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Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of
apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction
methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the
proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when
constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple
locations. To address this problem, this paper proposes a novel multilabel predictor namedMultiP-Apo, which can predict not only
apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query
protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified
by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying
subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by
jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.

1. Introduction

Apoptosis or programmed cell death is an autonomic ordered
death process under certain physiological and pathological
conditions in organisms. It maintains normal tissue home-
ostasis by keeping a balance between cell proliferation and
death. When the regulation of cell apoptosis is disordered,
diseases such as tumor, autoimmune diseases, and neurode-
generative diseases will emerge [1–3]. Apoptosis proteins play
critical roles in the mechanism of programmed cell death.
Identification of subcellular locations of apoptosis proteins
could help us understand apoptosis mechanism [4]. During
the last decade, there have existed many excellent prediction
methods based on machine learning for apoptosis protein
subcellular localization. In general, these works have three
major steps: (1) construct or select a benchmark dataset for
training and testing the predictor, (2) extract the important
biological characteristics contained in the protein samples,
(3) and introduce or develop a new machine learning algo-
rithm.

In the first step, three benchmark datasets, ZD98 [4],
ZW225 [5], and CL317 [6, 7], are the most widely used
for apoptosis protein subcellular localization prediction. The
ZD98 dataset has 98 apoptosis proteins and four subcellular
locations, which consists of 43 cytoplasmic proteins, 30
plasma membrane-bound proteins, 13 mitochondrial pro-
teins, and 12 other proteins.The ZW225 dataset contains four
subcellular locations and 225 apoptosis proteins; they are 41
nuclear proteins, 70 cytoplasmic proteins, 25 mitochondrial
proteins, and 89 membrane proteins. The CL317 dataset is
the latest and largest existing dataset, which includes 112
cytoplasmic proteins, 55 membrane proteins, 34 mitochon-
drial proteins, 17 secreted proteins, 52 nuclear proteins,
and 47 endoplasmic reticulum proteins. In the second step,
many methods have been used to extract core and essential
features of the apoptosis protein samples, such as amino
acid composition [8], pseudo-amino-acid composition [6,
7, 9–12], group weight coding [5], distance frequency [13],
autocovariance transformation based on position-specific
score matrix (PSSM-AC) [14], and Gene Ontology (GO)
annotation information [15]. In the last step, some common
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machine learning algorithms, for example, support vector
machine (SVM) [13, 14, 16], fuzzy k-nearest neighbor (FKNN)
[9, 10], and ensemble learning [17, 18], have been used to
perform the prediction.

However, there are the following drawbacks in aforemen-
tionedworks. (1)These predictionmodels are only applicable
for the proteins that have one subcellular location. For
apoptosis proteins with multiple locations, so far no models
can completely and correctly predict all their subcellular
locations. (2) Apoptosis proteins in the three benchmark
datasets only have one subcellular location, but, to our
best knowledge, they may be annotated as more than one
location in the UniProtKB database; there is no dataset
containing apoptosis proteins with multiple locations for
subcellular localization prediction by now. (3) Predicting
subcellular locations for apoptosis proteins with multiple
locations is a multilabel learning problem; machine learning
classifiers mentioned above cannot be directly applied to
dealing with a multilabel problem. Proteins with multiple
locations should be highly concerned, because they may have
some very special biological functions worthy of in-depth
research. Unfortunately, previous researches in the field are
limited to the prediction of proteins with only single location.
They generally constructed prediction models based on the
assumption that multilocation proteins do not exist.

To address this problem, a new multilabel predictor,
named MultiP-Apo, is proposed, which can predict not
only apoptosis proteins with single subcellular location but
also those with multiple subcellular locations. Firstly, a
new benchmark dataset, MSapo518, is constructed, which
contains 518 apoptosis proteins with both single and multiple
subcellular locations. To expand the prediction range, the
new dataset increased two new subcellular locations on the
basis of subcellular location included in the CL317 dataset.
Secondly, GO annotation information of the homologous
proteins of apoptosis proteins is used to represent proteins,
and a GO subspace is constructed by selecting a set of
relevant GO terms from all the GO terms in GO database to
avoid the curse of dimensionality. Thirdly, a new multilabel
algorithm is presented as the prediction engine by utilizing
the label-specific features. Finally, an online web server
for MultiP-Apo is developed, which is freely accessible at
http://biomed.zzuli.edu.cn/bioinfo/multip-apo/.

