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Abstract: In the past few decades, the number and variety of genomic and proteomic data available
have increased dramatically. Molecular or functional interaction networks are usually constructed
according to high-throughput data and the topological structure of these interaction networks provide
a wealth of information for inferring the function of genes or proteins. It is a widely used way to
mine functional information of genes or proteins by analyzing the association networks. However,
it remains still an urgent but unresolved challenge how to combine multiple heterogeneous networks
to achieve more accurate predictions. In this paper, we present a method named ReprsentConcat
to improve function inference by integrating multiple interaction networks. The low-dimensional
representation of each node in each network is extracted, then these representations from multiple
networks are concatenated and fed to gcForest, which augment feature vectors by cascading and
automatically determines the number of cascade levels. We experimentally compare ReprsentConcat
with a state-of-the-art method, showing that it achieves competitive results on the datasets of yeast
and human. Moreover, it is robust to the hyperparameters including the number of dimensions.

Keywords: multiple interaction networks; function prediction; multinetwork integration;
low-dimensional representation

1. Introduction

With the advent of high-throughput experimental techniques, genome-scale interaction networks
have become an indispensable way to carry relevant information [1–5]. Researchers can extract
functional information of genes and proteins by mining the networks [6,7]. These methods are based
on the fact that proteins (or genes) that are colocated or have similar topological structures in the
interaction network are more likely to be functionally related [8–18]. Thus, we are able to infer the
unknown characteristics of proteins based on the knowledge of known genes and proteins.

An important challenge to the methods of network based prediction is how to integrate multiple
interaction networks constructed according to heterogeneous information sources (for example,
physical binding, gene interactions, co-expression, coevolution, etc.). The existing methods of
integrating multiple networks for functional prediction mainly combine multiple networks into
a representative network, and then perform prediction algorithms [19] (for example, label propagation
algorithm [20] and graph clustering algorithm [21]) on the integrated network. There are two main
methods for integrating the edges of different networks: one is the weighted averaging method
of edge weights [12,22] with GeneMANIA [23] as a representative. In GeneMANIA, the weight
of each network is obtained by optimizing according to the functional category. The other is a
method based on Bayesian inference [24,25], which is used to combine multiple networks into the
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protein interaction network in database STRING [26]. A key drawback of these methods of projecting
various data sets into a single network representation is that the projection process can result in a
large loss of information. For example, a particular context interaction pattern that exists only in a
particular data sets (e.g., tissue-specific gene modules) is likely to be obscured by the edges from other
data sources in the integrated network. Recently, Cho et al. proposed a new integration method,
Mashup [27], which integrates multiple networks by compressing representations of topological
relationships between nodes. Vladimir and the coauthors [28] developed deepNF to derive functional
labels of proteins using deep neural networks for calculating network embeddings. The method could
explore underlying structure of networks and showed improved performance. However, tuning the
hyperparameters requires efforts and expertise.

In this paper, we propose a multinetwork integration method, ReprsentConcat, based on
gcForest [29], which builds a deep forest ensemble with a cascade structure. The cascade structure
enables gcForest to learn representations. Moreover, by multigrained scanning of high-dimensional
input data, gcForest can further enhance the learning ability of representation and learn the context
or structure information of features. In gcForest, the number of cascade levels can be automatically
determined, improving the effect of classification. In ReprsentConcat, first, a feature representation
of each node in the network is obtained according to the topological structure of one network,
and these features could represent the intrinsic topology of the network. Secondly, considering that
the high-dimensional features contain noise, we compact these features to obtain the low dimensional
representations which explain the connectivity patterns in the networks. Finally, the features of the
nodes in each network are concatenated to train the classifier as the input of gcForest. A 5-fold
cross-validation experiment is performed on the networks including six protein interaction networks,
and the experimental results show that ReprsentConcat outperforms state-of-the-art Mashup.

