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C. butyricum is a common gut commensal bacterium, which has many positive functions
in human intestine. In this study, we investigated the effects of monosaccharide and its
derivatives on the adhesion of C. butyricum to the mucus of HT-29 cells. RNA interference
was performed to assess the roles of MUC2 and glycan in the adhesion of C. butyricum to
HT-29 cells. The effects of C. butyricum on the glycosylation of mucins were assayed with
fluorescence microscope. The expression levels of mucins and glycotransferases were
also determined. The results showed that C. butyricum could adhere to the mucins
secreted by HT-29 cells. Several kinds of monosaccharides inhibited the adhesion of C.
butyricum to HT-29 cells, which suggested that the mucus glycan was the attaching sites
of this bacterium. Knockdown of MUC2, FUT2 or GALNT7 significantly decreased the
numbers of the bacteria adhering to HT-29 cells. When colonizing on the surface of HT-29
cells, C. butyricum could increase the production of mucins, promote the expression of
glycotransferase, and induce the glycosylation of mucins. These results demonstrated
that the glycan of mucus played important roles in the adhesion of C. butyricum to HT-29
cells. This study indicates for the first time that C. butyricum possesses the ability to
modulate the glycosylation profile of mucus secreted by HT-29 cells. These findings
contribute to understanding the mechanism of interaction between colonic epithelial cells
and commensal bacteria.

Keywords: C. butyricum, HT-29 cells, mucins, glycosylation, adhesion
INTRODUCTION

Human gastrointestinal tract (GIT) is inhabited by trillions of bacteria with more than 1000
identified species, with a density of 1011 bacterial cells per gram wet weight in the colon contents
(Rehman et al., 2011; Parker et al., 2020). These intestinal bacteria involve in many critical
physiological functions related to host health (Kaur et al., 2020; Reyes et al., 2020; Xu et al., 2020). In
healthy individuals, the composition of intestinal microbiota usually remains in constant
equilibrium for a long period of time (Guo et al., 2020; Leon-Coria et al., 2020). The
gastrointestinal epithelium is covered by a layer of mucus, which consists of at least nine kinds
of mucins. The mucus layer could supply inhabitants and energy resource for the intestinal
commensal microbes. Moreover, the mucus is also the first barrier protecting the gut from being
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invaded by the bacteria. Mucus is critical for the intestinal health
since disruption of this boundary will probably result in bacterial
penetration of mucus barrier and induce intestinal inflammation
(Liu et al., 2020; Sharma et al., 2020; Son et al., 2020). It has been
reported that gut bacteria could colonize the intestinal mucus
layer in vivo and adhere to HT-29 cell in vitro (Altamimi et al.,
2016; Engevik et al., 2019).

Most mucins are found to express in human colon, including
Mucin1, Mucin2, Mucin3, Mucin4 and Mucin5AC, of which
MUC2 (Mucin 2) is the major gel-forming mucin (Pelaseyed and
Hansson, 2020). Mucins are glycosylated proteins, which are
characterized by a high content of carbohydrates such as N-
acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc),
galactose (Gal), fucose (Fuc) and sialic acid. Carbohydrates
constitute up to 80% of the mucin mass. A series of
glycosyltransferases are responsible for the addition of the
monosaccharide or its derivatives to the sugar chain of mucins
(Arike et al., 2017; Pelaseyed and Hansson, 2020). Probiotics
such as Lactobacil lus and Bifidobaterium have been
demonstrated to increase the expression and secretion of
MUC2 and MUC3 in intestinal epithelial cells (Mack et al.,
2003; Subramani et al., 2015). Protein O-glycosylation is initiated
by GalNAc-Ts, which could add GalNAc to the Ser or Thr
residues of mucins (Arike and Hansson, 2016; Arike et al., 2017).
GALNT7 (N-acetylgalactosaminyltransferase 7) is the most
abundantly expressed GalNAc transferase in colon. C2GnT2 is
highly expressed in the mucin producing tissues such as colon
and stomach, which could catalyze the transfer of GlcNAc to the
C6 carbon of the initial GalNAc. ST3Gal family are a-2,3-STs,
which catalyze the transfer of sialic acid residues to
galactopyranosyl (Gal) residue (Arike et al., 2017). ST3Gal3 is
involved in catalyzing the transfer of sialic acid residues onto
sugar chains of mucins. FUT2 (Fucosyltransferase 2) is the only
identified enzyme to catalyze the addition of terminal a1,2-
fucose residues to Gal of the glycans (Carvalho et al., 2010; Lee
et al., 2010; Arike et al., 2017). Previous studies have indicated
that intestinal commensal bacteria could stimulate the
expression of several glycosyltranferases, which are responsible
for catalyzing the transfer of carbohydrates to mucins (Wrzosek
et al., 2013; Engevik et al., 2019). The oligosaccharide structure of
mucins may play important roles in the adhesion of gut bacteria
to the intestinal epithelial cells (Altamimi et al., 2016).