2. Materials and Methods

2.1. Dataset. In order to establish a high quality benchmark
dataset, all apoptosis protein sequences used in the cur-
rent study were collected from the UniProtKB/Swiss-Prot
database (released on 04 July 2016) according to the following
steps:

(1) “Apoptosis” was used as the keyword to search
the Swiss-Prot database; only the apoptosis protein
sequences were collected.

(2) Those protein sequences annotated with “fragment”
were excluded, and the sequences with less than 50
amino acid residues were also excluded because they
might belong to fragments.

Table 1: Breakdown of the apoptosis protein benchmark dataset
MSapo518.

Order Compartment Number of proteins
1 Cytoplasm 244
2 Membrane 126
3 Secreted 36
4 Mitochondrion 107
5 Nucleus 207
6 Endosome 12
7 Endoplasmic reticulum 47
8 Golgi apparatus 25

(3) Those proteins whose subcellular locations were
annotated by experiment were collected, and the
subcellular locations of proteins annotated with “by
similarity” were excluded, because these subcellular
locations were inferred from the homologous pro-
teins.

(4) Theprotein sequences including ambiguous or uncer-
tain letters, like “B,” “X,” or “Z,” were excluded.

After the above four processes, we obtained the bench-
mark datasetMSapo518 including 518 different apoptosis pro-
teins covered in the following 8 main subcellular locations,
cytoplasm, membrane, secreted, mitochondrion, nucleus,
endosome, endoplasmic reticulum, and Golgi apparatus.
Although homology bias of the dataset might have an effect
on the performance of the predictor, we still decided not to
further reduce the number of proteins in the dataset because
the quantity of apoptosis proteins annotated by manual
experiment was very few. The number of apoptosis proteins
belonging to each subcellular location is given in Table 1.
Among these proteins, 303 proteins occur in one subcellular
location, 155 in two locations, 52 in three locations, 6 in four
locations, 1 in five locations, 1 in six locations, and none in
seven or more locations. The number of apoptosis proteins
located in different number of locations can be displayed in
Figure 1.

2.2. Feature Extraction. In order to develop a machine-
learning-based predictor for protein subcellular localization
prediction, one of the key steps is how to formulate a
biological sequence with a discrete model or a feature vector
that truly reflects the intrinsic relationship between proteins
and their subcellular locations. However, it is not an easy
job. Amino acid composition (AAC) is the simplest feature
extraction method. Each protein is represented as a 20D
feature vector, where the elements of the vector are the occur-
rence frequencies of the amino acids of the protein. However,
AAChas an obvious shortcoming that only contains sequence
features; therefore, the prediction performance might be
considerably limited. To overcome this problem, Pseudo-
amino-acid composition (PseAAC) is proposed based on
amino acid composition, and it has almost penetrated into
all the fields of protein attribute prediction, protein structural
classes prediction [19, 20], super secondary structure pre-
diction [21], protein subcellular locations prediction [22, 23],
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Figure 1: The distribution of proteins with different number of
subcellular locations.

protein submitochondrial locations prediction [24], and so
on. Meanwhile, the concept of PseAAC has also stimu-
lated the generation of pseudofolding topological indices
and pseudofolding lattice network [25, 26]. Inspired by
PseAAC, pseudo-𝑘-tuple-reduced-amino-acids composition
(PseKRAAC) [27] is developed, which could simplify protein
complexity, decrease the chance of overfitting, and improve
prediction performance. In addition, the position-specific
scoring matrix (PSSM) is adopted to describe the protein
sequence evolution information according to the theory of
species evolution. A protein with 𝐿 sequence lengths can be
represented as an 𝐿-row, 20-column matrix. The element (i,
j) of PSSM represents the fact that the score of the amino
acid in the 𝑖th position (i = 1, 2, . . ., L) of the sequence is
changed to amino acid type j (j = 1, 2, . . ., 20) during the
evolution process. The PSSM can be obtained by the PSI-
BLAST to search the Swiss-Prot database. It also has been
widely used in protein attribute prediction areas, including
predicting protein subcellular localization [28], predicting
protein-ATP binding residues [29], and predicting protein-
protein interaction [30].

