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Quantifying the evolution of flow 
boiling bubbles by statistical 
testing and image analysis: toward 
a general model
Qingtai Xiao1,2, Jianxin Xu1,3 & Hua Wang1,2

A new index, the estimate of the error variance, which can be used to quantify the evolution of the 
flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. 
The homogeneity degree of the luminance space distribution behind the viewing windows in the direct 
contact boiling heat transfer process was explored. With image analysis and a linear statistical model, 
the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear 
method was used to determine the direction and position of a fixed source light. The experimental 
results showed that the inflection point of the new index was approximately equal to the mixing 
time. The new index has been popularized and applied to a multiphase macro mixing process by top 
blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating 
the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be 
applied to investigate other mixing processes that are very difficult to recognize the target.

The performance of a mixing process can be characterized by the blending time, which is a very important param-
eter and is also called the mixing time. The shorter the mixing time, the more effective the mixing1. Accurate char-
acterization of uniform mixing is not only essential for the optimization of the heat transfer process and reactor 
design but can also precise control of the reaction time.

A large number of experimental works have been devoted to studying this issue. The mixing time meth-
ods consist of the box-counting with erosion method2, the thermal method, the conductometric method, the 
pH method, the decolorization methods, the Schlieren method, etc. However, there is no universally accepted 
method, mainly because each local and global measurement method has its own limitations, the details of which 
have been reported by Cabaret et al.3. The Betti numbers method was recently proposed to characterize the 
gas-liquid-solid three-phase mixing effects based on the reaction of CH4 and ZnO with a molten salt system4. In 
terms of the bubbling regimes in direct contact heat exchanger (DCHE), Betti numbers can be used to estimate 
the number of bubbles aggregating in flow patterns and to obtain the pseudo-homogeneous time5. We concluded 
that bubble swarm images can be captured and processed advantageously due to image enhancement technology 
and mathematical methods6.

Digital pictures may be taken at different exposures and lighting, so the homogeneity degree of the luminance 
space distribution must be taken into consideration in terms of the image analysis or visual perception. In general, 
after the illuminated area accepts the light, the luminance level differs in various observation directions because of 
the different reflection characteristics of the material. This problem is one of the most challenging topics in image 
analysis applications.

Some studies in the literature note the effects of the luminance distribution. On the one hand, the lumi-
nance distribution also appeared in the literature regarding mixing fields. The image analysis method can be 
used to obtain the mixing time in a discontinuous powder mixer, which has been studied by Daumann and 
co-workers7. The work from Yeoh et al.8 clearly demonstrated that the large eddy simulation technique coupled 
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with the sliding-mesh methodology can be used to characterize the transient mixing state in a stirred vessel and 
to provide a very detailed evolution pattern of the concentration field in space and time during the process. On 
the other hand, the luminance distribution also appeared in the literature regarding building fields. For the pur-
pose of finding ways to control glares coming from windows, as in the case of glare sources in the daylight that 
have a non-uniform luminous distribution Kim et al.9 studied the difference in glare sensations between uniform 
and non-uniform glare sources, and Kim and co-workers10 developed an approach to identify the parts of the 
window where the glare is generated when the window has a non-uniform luminance distribution. Furthermore, 
the luminance distribution, as a determinate, appeared in the literature regarding food fields. Wada et al.11 and 
Arce-Lopera et al.12 found that the appetizingly fresh appearance of vegetables or our visual perception of their 
freshness is highly influenced by the luminance distribution according to the evidence from an image analysis of 
a cabbage leaf and other variables, such as spatial patterns. The mixing time and light intensity for the comparison 
of the photobioreactor design considering biohydrogen production is the key issue according to the study by 
Oncel et al.13.