C. butyricum is a strictly anaerobic bacterium, which is a
common gut commensal bacterium. Some non-toxigenic strains
have positive functions to prevent intestinal diseases such as
ulcerative colitis, inflammation and colonic cancer (Gao et al.,
2012a; Gao et al., 2012b; Gao et al., 2012c). C. butyricum
MIYAIRI 588 probiotic strain has been clinically approved for
the treatment of diarrhea and other intestinal diseases in Japan
(Hagihara et al., 2019). This bacterium could colonize human
intestinal tract, adhere to the epithelium, produce short-chain
fatty acid and modulate host intestinal immunity (Hagihara et al,
2020). In addition, HT-29 cell line harbors a glycosylated mucus
layer, which can be used as an in vitro model for the adhesion of
bacteria to human intestinal epithelium (Altamimi et al., 2016).
However, no studies have shown that whether C. butyricum
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
could induce the production and glycosylation of mucins in HT-
29 cells.

In this study, we investigated the effects of monosaccharide
and its derivatives on the adhesion of C. butyricum to the mucus
of HT-29 cells. Knockdown of MUC2, GALNT7 and FUT2 was
performed to determine the roles of MUC2 and glycan in the
adhesion of C.butyricum. Furthermore, the glycosylation of
mucins was detected and then the expression levels of
glycotransferases were analyzed. This study is among the first
to identify C. butyricum modulates mucus production and
induces the glycosylation of mucins.
MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
C. butyricum MIYAIRI II588 was obtained from Miyarisan
Pharmaceutical Co., Ltd. (Tokyo, Japan). C. butyricum was
anaerobically cultured in RCM (Reinforced Clostridium
Medium) medium at 37°C for overnight (about 16 hours). The
strains were subcultured at 37°C for 4 h as required.

Cell Culture
Colon adenocarcinoma cell line HT-29 was obtained from the
Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). The cells were grown in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum, 100 unit/
mL penicillin and 100 mg/mL streptomycin at 37°C in a 5% CO2

atmosphere in a humidified incubator. At the day prior to
treatment with C. butyricum, the media were replaced by fresh
media containing no antibiotics.

HEK293 cell line was also obtained from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). The cells were
cultured in DMEM with 10% FBS, penicillin-streptomycin
solution (penicillin 100 U/mL, streptomycin 0.1 mg/mL) at 37°
C in a 5% CO2 in a cell incubator. The passage time of HEK293
cells was 80-90% confluence, and the passage ratio was 1:3 ~ 1:6.

Preparation of Monosaccharides and
the Derivatives
D(+)galactose, fucose, sialyl acid and N-Acetylglucosamine
(NAG) were dissolved in PBS and microfiltered (0.2 mm sterile
disc) then kept at 4°C till they were used for the experiment. The
concentration of stock solutions was 10% w/v.