Gene Ontology (GO) database is established by the GO
Consortium to provide a unified representation of genes
and their products across all species. In GO database, the
GO terms are used to describe the characteristics of genes
and gene products, which contains three types: cellular
component, molecular function, and biological process. The
Gene Ontology Annotation (GOA) database annotates gene
products and provides reference and evidence to support the
annotations.Thedatabase can give a large and comprehensive
research resource for proteomics. In GOA database, unique
accession number (AC) of proteins in UniProtKB may cor-
respond to different numbers of GO terms, which can be
zero, one, or more GO terms, and one GO term may be
related to zero, one, or many different ACs. It shows that the
relationships between ACs and the GO terms may be many-
to-many.

In recent years, several GO-based predictors have exhib-
ited excellent performance in protein subcellular localization,

such as iLoc-Plant [31], iLoc-Gpos [32], iLoc-Gneg [33], and
Virus-ECC-mPLoc [34]. Furthermore, these predictors have
fully proven that GO-based methods have superiority over
sequence-based methods. However, there is some contro-
versy or confusion about GO-based approaches for protein
subcellular localization prediction: if a protein can find its
cellular component GO terms, is it still needed to predict
its subcellular location? Is that a solution to the prediction
problem by creating a lookup table with the cellular compo-
nent GO terms as the keys and the cellular components as the
hashed values? Our previous work [32] and another research
[35] have already illustrated the legitimacy of the GO-based
predictors for protein subcellular localization. For readers’
convenience, here we give a brief summary. For GO and non-
GO predictors, their benchmark datasets were established
based on the Swiss-Prot database, in which the subcellular
locations of the proteins in the datasets were determined
by experiments. The output of these GO-approach predic-
tors was the subcellular location(s) by using the sequence
information of the query protein alone as the input without
needing any GO information. That is to say, there is no
difference at all between the non-GO predictors and GO
predictors in the requirement of the input. Additionally, the
reason why the GO-based methods can perform excellent
performance is that the features vectors in the GO space
more accurately reflect the relationship between the proteins
and their subcellular locations. Obtaining the locations of the
query proteins by creating a lookup table using the cellular
component GO terms and the cellular component categories
has been demonstrated to be undesirable and leads to very
poor prediction performance. In summary, we also applied
the GO-based method in the current paper, and the details
are given below.

Given a query protein 𝑃, it is entered to BLAST to search
the Swiss-Prot database (released on 04 July 2016) for its
homologous proteins. Collect these homologous proteins and
put them into a set. The proteins in the set have some similar
attributes such as structural conformations and biological
functions as 𝑃. Select the accession numbers (AC) of homol-
ogous proteins as the keys to retrieve the relevant GO terms
from theGOAdatabase. Note that if the homologous proteins
cannot be discovered or have any GO terms, then𝑃’s own AC
is to be used.

Using (1), protein 𝑃 is represented as

𝑃 = [𝑓1, 𝑓2, 𝑓3, . . . , 𝑓𝜇, . . . , 𝑓𝜔]T , (1)

where T is a transpose operator; 𝜔 is the number of all
GO terms in GO database. However, the number of GO
terms has been increasing rapidly in recent years, and GO
database (released on 23 July 2016) has included more
than 20000 GO terms. If we use all the GO terms in GO
database to formulate the feature vector, it will lead to the
high-dimension disaster and time-costing problems. In the
current paper, GO subspace was constructed to avoid these
problems. For all apoptosis proteins in the dataset, we get
their homologous proteins set and retrieve their GO terms
as described above and put the GO terms into a set. After
this process, all GO terms in the set form a GO Euclidean
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space with 𝜔 dimensions, where 𝜔 is equal to the number of
GO terms in the set. GO subspace can be seen as a subset of
all GO terms in GO database. For protein 𝑃, its GO feature
vector is represented as (1) by mapping its GO terms to the
GO subspace, where 𝑓𝜇 in the GO feature vector is defined as

𝑓𝜇 = {{{
𝑔𝜇 if GO hit

0 otherwise, (2)

where 𝑔𝜇 is the number of occurrences of the 𝜇th GO term,
if the GO terms of protein 𝑃 hits the 𝜇th GO term. Note
that, for each protein in the dataset, at least one AC has
GO terms, where the AC may belong to protein itself or its
homologies; therefore, naught vectors will not appear in the
dataset. Naught vector is meaningless for prediction.