2. Results

2.1. Experimental Data Set

In order to verify the effectiveness of our proposed multinetwork integration algorithm, the
function prediction of proteins is performed on multiple networks consisting of six protein–protein
interaction networks. The six protein interaction networks and the annotations of proteins are
derived from the work of Cho et al [27]. The raw datasets are available online at http://denglab.org/
ReprsentConcat. In the dataset, protein interaction networks include species such as humans and
yeast and so on, from the STRING database v9.1 [26]. Moreover, the networks constructed from text
mining of the academic literature are excluded. As a result, the six yeast heterogeneous networks
include a total of 6400 proteins, and the number of edges in these networks ranges from 1361 to 314,013
(as shown in Table 1). The six human heterogeneous networks include 18,362 proteins, and the number
of edges in the networks ranged from 1880 to 788,166 (as shown in Table 1). The weights of edges in
these networks are between 0 and 1, representing the confidence of the interaction.

Table 1. Interaction network and its corresponding number of edges.

Network Human Yeast

coexpression 788,166 314,014
co-occurrence 18,064 2664

database 159,502 33,486
experimental 309,287 219,995

fusion 1880 1361
neighborhood 52,479 45,610

The functional annotations for yeast proteins comes from Munich Information Center for Protein
Sequences (MIPS) [30], and the annotations for human from the Gene Ontology (GO) database [31].
The functions in MIPS are organized in a tree structure and are divided into three levels, where Level 1
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includes 17 most general functional categories, Level 2 includes 74 functional categories, and Level 3
includes 154 most specific functional categories. It is noted that each protein can have more than one
function. The GO terms in the GO database are organized in a directed acyclic graph. The GO terms are
divided into three categories including biological process (BP), molecular function (MF), and cellular
component (CC), representing three different functional categories. In this dataset, these GO terms are
divided into three groups where each consists of GO terms with 11–30, 31–100, and 101–300 annotated
genes (see Table 2). In order to maintain the consistency of the predicted GO labels, the GO label is
propagated in the GO hierarchy by applying the “is a” and “part of” relationships, i.e., if a gene is
labeled as a GO term, then the gene is also annotated with all the ancestral terms of the term.

Table 2. Number of Gene Ontology (GO) terms by the number of annotated genes in human biological
process (BP)/molecular function (MF)/cellular component (CC).

11–30 31–100 101–300

BP 262 100 28
MF 153 72 18
CC 82 46 18

2.2. Evaluation Metrics

In our ReprsentConcat, the output for each class is a real number between 0 and 1, and we
obtain the final predictions by applying an appropriate threshold, t, on the outputs. For a given
sample, if the corresponding output for a class is equal to or greater than the threshold t, this class is
assigned to the sample; otherwise it is not assigned to the sample. However, choosing the “optimal”
threshold is a difficult task. Low thresholds will bring about more classes being assigned to the sample,
resulting in high recall and low precision. On the contrary, a larger threshold allows fewer classes to
be assigned to the sample, resulting in high precision and low recall. To tackle this problem, we use
Precision–Recall (PR-curve) as an evaluation metric. In order to plot the PR-curve of a given classifier,
different thresholds in [0, 1] are respectively applied to the output of the classifier, so as to obtain
the corresponding precision and recall. The area under the PR-curve (AUPR) can also be calculated,
and different methods can be compared based on their area under the PR-curve.

2.3. Impact of Feature Dimension on Performance

In this paper, the topology features of each node (entity) in one network are extracted by running
random walk algorithm on the network, but the obtained features tend to have higher dimensions and
contain noise. For this reason, the diffusion component analysis (DCA) method is used to reduce the
dimension [32,33]. In this section, the sensitivity of the feature dimension is discussed. Specifically,
we evaluate how the feature dimension of each network affects the performance. In this experiment,
5-fold cross-validation is used to evaluate the effect of feature dimensions on performance based on
yeast six protein interaction networks and functional labels of Level 1. We preset the random walk
restart probability a = 0.5 and vary the dimension of the feature, setting the dimensions to 50, 100, 200,
300, 400, 500, etc. The predictive performance of the gene function is tested through Macro-averaged
F1, Micro-averaged F1, and AUPR (the micro-averaged area under the precision–recall curve) metrics.
As shown in Figure 1, the abscissa stands for the feature dimension of each network and the ordinate
for the score. The predicted scores is the average of five trials.
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As shown in the figure, when the dimension is increased from 50 to 500, the scores of metrics
such as Macro-averaged F1, Micro-averaged F1, and AUPR do not change greatly. It is only when the
dimension is greater than 300 that the corresponding score begins to slowly decline. In the experiments,
the feature dimension of each network is set to 100.