Preparation and Labeling of Bacteria
C. butyricumMIYAIRI II588 were subcultured on 2×YTG (yeast
extract 10 g, tryptone 16 g, and glycerol 5 g, NaCl 5 g per liter)
plates overnight at 37°C and subsequently brought to log phase
growth in RCM. After washing three times with normal saline,
the bacteria pellets were collected by centrifugation at 2500 rpm
for 5 min and resuspended in 2.5 mM SYTO9 in 0.01M PBS, and
then incubated for 15 min in the dark. The excess SYTO9 was
removed by washing three times with normal saline. For the
adhesion assay, OD600 of C. butyricum resuspended in PBS was
adjusted to 0.5(equivalent to 4×108 CFU/mL).
June 2021 | Volume 11 | Article 668766
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Bacterial Adhesion Assays
For adhesion assays, HT-29 cells were seeded in 96-well culture
plates at a concentration of 4 × 104 cells per well. After reaching
90% confluence, pre-warmed (37°C) monosaccharides or its
derivative stock solutions were added to each well to obtain
1~3% (w/v) final concentration. Each monosaccharide or
derivative was prepared in triplicate. 100mL SYTO9 labeled C.
butyricum suspension was added per well and incubated for 1h in
the dark. The bacteria suspension was then aspirated and washed
three times with PBS. Fluorescence intensity was measured with
a Synergy HT Multi-Detection Microplate Reader (BioTek®)
using a 485/20 nm excitation filter and a 528/20 nm emission
wavelength emission filter. Fluorescence intensity was measured
for determination of the amount of binding bacteria. The results
from the adhesion assay are presented as means from three
independent experiments.

Lectin Staining and Microscopy
After treatment with C. butyricum for 12 h, HT-29 cells were
washed three times with normal saline. The cells then were
incubated for 1h with FITC labeled lectin solution
(1:1000dilution), which containing the a-1,2-fucose specific
lectin ulex europaeus agglutinin (UEA) and GlcNAc specific
lectin wheat germ agglutinin (WGA). After stained with the
lectins, HT-29 cells were washed with pre-warmed PBS for three
times. Fluorescence microscopic analyses were performed with a
Nikon TE2000 inverted fluorescence microscope. ImageJ
software was used for data acquisition and image analysis.

RT-qPCR
Total RNA was extracted using the total RNA Kit (OMEGA Bio-
Tek). RNA concentrations were determined at 260nm using
NanoDrop 2000c UV-Vis Spectrophotometer (Thermo Fischer
Scientific, Wilmington, DE) and purity was assessed by the
A260/A280nm ratio. All procedures were according to the
manufacturer’s instructions. RT-qPCR was performed using
CFX Connect System (Bio-Rad, California, USA) with 2.5 mg
of total RNA and 0.2 mM of each primer. The sequences of the
primers corresponding to the glycosyltransferase and mucin
genes are listed in Table 1. Thermal cycling conditions were as
follows: 2min denaturation at 98°C, followed by 40 cycles at 98°C
at 10s, 10s at 60°C, 30s at 68°C. Data were collected and analyzed
using the CFX Manager software (Bio-Rad, California, USA).
Cycle thresholds were normalized to GAPDH levels and fold
changes were calculated to the normalized control of each gene.
The relative mRNA levels of glycosyltransferase and MUCs were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
examined using the DDCt method. Each sample was treated in
triplicate to ensure statistical analysis significance.

Western Blot Analysis
After reaching 85% confluence in a 6-well plate, HT-29 cells were
exposed to 106~108 CFU/mL of C. butyricum for 12 h. Then the
cells were washed with PBS for three times and lysed in 150 mL
RIPA buffer according to the manufacturer’s instructions
(Beyotime, Shanghai, China). Protein concentrations were
measured with BCA Kit (Beyotime, Nantong, China).

50 mg of protein samples were separated by either 3–8% Tris-
acetate gradient gels for MUC2 detection or 12.5% Tris-glycine
gels for detection of other proteins. Then the protein samples
were transferred to nitrocellulose membranes (Millipore,
Burlington, MA,USA). After blocking with 5% skim milk in
PBS-T, membranes were washed three times with PBS-T and
then incubated in primary antibody at 4°C overnight, followed
by incubation with secondary antibody at room temperature for
1 h. Protein bands were detected by ChemiDocXRS system (Bio-
Rad, CA, USA) using ECL Western Blotting Substrate (Thermo
Fisher, MA, USA). Anti-GALNT7 antibody (Abcam, ab113743),
anti FUT2 antibody (Abcam, ab177239), anti-beta actin
antibody (Abcam, ab227387), anti-MUC2 (Cell Signaling
Technology, 88686S) and HRP-linked goat anti-mouse
antibody (Cell SignalingTechnology, 33416S, MA, USA) were
used for western blot analysis.