Recently, linear and nonlinear regression models have been used to investigate a 662 ×​ 621 gray image of a 
rug14. Notably, Markou et al.15 applied the multivariate statistical methods of factor analysis and cluster analysis 
on sky luminance scan data, whereas skylight was studied by Dumortier et al.16. Additionally, as shown by Coent 
et al.2, Xu et al.4, Kim et al.9,10, Demidenko14, Huang et al.5 and Fei et al.6, image analysis with advanced statistical 
methods (concerning mathematical knowledge), regarded as a normal practice, is gaining importance for object 
identification. However, studies on illuminance and luminance using image technology and a statistical approach 
do not appeared widely in the international literatures to date. In addition, the studies of heat-mass transfer law 
and how to enhance it are challenging topics in direct contact heat transfer. Inspired and motivated by Huang 
et al.5, Demidenko14 and Markou et al.15, statistical models for the gray images of the bubble swarm in a DCHE 
based on the gray scale distribution (or simply, gray distribution) are developed. From the viewpoint of experi-
mental analysis, the heat transfer processes can be elucidated.

Experiments and Methodology
Experimental apparatus and design of experiments.  The schematic of the experiment conducted 
in the present study is shown in Fig. 1a. There are twelve main experimental pieces of equipment, including a 
direct contact evaporator (1), electric heater (2), gear oil pump (3), centrifugal pump (4), storage vessel (5), plate 
condenser (6), liquid mass flow-meter (7), gas mass flow-meter (8), stop value (9), check valve (10), manual mod-
ulation value (11) and camera (12). There are two circulation loops in the test device for this experiment, the con-
tinuous-phase circulation loop for fluid flow and the dispersed-phase circulation loop for the working medium 
flow. The heat transfer fluid (HTF) and refrigerant R-245fa (1, 1, 1, 3, 3 pentafluorogropane) were used as the 
continuous phase and dispersed phase in all runs, respectively. As listed by Huang et al.5, design parameters with 
four factors were selected to investigate the influence of the heat transfer capacity. The height of the HTF in the 
DCHE was measured by a dipstick; the initial heat transfer temperature difference was obtained using a K-type 
thermocouple at the temperature measuring holes; and the flow rate of the refrigerant and HTF were regulated 
via the frequency control cabinet. The designing of the experimental plan affecting the heat transfer capacity of 
the tested DCHE was determined through the orthogonal array experimental design method, namely the L9(34) 
orthogonal array table, which is suitable for an experimental design with four factors and three levels. According 
to the orthogonal array table, the numbers L1-L9 denote different experimental levels.

According to the design of the experiments and the green image (Fig. 1b), it seems clear from visual inspection 
that light is coming from the upper left. However, the accurate position of the light source was unknown, which 
has a significant impact on the implementation of uniform lighting.

Methodology.  Generally, images may be divided into roughly two groups, structured and unstructured. 
Structured images are complex, and unlike unstructured images, a multinomial distribution for gray levels 
may serve as a uniform probabilistic model14. In the present research, the bubble swarm image is structured or 
content-dependent because the bubbles move in a stochastic manner. Thus, a gray-distribution model, which 
assumes that the gray scale level values are the same type of object, can be used to differentiate bubble swarm from 

Figure 1.  Real experimental data acquisition: (a) is the experimental equipment for testing of platform and (b) 
is a sample image chosen from patterns in the mixing process.
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the captured flow image. Other researchers (Coent et al.2, Huang et al.5 and Fei et al.6) also investigated the flow 
pattern by image analysis. However, they all extracted and employed the binary information. This work brings 
new insights, namely, statistical image analysis, to the study flow pattern.

Coordinate transform.  Before modeling the gray scale level matrix (or simply, gray matrix) M, there are three 
important steps.

Step 1 transform the bubble patterns from the color image to M so that the frame coordinate system can be 
set up.

Step 2 set the row number of M as the abscissa and set the rank number of M as the ordinate.
Step 3 treat the increasing direction of the row and rank numbers of M as the positive direction of the coor-

dinate axis.
As shown in Fig. 1b, a 720 ×​ 1280 image representing one piece of the bubble patterns was randomly chosen, 

and it was contaminated with light in a coordinate system with the origin (1, 1) at the top-left corner. As seen in 
the above section, the light comes from the direction of the origin, according to the experiment design.