2.4. Performance Evaluaton of Multinetwork Integration

An important factor that ReprsentConcat proposed in this paper can improve accuracy is the
compactness of its feature representations, which not only helps to eliminate noise in the data,
but also extracts functionally related topological patterns. In order to demonstrate the effectiveness
of integrating multiple STRING networks, ReprsentConcat is applied to respectively single network
in STRING, and the evaluation of function prediction for MIPS yeast annotations for Level 1 is
performed. We compare the predictive performance on each individual network in STRING to using
all networks simultaneously through 5-fold cross-validation. As shown in Figure 2, the cross-validation
performance of ReprsentConcat is measured by metrics including Macro-averaged F1, Micro-averaged
F1, and AUPR, as well as others. The results show that the prediction performance of all networks used
at the same time (the bar with the horizontal axis of ‘all’ in the figure) is significantly better than the
prediction performance of a single network (rank-sum test p value < 0.01). The results are summarized
over five trials.
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2.5. Comparison of Different Integrative Methods

The results of gene function prediction on multiple networks in the STRING database using
ReprsentConcat are shown in Figures 3–7. In the ReprsentConcat method, the restart probability,
which is a parameter in random walk algorithm, is set to 0.5. We also experimentally confirm
that the performance of ReprsentConcat is stable when the restart probability varies between 0.1
and 0.9. Due to the different protein interaction networks between yeast and humans, different
dimensions are chosen when reducing the dimension of network topology features. For six yeast
proteins interaction networks, the dimension is 100, and for human protein interaction networks, the
dimension is 300. In the experiment, we employ gcForest for multinetwork integration and function
prediction. Each level in the cascade uses eight random forest classifiers, and each forest contains
500 trees. In order to automatically determine the optimal number of cascade levels, it is especially
important to select appropriate evaluation metric. Considering that gene function prediction belongs to
multilabel classification problem, we use F1 metric to determine the number of cascade levels. That is,
if the prediction performance in the next four levels is not improved then, the current level is considered
to be the optimal number of level, and the output of the current level is the final prediction result.

To evaluate the performance, ReprsentConcat is compared to the latest multinetwork integration
methods: Mashup [27] and deepNF [28]. In the Mashup method, the high-dimension topological
features of each node in the network were first obtained by random walk. When reducing the
dimension of the high-dimension feature, it was assumed that the low-dimension features of the nodes
in multiple networks were the same. Then the same low-dimension topology features of multiple
networks were obtained by solving an optimization function. As shown in Figures 3–6, according to
the PR-curve, the ReprsentConcat (denoted as RepCat) method is superior to the Mashup method in
the cross-validation experiment of gene function prediction in the real data sets of yeast and human.
We demonstrate that ReprsentConcat has significant performance improvements at the different
annotation levels of the MIPS database and the GO database. For example, in the function annotation
MIPS Level 1, the AUPR values of Mashup and ReprsentConcat are 0.70 and 0.728, respectively. Part of
the reason for the improved performance of ReprsentConcat is that it obtains the topology pattern of
each network and compacts the representation of topological features. The compressed low-dimension
feature helps to eliminate noise in the network, while gcForest based on random forests does the
feature selection.

deepNF integrated different heterogeneous networks of protein interactions and extracted
the compact, low-dimensional feature representation for each node by using the stack denoising
autoencoder, then fed the representations into SVM classifiers. The method was able to capture
nonlinear information contained in large-scale biological networks and the experiments indicated
that it had a good performance on human and yeast STRING networks. We compare ReprsentConcat
and deepNF by running 5-fold cross-validation on yeast STRING networks. The results on different
annotation levels of the MIPS hierarchy are summarized in Figure 7 (ReprsentConcat denoted as
RepCat). We observe that the two methods share similar performance regarding the AUPR and F1

at levels 1 and 2 of the MIPS hierarchy. At level 3, the AUPR value of deepNF is larger than that
of ReprsentConcat while the F1 value of ReprsentConcat is larger. Since deepNF is based on deep
neural networks, there are a number of hyperparameters (e.g., hidden layers, nodes in the hidden
layer, and learning rate) to tune and the procedure generally is difficult and needs tricks and expertise.
Moreover, the computational cost is usually high. In DeepNF, there are more than three hundred
million parameters in the yeast networks to be trained in total. The training consumes almost all of the
memory of the GPU (two Geforce RTX 2080 GPUs with 22GB memory in our server). Relatively few
hyperparameters (the number of forests and trees in each forest) need to be set in ReprsentConcat, and
the training can be performed on CPU.
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2.6. Case Study: ESR1