RNA Interference
Three small interfering RNAs (siRNAs) targeting MUC2,
GALNT7, fut2 and siRNA negative control (si-NC) were
synthesized and purified by GenePharma (Shanghai, China).
The sequences of these RNAs are shown in Table 2. The
oligonucleotides were transfected into the cells using
Lipofectamine 3000 Reagent (Invitrogen, Carlsbad, CA,USA)
according to the manufacturer’s protocol. The transfection
efficiency was detected by RT-qPCR.
TABLE 1 | Primers used for qRT-PCR.

gene Forward primer (5′-3′) Reverse primer (3′-5′)

MUC3 AGGTGGGCATGGAAGTGTCT CTGTAGGCCTGGGAAGTGTTGT
MUC2 TGTAGGCATCGCTCTTCTCA GACACCATCTACCTCACCCG
C2GnT2 GCTTCCCGAGATTTCGTCCA AACAGAGCCAGGCATCCACC
GALNT7 ATGCTAGTCGTCCTGAATCGC GCGGTCCAGTGAGATCATGTC
ST3Gal3 GGTGGCAGTCGCAGGATTT CATGCGAACGGTCTCATAGTAGTG
FUT2 TCAGATGCCTTTCTCCTTTCC CTCCCACATGGCTTGAATCT
GAPDH GAAGGTGAAGGTCGGAGTCAAC CATCGCCCCACTTGATTTTGGA
TABLE 2 | siRNA sequences used in this study.

Name Sequence

si-NC-F UUCUCCGAACGUGUCACGUTT
si-NC-R ACGUGACACGUUCGGAGAATT
si-MUC2-1-F GGUGGAGACACAGAAUUGATT
si-MUC2-1-R UCAAUUCUGUGUCUCCACCTT
si-MUC2-2-F GCCUCAACUACGAGAUCAATT
si-MUC2-2-R UUGAUCUCGUAGUUGAGGCTT
si-MUC2-3-F GUACGUUGGAGUUCUAUAATT
si-MUC2-3-R UUAUAGAACUCCAACGUACTT
si-GALNT7-1-F GGCAGUAUCUCACAUUUAATT
si-GALNT7-1-R UUAAAUGUGAGAUACUGCCTT
si-GALNT7-2-F GCCGCUUAUAGAUGUCAUATT
si-GALNT7-2-R UAUGACAUCUAUAAGCGGCTT
si-GALNT7-3-F GCAGUGUGGUGGCAAAUUATT
si-GALNT7-3-R UAAUUUGCCACCACACUGCTT
si-FUT2-1-F GUGCUAGCCUCAACAUCAATT
si-FUT2-1-R UUGAUGUUGAGGCUAGCACTT
si-FUT2-2-F GGGACUAUGUCCAUGUCAUTT
si-FUT2-2-R AUGACAUGGACAUAGUCCCTT
si-FUT2-3-F CCAUCUACCUGGCCAAUUATT
si-FUT2-3-R UAAUUGGCCAGGUAGAUGGTT
June 20
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Statistical Analysis
For statistical analysis, a one way analysis of variance (ANOVA)
was carried out for each comparison, followed by posthoc
analysis to identify differences between specific factor levels
using the Tukey “Honest Significant Difference” method. P-
values less than 0.05 were regarded as statistically significant.
RESULTS

Adhesion of C. butyricum to HT-29 Cells
Adhesion to the mucus layer is considered to be an important
process for colonization by probiotic microbes. To determine the
adhesion capabilities of C. butyricum, the live bacteria were
fluorescently stained with SYTO9 and then incubated with
HT-29 cells for 1h. The fluorescence intensity was measured
with the microplate reader. HEK293 cells, which did not express
mucins, was used as the control. HT-29 cells exhibited 5.5-fold
(P<0.01) higher fluorescence intensity compared to the HEK293
cells (Figure 1). This result indicated that C. butyricum could
adhere to the surface of HT-29 cells. Thus, HT-29 could be used
as the adhesion model of C. butyricum.