Multiple linear regression model.  In the present statistics analysis, multiple linear regression is an approach for 
modeling the relationship between a scalar dependent variable M(u, v) and two explanatory variables (or inde-
pendent variables), denoted u and v. On the basis of the new coordinate system and taking the vec operator, the 
following linear regression model is defined as:

α α α

σ Σ

= ⋅ + ⋅ ⊗ + ⋅ ⊗ +

⋅
×

~ N
m 1 d 1 1 d e

e
( ) ( ) ,

(0, ) (1)
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where d720 =​ (1, 2, ··· . 720)′​, d1280 =​ (1, 2, ··· . 1280)′​, 1 is the column vector of 1s of the respective dimension, 
⊗​ indicates the matrix Kronecker product, m =​ vec(M) is the n =​ 720 ×​ 1280 ×​ 1 =​ 921600 vector, and σ2 is 
unknown but the co-variance matrix Σ is known and non-singular. That is, the gray scale level (scalar dependent 
variable) is considered to be a linear function of the pixel coordinates (explanatory variables). The relation may be 
viewed as a planar regression where α0 is the intercept, the light intensity at the upper-left corner; α1 is the slope 
coefficient, the rate at which the light intensity increases or drops vertically; and α2 is the rate at which the light 
changes horizontally. It is clear that if the gray distribution is uniform, α1 =​ α2 =​ 0.

In model (1), σ2 ⋅​ Σ is the co-variance matrix of the error term e. The error variance σ2 is a constant parameter 
but unknown actually. Fortunately, the unknown parameter can be estimated by sample data that transformed 
from every image, namely, the estimator of σ2 is S2. In a word, the new index S2 means a estimator of a measure 
of how much the two independent random variables, the abscissa u and the ordinate v, change together. Hence, 
this new index was extracted from the multiple linear regression model and can be proposed for quantifying the 
flow patterns or employed it for quantitative characterization of mixing effect by color or gray images directly in 
experiments. Simply, S2 will be greater if there are more intimate mixtures in the RGB or gray image and S2 will be 
smaller if tracer particles are few and scattered distribution.

F-test.  It is easy to test the significance of these regression coefficients α1 and α2, called F-test hereafter for test-
ing whether the gray distribution is uniform. Define two residual sums of squares:

α αΣ= − ⋅ ′ − ⋅−ˆ ˆRSS m X m X( ) ( ), (2)1

α αΣ= − ⋅ ′ − ⋅−ˆ ˆ⁎ ⁎ ⁎RSS m X m X( ) ( ) (3)
1

where RSS is the absolute minimum of the weighted least squares (WLS), α̂ is the generalized least squares (GLS) 
estimate of α =​ (α0, α1, α2)′​, X =​ (xij) =​ (11720×1280, d720 ⊗​ 11280, 1720 ⊗​ d1280) is the 921600 ×​ 3 design matrix of full 
rank, RSS* is the residual sum of the WLS under the restriction α1 =​ α2 =​ 0 and α̂⁎ is the GLS estimate under the 
same restriction. Then, the F-test is as follows:
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Estimating the light direction and position.  As follows from the basic laws of optics and model (1), the nonlinear 
regression model for estimating the light direction and position is given by

ξ ε= − ⋅ − + − +M u v u x v y( , ) 255 ( ) ( ) (5)2 2

where ξ is the absorption coefficient, (x, y) is the position of the source of light, (u, v) is the element of M, and ε 
is the error term.

In summary, the hypothesis-testing approach has three advantages. First, the multiple linear regression model 
can be used to quantify the tendency of the flow patterns and obtain the mixing time for evaluating the mixing 
effect. In particular, whether the multiphase components or tracers are visually distinguishable or the mixture 
images are difficult to convert into a black-white image to obtain a binary image by applying an appropriated 
grey level threshold for the colour video images, the new index S2 can be used to measure mixture uniformity and 
mixing efficiency. In addition, S2, along with other methods, can also be summarized by a general expression in 
the section “General model” to investigate the relationship between the flow pattern and heat transfer. Second, 
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F-test can be used to test whether the lighting is uniform according to the gray distribution. Third, the nonlinear 
regression model can be used to estimate where the light comes from, and it can be further used to estimate the 
accurate position of the light source.