Estrogen signaling is mediated by binding to estrogen receptors (ERs), which are
ligand-dependent transcription factors composed of several domains important for hormone binding,
DNA binding, and activation of transcription. There exist two ER subtypes in humans, namely ERα
and ERβ, coded by the ESR1 and ESR2 genes, respectively [34]. Gene ESR1 is located on chromosome
6q25.1 and consists of eight exons spanning >140 kb. The protein coded by ESR1 localizes to the nucleus
where it may form a homodimer or a heterodimer with estrogen receptor 2. The researches have
demonstrated that estrogen and its receptors are essential for sexual development and reproductive
function, but are also involved in other tissues such as bone. Estrogen receptors are also involved in
pathological processes including breast cancer, endometrial cancer, and osteoporosis [35,36]. There is
strong evidence for a relationship between genetic variants on the ESR1 gene and cognitive outcomes.
The relationships between ESR1 and cognitive impairment tend to be specific to or driven by women
and restricted to risk for Alzheimer’s disease rather than other dementia causes [37].
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We employ ReprsentConcat to predict the functions of gene ESR1. As described above, the GO
terms, which are divided into three categories (namely, BP, MF, and CC), which are further split into
three groups for each category according to the number of annotated genes. In the category of BP,
there are 28 GO terms with 101–300 annotated genes. In this experiment, we predict the functions of
ESR1 by using the protein interaction networks and the 28 GO labels. The output of ReprsentConcat
is a 28-dimensional probability vector in which each entry represents the probability of having the
function. The vector is sorted and the result is listed in Table 3. The GO terms marked with the character
‘#’, which have been confirmed in our annotation datasets, are ranked 2nd and 16th, respectively.
The GO terms marked with character ‘*’, which are new annotations and confirmed in 2017 from
UniProt-GOA [38], ranked 1st, 4th, 9th, 10th, and 15th, respectively. The result shows ReprsentConcat
generates relatively satisfactory predictions.

Table 3. The rank of GO terms according the predictions of ReprsentConcat. The GO terms marked
with the character ‘#’ indicate that they have been confirmed in the annotation datasets, and the GO
terms marked with the character ‘*’ represent they are new annotations for 2017 from UniProt-GOA.

Rank GO Term GO Name

1 GO:0000122 * negative regulation of transcription by RNA polymerase II
2 GO:0071495 # cellular response to endogenous stimulus
3 GO:0016265 obsolete death
4 GO:0048878* chemical homeostasis
5 GO:0051241 negative regulation of multicellular organismal process
6 GO:0051098 regulation of binding
7 GO:0008284 positive regulation of cell population proliferation
8 GO:0007399 nervous system development
9 GO:0006259* DNA metabolic process

10 GO:0009057* macromolecule catabolic process
11 GO:0010564 regulation of cell cycle process
12 GO:0043900 regulation of multi-organism process
13 GO:0002520 immune system development
14 GO:0006928 movement of cell or subcellular component
15 GO:0006325* chromatin organization
16 GO:0018130# heterocycle biosynthetic process
17 GO:0016192 vesicle-mediated transport
18 GO:0031647 regulation of protein stability
19 GO:0003008 system process
20 GO:0008283 cell population proliferation
21 GO:0051259 protein complex oligomerization
22 GO:0030111 regulation of Wnt signaling pathway
23 GO:0006629 lipid metabolic process
24 GO:0034622 cellular protein-containing complex assembly
25 GO:0010608 posttranscriptional regulation of gene expression
26 GO:0055085 transmembrane transport
27 GO:0016311 dephosphorylation
28 GO:0007186 G protein-coupled receptor signaling pathway