2.3.The PredictionAlgorithm. Prediction of subcellular local-
ization of multilocation apoptosis proteins can be regarded
as a multilabel classification problem, where each subcellular
location is represented as a class label. The binary relevance
method (BR) is a frequently used strategy that converts
the multilabel problem into several single-label classification
problems. Given the multilabel training dataset S, it contains
𝑛 proteins classified into 𝑐 subcellular locations. The dataset
can be further grouped into 𝑐 subsets according to the
different locations: S = S1 ∪ S2 ∪ ⋅ ⋅ ⋅ ∪ S𝑖 ∪ ⋅ ⋅ ⋅ ∪ S𝑐, where
S𝑖 is the subset containing the proteins belonging to the 𝑖th
location. For the 𝑖th subcellular location, the training set can
be represented as

T (𝑖) = T
+ (𝑖) ∪ T− (𝑖) , (3)

where T+(𝑖) is the positive set of protein samples belonging to
this location and T−(𝑖) is negative set that consists of the rest
of the proteins; T+(𝑖) and T−(𝑖) are constructed as follows:

T
+ (𝑖) = {(X𝑝, +1) | 𝑝 ∈ S𝑖} ,

T
− (𝑖) = {(X𝑞, −1) | 𝑞 ∉ S𝑖} ,

(4)

where X𝑝 is the feature vector of protein 𝑝 belonging to S𝑖
and X𝑞 is the feature vector of protein 𝑞 not belonging to S𝑖.
BR method trains 𝑐 independent binary classifier based on
T(𝑖) (𝑖 = 1, 2, . . . , 𝑐). Inputting a query protein, the prediction
output is a 𝑐-dimensional score vector 𝑦, where 𝑦𝑖 = +1
indicates that the protein belongs to the label 𝜆𝑖 or subcellular
location 𝑖 and 𝑦𝑖 = −1 means that it does not belong to
subcellular location 𝑖.

In this paper, a new multilabel prediction algorithm
is proposed based on the binary relevance method (BR)
strategy. Generally speaking, the proposed algorithm firstly
selects the most discriminative features for the 𝑐 subcellular
locations, respectively and secondly constructs the classifica-
tion models by using the 𝑐 groups of label-specific features
obtained via the above step. Specifically, we use Pearson’s
correlation coefficient (PCC) to select label-specific features
for each subcellular location. PCC is a statistical method to
measure the linear correlation between the two variables,

whose value range is between −1 and +1. If the absolute value
is close to 1, the linear correlation of the two variables is very
high; otherwise, the value is close to 0; there is almost no
linear correlation between them. PCC has been extensively
used in biological data analysis [36]. Let X and Y denote
the feature vector space and the label score vector space,
respectively, and they can be denoted as

X = [f1, f2, . . . , f𝜇, . . . , f𝜔] ,
Y = [Y1,Y2, . . . ,Y𝑖, . . . ,Y𝑐] ,

(5)

where f𝜇 is the vector that consists of the 𝜇th feature of all
proteins and Y𝑖 is the vector that is made up of label scores of
all proteins for 𝜆𝑖; they are represented as:

f𝜇= [𝑓1,𝜇, 𝑓2,𝜇, 𝑓3,𝜇, . . . , 𝑓𝑘,𝜇, . . . , 𝑓𝑛,𝜇]Τ

Y𝑖= [𝑦1,𝑖, 𝑦2,𝑖, 𝑦3,𝑖, . . . , 𝑦𝑘,𝑖, . . . , 𝑦𝑛,𝑖]Τ ,
(6)

where 𝑓𝑘,𝜇 is the 𝜇th feature of the 𝑘th protein and 𝑦𝑘,𝑖 is the
label score of the 𝑘th protein to 𝜆𝑖. The linear dependency
between the 𝜇th feature and class label 𝜆𝑖 is detected by