Experimental Results and Discussion
Validation of the statistical approach.  Result of F-test.  To test whether the piece of patterns in Fig. 1b 
has a uniform gray distribution, we test the null hypothesis H0 : α1 =​ α2 =​ 0 using the image process technology 
for translating an image to a gray matrix and the F-test method for obtaining the objective criterion. Applying 
ord inar y  l e as t  s qu ares  (OLS) ,  i t  i s  found  t hat  t he  reg ress ion-es t imate d  e qu at ion  i s 
= . − . ⋅ − . ⋅M̂ u v132 0 0 0527 0 0001 , F statistic is F =​ 1.0313 ×​ 105 and that the P-value is P ≈​ 0. Thus, the 

hypothesis that the gray distribution is uniformly distributed is overwhelmingly rejected. However, the test may 
be conservative.

Light direction and position.  As follows from this regression = . − . ⋅ − . ⋅M̂ u v u v( , ) 132 0 0 0527 0 0001 , the 
minimum average gray scale level is = . ≈M̂(720, 1280) 93 9280 94, corresponding to the bottom-right corner 
of the bubble image, whereas the maximum = . ≈M̂(1, 1) 131 9472 132 corresponds to the top-left corner of the 
bubble image. Moreover, it is easy to estimate where the light comes from according to the positive or negative 
sign of the coefficients α0 and α1. Because the first slope coefficient is negative and the second is negative, the light 
comes from the top-left corner. It was included that the estimating result of light source direction is consistent 
with visual inspection. Estimating parameters of this model (5) by nonlinear regression gives ξ =​ 0.1816, 
x =​ 1.2276, and y =​ 1.4920. This means that the estimated location of the light is (1.2276, 1.4920). That the valid 
coordinate values can indicate the accurate position of the light source is the main merit of the proposed method.

Figure 2.  500 light source coordinates (x, y) with time obtained from images taken regularly from the 
beginning of mixture to the end in each experimental case L1–L9 and the values of coordinates smoothly 
oscillate about their averages (1.23, 1.49). 
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The nonlinear regression model was employed to estimate the light source position (x, y). The light direction 
and position of all cases are shown in Fig. 2. 500 light source coordinates (x, y) with time were obtained from 
images taken regularly from the beginning of mixture to the end in each experimental case L1–L9. The light source 
coordinates of nine experimental tests have the average of x =​ 1.23, y =​ 1.49 with the standard deviation of 0.36% 
and 0.27%, respectively. Hence, the accurate location of the light source was determined and expressed by coordi-
nate values in a coordinates system. The direction of the light source was the top left since the horizontal and ver-
tical ordinate are both positive. This was validated by the previous design of experiments and cannot be obtained 
by other three existed methods. Interestingly, the linear and nonlinear models give the same light direction.

A new index.  Furthermore, the estimate of the error variance σ2 is S2 =​ 536.5847. In fact, the quantity of bubble 
swarms was very small at the beginning of the mixing process, whereas it was very large at the uniform mixing 
process. S2 is applied to represent the difference between what is explained by the systematic part of the model and 
what is observed. The reason why S2 experienced an ascending transition change is mainly because of the growing 
number of bubble swarms.

According to the orthogonal array table L9 (34), there are nine experimental cases for testing the presented 
method, and every case consists of 500 flow images. The Betti numbers method5 and the UC method6 have also 
been tested with the same samples. The plots of S2 versus the experimental time t (time unit: seconds) obtained 
from the red component of the color video images taken regularly from the beginning of mixture to the end are 
shown in Fig. 3. An interesting tendency occurs in every case among L1–L9. A homogeneity is achieved after some 
seconds which can be regarded as the evaluation criterion to quantify the evolution of the flow boiling bubbles.