3. Multinetwork Integration Based on gcForest

3.1. gcForest

Ensemble learning has been well studied and widely deployed in many applications [39–43].
As described in Section 1, gcForest is an ensemble method based on forest. Its structure mainly includes
cascade forest and multigrained scanning.
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3.1.1. Cascade Forest

gcForest’s cascade structure adapts a level after level structure of deep network, that is, each level
in the cascade structure receives the processed result of the preceding level, and passes the processed
result of the level to the next level, as shown in Figure 8. Each level is composed of multiple random
forests made up of decision trees. In Figure 8, there are two random forests, which are completely
random forest (black) and random forest (blue), respectively.
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Each forest will generate a probability vector of length C. If each level of gcForest is composed
of N forests, then the output of each level is N C-dimensional vectors connected together, namely,
C*N dimensional vectors. The vector is then spliced with the original feature vector of the next level
(the thick red line portion of each level in Figure 8) as the input to the next level. For example, in the
three-classification problem in Figure 8, each level consists of four random forests, and each forest
will generate a 3-dimensional vector. Hence, each level produces a 4*3=12-dimensional feature vector.
This feature vector will be used as augmented feature of the original feature for the next level. To reduce
the risk of overfitting, the class vector generated in each forest is produced by k-fold cross-validation.
Specifically, after extending a new level, the performance of the entire cascade will be evaluated
on the validation set, and the training process will terminate if there is no significant performance
improvement. Therefore, the number of cascade levels in cascade is automatically determined.

3.1.2. Multigrained Scanning

Since there may be some relationships between the features of the data, for example, in image
recognition, there is a strong spatial relationship between pixels close in position, and sequential
relationships between sequence data. Cascade forest is enhanced through multigrained scanning,
i.e., it samples by sliding windows with a variety of sizes to obtain more feature subsamples, so as to
achieve the effect of multigrained scanning.

By employing multiple sizes of sliding windows, the final transformed feature vector will
include more features, as shown in Figure 9. In Figure 9, it is assumed that the 100-dimensional,
200-dimensional, and 300-dimensional windows are used to slide on the raw 400-dimensional features.
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3.2. Network Feature Extraction

The method of random walk with restart (RWR) has been widely used in network structure
analysis [44–48]. The RWR algorithm allows the restart of a random walk from the initial node at
each step with a certain probability. It can capture local and global topology information to identify
important nodes in the network. Assuming that a protein interaction network containing n nodes is
represented by G = (V, E), where V is the set of nodes, each node representing a protein, and E is the
set of edges. A is the adjacency matrix of G. M represents the Markov possibility transition matrix of A,
and each element Mij denotes the probability walking from node j to node i, then,

Mij =
Aij

∑i′ Ai′ j
(1)

The iterative equation for the random walk from node i is as follows,

st+1
i = (1− α)st

i M + αs0
i (2)

a is the restart probability, which determines the relative importance of local and global topology
information. The larger its value, the greater the chances of restart, and the more important the local
structure information. si is an distribution vector of n-dimension, where each entry represents the
probability that a node is visited after t-walk; s0

i denotes the initial probability, and s0
i (i) = 1, s0

i (j) = 0.
After several iterations, si can converge to a stable distribution, then this distribution represents the
probability of a transition from node i to node j, including the topological information of the path from
node i to node j. Then, if there are similar diffusion states between node i and node j, it means that they
have similar positions in the network, which implies that they might have similar functions. Hence,
when the RWR is stable, we obtain the diffusion state feature of each node.

The feature dimension obtained by random walk is high. We use diffusion component analysis
(DCA) [27] to reduce the dimension. To extract a fewer dimensional vector representation of nodes,
we employ the logistic model to approximate diffusion state si of each node. In detail, the probability
of random walk from node i to node j is specified by
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ŝij =
exp

{
xT

i wj
}

∑j′ exp
{

xT
i wj′

} (3)

Where xi and wj are d-dimension vectors and d is much smaller than n. xi represents the node
features, and wi represents the context features, both of which capture the topology information of the
network. The inner product is larger when the xi and wj are closer in direction, which implies that
random walks starting from node i will frequently visit node j. In order to calculate w and x, we define
the KL-divergence distance between the real distribution si and the transformed distribution ŝi and
minimize it, namely, the loss function for n nodes is

min
w,x

C(s, ŝ) =
1
n

n

∑
i=1

DKL(si||ŝi). (4)

We can obtain the low-dimensional feature by solving the minimum value of this loss function

3.3. Training and Prediction of ReprsentConcat

In ReprsentConcat, the d-dimension topology features of each network are first obtained according
to the method described above, and then the topological features of multiple networks are concatenated
to generate a one-dimension feature vector as the input features of gcForest. Considering that there
is no spatial or sequential relationship between these features, we do not perform the multigrained
process on these features. In the training, the prediction performance of each level is evaluated by k-fold
cross-validation. We use Micro-averaged F1 as the metric to determine the number of cascade levels.
The outputs of the current level are considered to be the final predictions if there is no improvement in
the next m levels in term of F1. The pseudocode of ReprsentConcat is shown in Algorithm 1.