Inhibition of C. butyricum Adhesion to
HT-29 Cells by Monosaccharides
and the Derivatives
D(+)galactose, fucose, sialyl acid and NAG are the main terminal
groups on the surface of digestive tract epithelial glycocalyx,
which are speculated to be the candidate binding sites. To test the
roles of glycan in the adhesion of the C. butyricum to the mucus,
the bacteria was incubated with a range of protein-related
monosaccharides or the derivatives prior to assaying the effects
on adhesion. There was a significant reduction in the adhesion of
C. butyricum to the mucus following incubation of the bacteria in
any of the selected monosaccharides or derivatives(Figure 2).
Compared to the control group, 1% and 2% of monosaccharides
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
or derivatives resulted in 17-30% and 28-35% bacterial adhesion
inhibition, respectively. When the cells were treated with 3% of
monosaccharide or its derivatives, the bacterial adhesion
decreased 33-40% (Figure 2) (P<0.01). There were no
significant differences in the magnitude of inhibition of
binding by the different monosaccharide or its derivatives at
the same concentration.

Knockdown of MUC2, GALNT7 and FUT2
Inhibits the Adhesion of C. butyricum to
HT-29 Cells
To further investigate the roles of MUC2 and GTs in the
adhesion of C. butyricum to HT-29 cells, we transfected the
cells with siRNAs targeting MUC2, GALNT7 and FUT2. RT-
qPCR was used to examine the transfection efficiency, and the
three siRNAs (si-MUC2-2, si-GALNT7-2 and si-FUT2-1) with
highest transfection efficiency were used for further experiments
(Figure 3A). 72 hours after transfected with si-MUC2-2, si-
GALNT7-2 or si-FUT2-1, total protein of the cells was extracted
and western blot analysis was performed. The results showed
that siRNA transfection obviously reduced the protein levels of
MUC2, GALNT7 and FUT2 in HT-29 cells (Figure 3A). FITC
labeled lectin staining results also indicated that siRNA
transfection significantly attenuated the glycosylation of
mucins (Figure 3B). Bacterial adhesion assay demonstrated
that knockdown of MUC2, GALNT7 or FUT2 significantly
inhibi ted the adhesion of C. butyricum to HT-29
cells (Figure 3C).

C. butyricum Increases the Glycoprotein
and Mucus Profiles of HT-29 Cells
To examine whether C. butyricum influences the production of
glycosylated mucins, FITC labeled lectin was used to visualize the
glycan of mucins. After pre-treatment with C. butyricum for 6
hours, HT-29 cells were incubated with the a-1,2-fucose specific
FIGURE 1 | Adhesion of C. butyricum to HEK293 and HT-29 cell line. The live
bacteria were fluorescently stained with SYTO9 and then incubated for 1h with
HT-29 cells. The fluorescence intensity was measured with the microplate
reader at 528nm. HEK293 cells was used as the control. Results are
expressed as means and standard deviation of three independent
experiments with **P < 0.01.
FIGURE 2 | Effects of monosaccharide and its derivatives on the adhesion of
C. butyricum to HT-29 cells. The live bacteria were fluorescently stained with
SYTO9 and then incubated for 1h with HT-29 cells. The fluorescence intensity
was measured with the microplate reader at 528nm. Results are expressed
as means and standard deviation of three independent experiments with
**P < 0.01 and *P < 0.05.
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FIGURE 3 | Knockdown of MUC2, GALNT7 or FUT2 decreased the adhesion of C. butyricum to HT-29 cells. n=3. (A) Knockdown efficiencies of MUC2, GALNT7
and FUT2 were examined by RT-qPCR in HT29 cells, and then western blot analysis was performed to verify the knockdown efficiencies. (B) After knockdown of
MUC2, GALNT7 or FUT2, HT-29 cells were stained with FITC labeled agglutinin. The mean fluorescence intensity of each picture is 33.44, 31.25, 7.19, 5.76, 4.91
arbitrary units (AU) using ImageJ software. (C) Adhesion of C. butyricum to HT-29 cells was assayed by measure of the fluorescence intensity with the microplate
reader at 528 nm. The si-MUC2-2, si-GALNT7-2 and si-FUT2-1 were used in this adhesion experiment. Results are expressed as means and standard deviation of
three independent experiments with **P < 0.01 and *P < 0.05.
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lectin ulex europaeus agglutinin (UEA) (Figure 4A) or with the
GlcNAc specific lectin wheat germ agglutinin (WGA)
(Figure 4B). In comparison with the control, the binding of
WGA or UEA was significantly increased in the cells treated with
106 or 108 CFU/mL of C. butyricum.