𝑟 (f𝜇,Y𝑖) = ∑𝑛𝑘=1 (𝑓𝑘,𝜇 − f𝜇) (𝑦𝑘,𝑖 − Y𝑖)
√∑𝑛𝑘=1 (𝑓𝑘,𝜇 − f𝜇)2∑𝑛𝑘=1 (𝑦𝑘,𝑖 − Y𝑖)2

, (7)

where f𝜇 and Y𝑖 are mean values of f𝜇 and Y𝑖, respectively.
For each label, its label-specific features are constructed as
follows: detect linear dependency between each feature and
the current label, arrange the original features in descending
order according to the linear dependencies, and then select
first 𝐾 features as label-specific features, where the value of
𝐾 to each label may be different. Figure 2 shows schematic
illustration of using Pearson’s correlation coefficient (PCC)
to rank features for each different class label. In the process
of classification models induction, BR strategy is used to
induce binary classifier for each label.These binary classifiers
are trained from the generated label-specific features other
than the original features. For a query protein, similarly, its
label-specific features instead of original features are used for
prediction. In this paper, support vector machine (SVM) was
used for training all the binary classifiers. SVM is a common
binary classification algorithm and puts up some special
advantages in the fields of nonlinear and high-dimensional
pattern recognition.

Finally, the entire predictor ever established via the above
procedures is named MultiP-Apo, where “MultiP” stands for
“multilocation prediction” and “Apo” stands for “apoptosis
proteins.” To provide an intuitive picture, a flowchart is given
in Figure 3 to illustrate the prediction process of MultiP-Apo.

2.4. Performance Measures. Predicting subcellular localiza-
tion ofmultilocation apoptosis proteins belongs to the case of
multilabel classification. It is well known that, for a multilabel
classification system like the current system, performance
metrics differ from those of traditional single-label classifica-
tion system, because an example may have one or more class
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Figure 2: Schematic illustration of using Pearson’s correlation coefficient (PCC) to rank features for each different class label.
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Figure 3: A flowchart to show how theMultiP-Apo predictor works.
See the text for further explanation.

labels simultaneously.The performance metrics will be much
more complicated for a multilabel classification system. To
better reflect themultilabel capabilities of classifiers, these five
measures, mlACC,mlPRE, mlREC, mlF1, and ACC, are used
in this work, and they are defined as follows:

mlACC = 1
𝑚
𝑚∑
𝑖=1

𝑌𝑖 ∩ 𝑍𝑖𝑌𝑖 ∪ 𝑍𝑖 ,

mlPRE = 1
𝑚
𝑚∑
𝑖=1

𝑌𝑖 ∩ 𝑍𝑖𝑍𝑖 ,

mlREC = 1
𝑚
𝑚∑
𝑖=1

𝑌𝑖 ∩ 𝑍𝑖𝑌𝑖 ,

mlF1 = 2 ⋅mlREC ⋅mlPRE
mlREC +mlPRE

,

ACC = 1
𝑚
𝑚∑
𝑖=1

1 (𝑌𝑖 ≡ 𝑍𝑖) ,
(8)

where 𝑌𝑖 is the set of true labels of each sample, 𝑍𝑖 is the
set of predicted labels, 𝑚 is the number of test samples, and
| ⋅ | is the operator to count the number of the elements
in the set. For the above five measures, the higher the
measure values, the better the prediction performance. mlF1
is the harmonic mean of multilabel precision (mlPRE) and
multilabel recall (mlREC), which takes the trade-off between
mlPRE and mlREC into account to reflect the classification
performance intuitively. ACC is a stringent measure that
evaluates the overall correct rate of multilabel classification
system. If true labels and predicted labels of an example are
entirely identical, the value of 1(𝑌𝑖 ≡ 𝑍𝑖) is 1; otherwise,
it is 0. For a protein sample, only if all predicted locations
are entirely identical to its true locations, it is considered to
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Table 2: Performance comparison of MultiP-Apo with BrP-Apo on
the benchmark dataset MSapo518 by the jackknife test.

Measure MultiP-Apo (%) BrP-Apo (%)
mlACC 76.37 62.84
mlPRE 84.12 71.10
mlREC 84.86 74.56
mlF1 81.87 69.61
ACC 58.49 42.08

be correctly predicted. For example, a protein contains three
subcellular locations; if the predicted result contains more
than or less than three locations or the result has a location
not belonging to the three true locations of the given protein,
the prediction can be considered as incorrect. The readers
can refer to the review article in [37] which has given a more
detailed explanation about the meanings of these measures.

