methylguanine-DNA methyltransferase promoter

methylation status
MAPK Mitogen-activated protein kinase
MRI Magnetic resonance imaging
NFkB NF-kappaB, nuclear factor kappa-light-chain-enhancer of

activated B cells
LASSO Least absolute shrinkage and selection operator
OR odds ratio
OS overall survival
PCA principal component analysis
pCR pathologic complete response
PD-1 programmed cell death protein 1
PD-L1 Programmed death-ligand 1
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PET positron emission tomography
PFI progression-free interval
PFS progression-free survival
ROC receiver operator characteristic curve
RF random forest selection
RFS Recurrence-free survival
RR radiomic and radiographic features
SE standard error
TCGA The Cancer Genome Atlas program
TCIA The Cancer Imaging Atlas
TERT Telomerase reverse transcriptase
TMZ Temozolomide
TTF time-to-treatment failure
VHL mutation Von Hippel-Lindau
WGCNA Weighted gene coexpression network analysis

Appendix A

Below is the list of the bias and limitations used throughout the study and their
corresponding definition. This is not a comprehensive list, but a list of the most common
limitations or biases found in big-data sciences such as Radiomics or Genomics, and in
diagnostic test accuracy studies.

Table A1. List of Limitations and biases applied to the included studies of the Systemic Review.

Category Number Name Definition

Highly related to
big-data sciences

1 High Dimensionality and
Small n-to-p Data

Radiomics yields “large-predictors (p) and small number of
patients (n)” or “small n-to-p” data, in which the number of
measurements is far greater than the number of independent

samples g a radiomics approach; however, the number of
extracted features can range from hundreds to thousands

while the number of patients remains small. The multiplicity
of data can result in a high probability of a false-positive rate.

2 Lack external validation or
generalizability

External validation is necessary to determine a prediction
model’s reproducibility and generalizability to new and

different patients. Various methodological considerations are
important when assessing or designing an external

validation study.
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Table A1. Cont.

Category Number Name Definition

Population

3
Population bias or

demographics features
variation

Tests may perform differently in various samples. Therefore,
demographic features may lead to variations in estimates of

test performance.

4 Spectrum bias

Occurs when a diagnostic test is studied in a different range
of individuals to the intended population for the test The
ideal diagnostic test would have both high sensitivity (the

proportion of people testing positive who actually have the
disease) and high specificity (the proportion of people testing

negative who do not have the disease). However, the
sensitivity and specificity of diagnostic tests vary in different
settings. Spectrum bias can have varying effects on sensitivity
and specificity. For example, there is consistent evidence that

when using a case–control design in diagnostic accuracy
studies, both sensitivity and specificity are increased.

5 Disease severity bias or
variation

Differences in disease severity among studies may lead to
differences in estimates of test performance.

6 Disease prevalence bias or
variation

The prevalence of the target condition varies according to
setting and may affect estimates of test performance. Context
bias, the tendency of interpreters to consider test results to be

positive more frequently in settings with higher disease
prevalence, may also affect estimates of test performance.

7 Selection bias or distorted
selection of participants

Occurs when individuals or groups in a study differ
systematically from the population of interest leading to a

systematic error in an association or outcome. The selection
process determines the composition of the study sample. If

the selection process does not aim to include a patient
spectrum similar to the population in which the test will be

used in practice, the results of the study may have
limited applicability.

8 Detection bias

A test or treatment for a disease may perform differently
according to some characteristic of the study participant,

which itself may influence the likelihood of disease detection
or the effectiveness of the treatment. Detection bias can occur
in trials when groups differ in the way outcome information

is collected or the way outcomes are verified.

Test protocol: materials
and methods

9 Test execution variation

A sufficient description of the execution of index and
reference standards is important because variation in
measures of diagnostic accuracy can be the result of

differences in test execution.

10 Test technology bias or
variation

When the characteristics of a diagnostic test change over time
as a result of technological improvement or the experience of
the operator of the test, estimates of test performance may be

affected.

11 Treatment paradox and
disease progression bias

Disease progression bias occurs when the index test is
performed an unusually long time before the reference

standard, so the disease is at a more advanced stage when
the reference standard is performed. Treatment paradox

occurs when treatment is started on the basis of the
knowledge of the results of the index test, and the reference

standard is applied after treatment has started.
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Table A1. Cont.

Category Number Name Definition

Reference standard and
verification procedure

12 Verification bias

This occurs when only a proportion of the study group
receives confirmation of the diagnosis by the reference

standard, or if some patients receive a different reference
standard at the time of diagnosis. Verification bias

(sometimes referred to as “work-up bias”) occurs during
investigations of diagnostic test accuracy when there is a

difference in testing strategy between groups of individuals,
leading to differing ways of verifying the disease of interest.

Many reference tests are invasive, expensive, or carry a
procedural risk (e.g., angiography, biopsy, surgery), and

therefore, patients and clinicians may be less likely to pursue
further tests if a preliminary test is negative. This may be

either partial verification, where only those with a positive
test receive the reference standard, or differential verification,
where a different reference test is used depending on whether

the index test was positive or negative.

13 Inappropriate reference
standard bias

Errors of imperfect reference standard or standards bias the
measurement of diagnostic accuracy of the index test

Interpretation,
reading process

14 Review bias

“Interpretation of the index test or reference standard is
influenced by knowledge of the results of the other test.

Diagnostic review bias occurs when the results of the index
test are known when the reference standard is interpreted.

Test review bias occurs when results of the reference standard
are known while the index test is interpreted.”

15 Clinical review bias
“The availability of information on clinical data, such as age,
sex, and symptoms, during interpretation of test results may

affect estimates of test performance.”

16 Incorporation bias

The result of the index test is used to establish the final
diagnosis. In a diagnostic accuracy study, ideally, the index

test and the reference test should be independent of each
other. Incorporation bias is a type of verification bias that

occurs when results of the index test form part of the
reference test. This occurs most frequently when the

reference test is a composite of the results of several tests.

17 Observer variability

The reproducibility of test results is one of the determinants
of the diagnostic accuracy of an index test. Because of

variation in laboratory procedures or observers, a test may
not consistently yield the same result when repeated. In 2 or

more observations of the same diagnostic study,
intraobserver variability occurs when the same person

obtains different results, and interobserver variability occurs
when 2 or more people disagree.

Analysis

18 Handling of indeterminate
results

A diagnostic test can produce an uninterpretable result with
varying frequency depending on the test. These problems are
often not reported in test efficacy studies; the uninterpretable
results are simply removed from the analysis. This may lead

to a biased assessment of the test characteristics.

19 Arbitrary choice of a
threshold value

The selection of the threshold value for the index test that
maximizes the sensitivity and specificity of the test may lead

to over-optimistic measures of test performance. The
performance of this cutoff in an independent set of patients

may not be the same as in the original study.

Other 20 Hot stuff bias

When a topic is fashionable (‘hot’), investigators may be less
critical in their approach to their research, and investigators

and editors may not be able to resist the temptation to
publish the results.
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