In order to obtain the predictions in a test set, the features of a test sample are fed to the
cascade forest. The output of the optimal level which is determined by the training process is a
multidimensional class vector. Each entry of the class vector is a probability indicating the possibility
that the sample belongs to one class. Hence, a threshold t is applied to the class vector to obtain
predictions for all classes. If the jth value of the class vector is equal to or larger than the given
threshold, the sample is assigned to the class Cj where C represents the set of classes. The final
classification result of ReprsentConcat is given by a binary vector V with the length of |C|. If the jth
output is equal to or larger than the given threshold, Vj is set to 1. Otherwise, it is set to 0. Obviously,
different thresholds may result in different predictions. Since the output of cascade forest is between 0
and 1, the thresholds also vary between 0 and 1. The larger the threshold used, the less the predicted
classes. Conversely, the smaller the threshold used, the more the predicted classes.
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Algorithm 1: ReprsentConcat Algorithm

Input: network_files: paths to adjacency list files, n: number of genes in input networks, d: number of output
dimensions, onttype: which type of annotations to use, early_stopping_rounds: number of stopping the rounds
Output: opt_pred_results: prediction results

for i=1: length( network_files)
A=load_network( network_files(i), n)
Q=rwr(A, 0.5)
R=ln(Q+1/n)
U, ∑, V =svd(R)
X_cur = Ud ∑1/2

d
X=hstack(X, X_cur)

end for
Y=load_annotation(onttype) //load annotations
//split the data into train data and test data
X_train, Y_train, X_test, Y_test=train_test_split(X, Y)
layer_id=0
while 1

if layer_id==0
X_cur_train=zeros(X_train)
X_cur_test=zeros( X_test)

else
X_cur_train=X_proba_train.copy()
X_cur_test= X_proba_test.copy()

end if
X_cur_train=hstack( X_cur_train, X_train)
X_cur_ test =hstack( X_cur_ test, X_ test)
for estimator in n_randomForests

//train each forest through k-fold cross validation
y_probas= estimator.fit_transform( X_cur_train, Y_train)
y_train_proba_li+= y_probas
y_test_probas= estimator.predict_proba(X_cur_ test)
y_test_proba_li+= y_test_probas

end for
y_train_proba_li /=length(n_randomForests)
y_test_proba_li /=length(n_randomForests)
train_avg_F1=calc_F1(Y_train, y_train_proba_li) // calculate the F1 value
test_avg_F1=calc_F1(Y_test, y_test_proba_li)
test_F1_list.append( test_avg_F1)
opt_layer_id=get_opt_layer_id( test_F1_list)
if opt_layer_id = layer_id

opt_pred_results=[ y_train_proba_li, y_test_proba_li]
end if
if layer_id - opt_layer_id >= early_stopping_rounds

return opt_pred_results
end if
layer_id+=1

end while
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4. Conclusions

In this paper, we propose ReprsentConcat, an integrative method, to combine multiple networks
from heterogeneous data sources. In ReprsentConcat, the topological features are extracted by
running random walks on each network, and the features are represented using low-dimensional
vectors. Then the low-dimensional features are concatenated as the input of gcForests for prediction.
To verify the performance of this method, we performed gene function prediction on multiple
protein interaction networks of yeast and humans. The experimental results demonstrated that
the prediction performance by integrating multiple networks is much better than that using a single
network. Moreover, ReprsentConcat is not sensitive to multiple parameters such as the number of
dimensions for function prediction. We also compare with the latest network integration method
Mashup. According to the result of 5-fold cross-validation, ReprsentConcat outperforms Mashup in
terms of precision–recall curves.

Besides the network data, other non-network information, such as sequence features, can be
integrated into ReprsentConcat for function prediction by concatenating them. As a note, there
are still further improvements in the predictions of protein function in our method. For example,
the topological features of nodes are extracted through semisupervised learning by combining label
information. As a result, the learned features might be more effective in this manner.
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