In statistical prediction, three common testing meth-
ods, independent dataset test, 𝑘-fold cross-validation, and
jackknife cross-validation, are usually used for testing the
generalization capabilities of predictors. Among them, the
jackknife cross-validation is the most rigorous and bias-free
testingmethod, as elucidated in a comprehensive review [38].
In the jackknife test, the dataset containing 𝑁 proteins is
divided into𝑁 subsets, where each subset is regarded as a test
protein; the rest of 𝑁 − 1 proteins are used as a training set.
This procedure is repeated𝑁 times, and each time a different
protein is selected as the test protein. The jackknife test has
been increasingly and widely employed by researchers to
examine the accuracy of various prediction methods [14–17,
21–24]. Hence, in the current paper, we also use the jackknife
cross-validation to examine the prediction performance.

3. Results and Discussion

3.1. Evaluating Our Prediction Model on the Benchmark
Dataset MSapo518. To demonstrate the efficiency of our
proposed predictor, Table 2 compares the performance of
our proposed predictor MultiP-Apo (using the label-specific
features) with that of BrP-Apo (using original features) on
the benchmark dataset MSapo518 by the jackknife test.
Specifically, BrP-Apo used the BR strategy for training the
prediction model, while our proposed predictor MultiP-Apo
extended the BR strategy by utilizing label-specific features
for prediction model. For a fair comparison, we used the
same original features obtained in Section 2.2 and the same
base classifier SVM for both MultiP-Apo and BrP-Apo. As
can be seen from Table 2, MultiP-Apo performs impressively
better than BrP-Apo in terms of mlACC, mlPRE, mlREC,
mlF1, and ACC. Particularly, for the most objective and
stringent criteria ACC, MultiP-Apo outperforms BrP-Apo
by more than 15%. This is understandable because, in the
basic BR strategy, for example, BrP-Apo, the same features
are used to train each individual binary classifier for each
subcellular location, leading to outputting many prediction
errors. This problem can be overcome by using the label-
specific features because it constructs themost discriminative
features for each subcellular location, leading to a significant

improvement on ACC. For the rest of the evaluation criteria,
MultiP-Apo also significantly outperforms BrP-Apo, which is
consistent with the aforementioned analysis demonstrating
that taking the label-specific features into account can achieve
higher prediction performance.

It should be noted that calculating and comparing the
accuracy of each label is meaningless in a multilabel classifi-
cation.Therefore, Table 3 listed the overall accuracies (ACCs)
of apoptosis proteins with different number of labels (subcel-
lular locations), and, for comparison, the ACCs by BrP-Apo
are also shown inTable 3. As can be seen fromTable 3,MultiP-
Apo performs better than BrP-Apo significantly. In particular,
for proteins with two subcellular locations, compared to BrP-
Apo, the performance improvement of MultiP-Apo is close to
20%.We have noticed that the more subcellular locations the
proteins have, the lower theirACCs are.Therefore, Table 3 can
also show that using the label-specific features could enhance
the prediction performance.

3.2. Effect of the Number of Homologous Proteins. In the
section, we evaluate the performance of MultiP-Apo with
different numbers of homologous proteins on the benchmark
dataset MSapo518 by the jackknife test. The number of
distinct GO terms can be different for different numbers of
homologous proteins. Typically, the number of distinct GO
terms increases with the number of homologous proteins.
We select {1, 2, 4, 8} as the numbers of homologous proteins
used here. Figure 4 shows how the number of homologous
proteins can affect the performance of MultiP-Apo. As can
be seen from Figure 4, as the number of homologous
proteins increases, the prediction performance ofMultiP-Apo
is generally decreased in terms of all performance metrics.
Specifically, for absolute accuracy (ACC), the performance of
using one homolog is remarkably better than that of using
eight (58.49% versus 52.7%). This observation indicates that
we should add the less number of homologous proteins
because too many homologous proteins may bring in redun-
dant and noisy information.

3.3. Comparison with the Existing Predictors for Apoptosis
Proteins. As mentioned in Introduction, all the existing
predictors can only be used to identify a single subcellular
location of a query protein; none of them can deal with
proteins with multiple subcellular locations. Nevertheless, it
is still interesting to see if our proposed predictor could work
better than the existing predictors based on the independent
test using a new apoptosis protein dataset.The new apoptosis
protein dataset was constructed by using the same criteria
specified in Dataset. Moreover, to ensure that the proteins in
the new dataset are really novel, the addition dates of these
proteins should be later than the training proteins used in our
proposed predictor and other existing predictors. Because the
apoptosis protein datasets used for training MultiP-Apo and
other predictors were created on 04 July 2016 and earlier, we
selected the apoptosis proteins that were added to Swiss-Prot
between 04 July 2016 and 15May 2017. After that, 26 apoptosis
proteins distributed in 8 subcellular locations were selected,
of which 9 proteins are associated with one subcellular
location, 9 with two locations, 6 with three locations, 1 with
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Table 3: A comparison of the overall accuracies (ACCs) by MultiP-Apo and BrP-Apo for proteins with different number of subcellular
locations.