In Fig. 4, it is clearly observed that the slope p with time obtained from images taken regularly from the 
beginning of mixture to the end by the box-counting with erosions method increase at the beginning and then 
rapidly becomes stabilized after fluctuations in every case, which, as expect, are similar to those of S2 represented 
in Fig. 3. However, the box-counting with erosions method is not available for testing for uniform lighting and 

Figure 3.  Evolution curves of the estimate of error variance, S2, in the mixing system for direct contact heat 
transfer and representative experimental design. 



www.nature.com/scientificreports/

6Scientific Reports | 6:31548 | DOI: 10.1038/srep31548

estimating light direction and position. In addition, the method is not useful to quantify the evolution in some 
special complicated experimental case according to the experimental case L1 (Fig. 4). Finally, the binary images 
were employed to calculate the slope p in Fig. 4 whereas the RGB images were employed to calculate S2 in Fig. 3.

All of the inflection points ts, namely the mixing time, are obtained using the same approach as Xu et al.4. 
Clearly, ts is approximately equal to the mixing time tp, tB and tUC, which were obtained from the boxing-count 
with erosion method (Fig. 4), the Betti numbers method5 and the UC method6, respectively (Table 1). Hence, the 
presented method has been tested with many cases and validated with other methods.

Figure 4.  The evolution of this slope p with time obtained from images taken regularly from the beginning 
of mixture to the end by the box-counting with erosions method: p increase at the beginning and then 
rapidly becomes stabilized after fluctuations. 

Parameter L1 L2 L3 L4 L5 L6 L7 L8 L9

tp 158 93 162 218 114 69 250 130 138

tB 156 93 168 225 122 84 262 117 128

tUC 151 97 172 224 120 84 259 118 127

ts 128 93 165 225 122 81 200 117 126

tCD 151 95 170 225 120 82 195 118 127

tWD 151 96 170 224 120 83 198 118 127

S2 550 772 738 340 576 850 388 878 807

St
2 4.30 8.30 4.47 1.51 4.72 10.49 1.94 7.50 6.41

hV  0.96 1.21 0.86 0.83 1.20 1.44 0.75 1.11 1.19

Table 1.   The data of the parameters for the entire orthogonal array table.
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Moreover, the parameters ts and St
2, which can be used to characterize a bubbling flow pattern with 

non-uniform luminance, are related to hV . Next, a model is constructed to note the relationship.

Quantifying the synergy.  Let = ×S St t
2 2 1

s
, where S2 is the average of S2 of the uniform mixing process influ-

enced by light. Clearly, in Fig. 5a, the tendency of St
2 is consistent with that of hV . According to our analysis, a 

linear relation between St
2 and hV  seems to be an outcome. Given = × +h a S bV t

2 , the least squares fitting 
method was used to obtain the parameters a and b. In this work, a =​ 0.0689, b =​ 0.6812, the correlation coefficient 
is 0.9011 and the determination coefficient is 0.8120. The linear relationship is illustrated in Fig. 5b.

Effect on the spatial resolution.  To address the effect of the camera spatial resolution on the statistical approach, 
the same experiment bubble piece of patterns was used to record where image processing is performed at decreas-
ing resolution. It was observed that the S2 evolution is remarkably superimposed, indicating that the S2 evolution 
does not entirely depend on the image size. The F-test parameters for the different image resolutions considering 
the same experiment bubble piece of patterns are presented (Table 2). In the last column of the table, it is found 
that the estimated direction of the light is all upper left (Table 2). It also can be seen that the image resolution does 
not have a significant influence on the results if adequate equipment is used (Table 2).

Figure 5.  Synergic relationship between the average volumetric heat transfer coefficient hV  and the 
parameter St

2, combined with tS and S2: hV  is relatively high when St
2 is high and hV  is relatively low when St

2 
is low; the linear relationship is illustrated with a correlation coefficient of 0.9011.

Image size α0 α1 α2 P-value S2 location

720 ×​ 1280 132.03 −​0.0527 −​0.0001 0.0000 536.58 (1.23, 1.49)

360 ×​ 640 131.77 −​0.1054 −​0.0003 0.0000 538.39 (1.14, 1.43)

180 ×​ 320 131.91 −​0.2110 −​0.0015 0.0000 539.11 (1.06, 1.18)

90 ×​ 160 132.01 −​0.4223 −​0.0035 0.0000 542.48 (0.80, 0.73)

45 ×​ 80 132.52 −​0.8451 −​0.0148 1.0131e–156 545.94 (0.12, −​0.03)

Table 2.   Comparison of the F-test parameters for different image resolutions.