As the increase in lectin staining caused by C. butyricum
could either be related to an increase in the expression of mucin
or glycosyltransferases involved in glycoprotein, we decided to
study the influence of C. butyricum on the expression of
these genes.

C. butyricum Influences the Expression of
Cellular Glycosyltransferases and Mucins
in HT-29 Cells
We next tested the effects of treatment with C. butyricum (106 or
108CFU/mL) on the transcr ipt ional express ion of
glycosyltransferases(GTs) by RT-qPCR. This study focused the
analysis on the expression of the glycosyltransferases such as
Core 2 b-1,6- N-acetylglucosaminyltransferase-2 (C2GnT2), N-
acetylgalactosaminyltransferase 7 (GALNT7), b-galactoside-a-
2,3- sialyltransferase3 (ST3Gal3), and Fucosyltransferase 2
(FUT2). Figure 4 shows the relative mRNA expression levels
for each glycosyltransferase gene. The results showed a
significant increase in GALNT7, ST3Gal3 and FUT2
expression in HT-29 cells treated with 106CFU/mL of C.
butyricum. In the cells treated with 108CFU/mL of C.
butyricum, the relative expression of GALNT7, ST3Gal3 and
FUT2 gene was 2.1, 1.5 and 1.7 times higher than that of control
group. The relative expression of mucins was also significantly
up-regulated. Compared with the control group, the mRNA
expression of MUC2 showed a 5.6-fold increase (P<0.01), the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
mRNA expression of MUC3 showed a 1.6-fold increase
(P<0.05) (Figure 5).

The protein levels of GTs were also assayed by western blot
analysis. Treatment with 106 and 108 CFU/mL of C. butyricum
increased the expression levels of GALNT7 2.3- and 8.1-fold,
respectively, compared with the control group. The levels of
FUT2 were increased by 1.7- and 12.9-fold in the HT-29 cells
treated with 106 and 108 CFU/mL of C. butyricum, respectively
A

B

FIGURE 4 | C. butyricum increases the glycoprotein and mucus profiles of HT-29 cells. n=3. (A) After pre-treatment with C. butyricum for 6h, HT-29 cells were
stained with FITC labeled UEA. (B) After pre-treatment with C. butyricum for 6h, HT-29 cells were stained with FITC labeled WGA.
FIGURE 5 | Effects of C. butyricum on the mRNA expression of GTs and
mucins. RT-qPCR analysis was performed to determine the mRNA
expression levels of GTs and mucins. Results are expressed as fold increase
in GTs and Muc compared to untreated cell and normalized using GAPDH
mRNA. Results are expressed as means and standard deviation of three
independent experiments with **P < 0.01 and *P < 0.05.
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(Figure 6). These results indicated that C. butyricum could
promote the expression of GTs and mucins of HT-29 cells in a
dose-dependent manner.
DISCUSSION

Attachment to the digestive tract epithelium is very critical for
the probiotics to play its physiological functions. The intestinal
epithelial mucus are thought to be the colonizing place of
probiotic bacteria (Sicard et al., 2017). One limitation of the
study is that it was performed in HT-29 cell line, which was a
cancer cell line, and not normal human tissue, but
studies have shown that HT-29 cell line is able to produce and
secrete mucins and form a mucus layer, which could be used
as in vitro intestinal epithelium model. (Gagnon et al., 2013;
Dudik et al., 2020). In this work, we explored the adhesion
capability of C. butyricum to intestinal luminal epithelium by
using HT-29 cells as an in vitromodel. The results demonstrated
that C. butyricum could adhere to HT-29 cells.

Previously, it has been dissected that O-Glycans on mucus are
the main attachment sites of gut symbionts (Subramani et al.,
2015; Ye et al., 2015). GalNAc usually is the initiating sugar in the
O-glycans, which then extended by the addition of Gal, GlcNAc
or GalNAc giving the Core1, Core2 and Core3 structures. The O-
glycan chains are often terminated by sialic acid, GalNAc or
fucose (Gagnon et al., 2013; Arike et al., 2017). Herein we
demonstrated that galactose, fucose or sialic acid significantly
inhibited the adhesion of C. butyricum to the HT-29 cells. The
results suggested these monosaccharide or derivatives could
interact with C. butyricum, and inhibit the recognition of the
bacteria to mucus and decrease adherence of the bacteria to HT-
29 cells. After transfection with siRNA targeting MUC2,
GALNT7 or FUT2, we found the numbers of C. butyricum
adhering to HT-29 cells decreased significantly. These results
furtherly revealed that the glycans of mucus played key roles in
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the adhesion of C. butyricum to HT-29 cells. This research
indicated that the glycan of mucus might be the candidate
binding sites of C. butyricum to colonic tract luminal epithelium.