Number of locations Number of proteins The overall accuracy (ACC)
MultiP-Apo (%) BrP-Apo (%)

1 303 68.65 50.83
2 155 56.13 36.77
3 52 15.38 13.46
4 6 0 0
5 1 0 0
6 1 0 0
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Figure 4: The graph shows how different numbers of homologous proteins affect the prediction performance (a) for the mlACC metric, (b)
for mlPRE, (c) for mlREC, (d) for mlF1, and (e) for ACC.
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Table 4: Multilabel performance comparison of MultiP-Apo with
GO-DWKNN on a new dataset by the independent test.

Measure MultiP-Apo (%) GO-DWKNN (%)
mlACC 69.17 48.53
mlPRE 90.38 88.46
mlREC 72.05 48.53
mlF1 77.07 59.87
ACC 46.15 19.23

four locations, 1 with five locations, and nonewith six ormore
locations. In other words, 65% of the apoptosis proteins in the
new dataset are located inmultiple locations.The new dataset
can also be downloaded from the MultiP-Apo server.

We compare our proposed predictor MultiP-Apo with
the state-of-the-art predictor GO-DWKNN [15] on the new
dataset by the independent test. Because GO-DWKNN is
superior to the other existing predictors and only GO-
DWKNN provides the online web server, we think the
comparison would suffice. The prediction results of the two
compared predictors are presented in Table 4. As can be seen
from the table, MultiP-Apo performs significantly better than
GO-DWKNN in terms of all performance metrics. Among
the fivemetrics in (8), the ACC is the strictest andmost harsh
one; any overprediction or underprediction will lead to faulty
results.The absolute accuracy (ACC) of our proposed predic-
tor MultiP-Apo is more than 26% (absolute) higher than that
of GO-DWKNN (46.15% versus 19.23%). This observation
indicates that because MultiP-Apo is especially designed for
dealing with apoptosis proteins with multiple subcellular
locations,MultiP-Apo performs significantly better thanGO-
DWKNN in predicting subcellular locations of apoptosis
proteins with both single and multiple sites.

4. Web Server

Since user-friendly and freely accessible web servers rep-
resent the future direction for developing practically more
useful predictors, based on the above prediction method, we
have developed an onlineweb server for predictingmultilabel
apoptosis protein subcellular localization, calledMultiP-Apo,
at http://biomed.zzuli.edu.cn/bioinfo/multip-apo/. Even if
there is no professionalmath and computer knowledge for the
biologists, the prediction results can be also easily obtained
for the query proteins.

5. Conclusion

Prediction of apoptosis protein subcellular localization is
a challenging problem, and many outstanding predictors
have been developed to solve this problem. However, there
have been the following shortcomings in all the existing
predictors: (1) for the proteins with multiple locations, they
cannot completely predict all their subcellular locations;
(2) so far no dataset contains the apoptosis proteins with
multiple locations; (3) the machine learning algorithms used
in these predictors are not suitable for dealing with the
apoptosis proteins with multiple subcellular locations. In

view of this, a multilabel predictor, namely, MultiP-Apo, is
proposed in this paper, which is the first multilabel predictor
for identifying subcellular locations of apoptosis proteins
with single and multiple locations.

The main contributions of this paper can be summa-
rized as follows: (1) we created the new benchmark dataset
MSapo518 that contains 518 apoptosis proteins with both sin-
gle andmultiple subcellular locations and covers 8 subcellular
locations; (2) we used the GO annotation information of the
homology proteins of apoptosis proteins to formulate the
feature vectors, and GO subspace was constructed to avoid
the high-dimensional disaster by selecting a set of relevant
GO terms from all the GO terms; (3) we proposed a novel
multilabel algorithm by utilizing the label-specific features to
perform multilocation prediction; (4) an online web server
for MultiP-Apo is established which is freely accessible at
http://biomed.zzuli.edu.cn/bioinfo/multip-apo/.
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