It has been reported that the probiotics such as
Bifidobacterium and Lactobacillus could promote the secretion
of mucins (Round et al., 2012; Wrzosek et al., 2013; Nishiyama
et al., 2015; Arike et al., 2017). C. butyricum is an important
commensal bacterium inhabiting human gut, which has been
used as a clinical drug to cure intestinal inflammation in Japan
(Dudik et al., 2020). In the present study, the fluorescence
microscopy analysis revealed that co-culture with C. butyricum
resulted in a marked elevation of the mucin secretion and/or
glycosylation of the mucus in HT-29 cells. The precise
mechanisms by which C. butyricum promotes the secretion
and glycosylation of mucins and enhances the intestinal
integrity remain to be elucidated. It has been reported that
butyrate could upregulate the expression of MUC2 and
MUC5A, increase the epithelial barrier function, induce the
assembly of tight junctions and enhance the glycosylation of
mucus in Caco-2 and HT-29 cells (Gaudier et al., 2004; Peng
et al., 2009; Nielsen et al., 2018). Probiotics-derived short-chain
fatty acids(SCFAs) could regulate epithelial barrier, promote
mucus release, and induce differentiation of intestinal epithelial
cells (Son et al., 2020). The bioactive components secreted by
probiotic bacteria could also contribute to the expression of
mucins and changes in O-glycosylation of mucins (Da Silva et al.,
2014; Wang et al., 2014). C. butyricum can also secret lots of
active bioactive factors, which play important roles in
modulating intestinal functions (Morishita et al., 2021). Butyric
acid is the main SCFA produced by C. butyricum, so we
speculated the bacteria might stimulate the production of
mucins through its metabolite butyric acid, and the bioactive
factors secreted by C. butyricum might affect the production and
glylcosylation of mucus. Further study should be carried out to
discover the precise mechanisms by which C.butyricum increase
the production and glycosylation of mucins.
A B

FIGURE 6 | C. butyricum promoted the expression of GALNT7 and FUT2 of HT-29 cells. n=3. (A) Western blot analysis for GALNT7 and FUT2, normalized by b-
actin. (B) Quantitative analysis for the densitometry of the proteins performed using ImageJ software. Results are expressed as means and standard deviation of
three independent experiments with **P < 0.01.
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Among the different human mucin genes, MUC2 and MUC3
are the predominant ileocolonic mucins. The MUC2 gene is
expressed in goblet cells of large intestine, which is the major
secreted mucin of the colon (Sicard et al., 2017). In addition,
MUC2 form the barrier separating the bacteria from the
colonocytes, but the transmembrane mucins form a second
barrier at the level of the microvilli (Round et al., 2012). It has
been indicated that probiotic bacteria could stimulate the
expression of mucins (Wang et al., 2014). In this study, we
found that exposure to C. butyricum resulted in significant up-
regulation of the expression of secreted mucin MUC2
and transmembrane mucin MUC3.

Previously, it has been shown that commensal bacteria such
as Lactobacillus, Bifidobacterium and Bacteroides fragilis could
promote the gene expression of these glycotransferases
(Caballero-Franco et al., 2007). Similar to these results, the
present study demonstrated that exposure to C. butyricum
significantly enhanced the expression of glycotransferases such
as GALNT7, C2GnT2, ST3Gal3 and FUT2. These data indicated
that C. butyricum induced glycosylation of mucins via up-
regulation of the gene expression of glycotransferases.

In summary, the glycan play very critical roles in the adhesion
of C. butyricum to HT-29 cell line. C. butyricum could stimulate
the expression, secretion and glycosylation of mucins when
colonizing on the surface of HT-29 cells. The present research
suggests that C. butyricum is able to positively regulate intestinal
epithelial barrier functions by inducing the glycosylation
of mucins.
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