Average 
index reference new index a b cc

UC  Fei et al.6 = ⋅UC UCt tUC

1 84.36 0.46 0.96

β1 Huang et al.5 β β= ⋅t tB1
1 0.42 0.45 0.95

p Coent et al.2 = ⋅p pt tp

1 1801.06 0.61 0.90

CD Xu et al.2 = ⋅CD CDt tCD

1
85.54 0.43 0.96

WD Xu et al.2 = ⋅WD WDt tWD

1
86.77 0.55 0.95

S2 This paper = ⋅S St tS
2 2 1 0.07 0.68 0.90

Table 3.   The parameter and data of the a, b and correlation coefficient (cc).
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General model.  In the previous section, effort was made to quantify the synergy of luminance space distri-
bution and heat transfer performance in a DCHE. The former is one manifestation of bubble swarm patterns. The 
objective of this section is to build a general model for quantifying bubble swarm patterns and heat transfer per-
formance. The proposed general quantify model is defined as η =​ a ⋅​ γ +​ b with γ τ= ⋅

t
1 . Here, η denotes heat 

transfer performance hV , a denotes monomial coefficient, b denotes intercept term, γ denotes bubble swarm 
patterns, τ denotes the mean of index for measuring mixing and t denotes mixing time. In our previous work and 
this presented work, calculations confirm that Betti numbers5 and S2 both compliant with the same general pat-
tern (Table 3). Apart from the two cases, we will also consider using the box-counting with erosions (considering 
p) method2 and the uniformity coefficient (considering UC) method6 to validate this general pattern (Table 3).

Three existed methods all can characterize the mixing performance. There is however no universally accepted 
technique for the particular technique issue mainly because each method has its own limitations. An original 
image-processing technique, the box-counting with erosions method, was developed for obtaining the quan-
tification of mixing uniformity. It is however not available for quantifying the mixture nonhomogeneity. Betti 
numbers was proposed to quantify the mixture homogeneity and nonhomogeneity. Whereas, the distributions of 
mutliphase components or tracers in the image have relation with their geometrical position. The UC method was 
applied to address this issue in a direct contact heat exchanger. Mixing uniformity with the same Betti number 
can be identified with quite different uniformity coefficient in some very special cases.

Also, they are limited by that the objective must be binary (black and white) image. The proposed statisti-
cal testing method in this work can be used to compute the evaluating value of mixture homogeneity in RGB 
components or gray images(Fig. 6a). It is noticed that S2 of the RGB components and gray scale value images 
exhibit a similar tendency. They all can be used to quantify the evolution of the flow boiling bubbles. Owing to 
the complexity of the multiphase structure, more useful information can be reduced as little as possible via this 
statistical approach. Simply, the estimate of error variance, S2, was proposed to characterize the mixing effect and 
the complex phase transition. Generally, the characterization of mixing uniformity by pixel values images can be 
elucidated. Hence, in this paper, the visualization of the flow pattern was investigated through the simple image 
processing technique and statistics theory. This work also presents an alternative route, namely builds a general 
model, to explore the relationship between the flow patterns and heat transfer from the viewpoint of experimental 
analysis.

Recently, uniformity coefficient based on centered discrepancy (UC-CD) and uniformity coefficient based on 
wrap-around discrepancy (UC-WD) were proposed for improving the UC method (UC-LD). They exhibit some 
advantages such as permutation invariance, rotation invariance (reflection invariance) and the ability to measure 
projection uniformity. The mixing time tCD and tWD were obtained at which UC-CD and UC-WD are equal to 
their averages, respectively(Table 1). Moreover, the average UC-CD CD and tCD were considered to validate this 
general model as well as the average UC-WD WD and tWD(Table 3).

Examples.  Tracers mixing.  Testing for uniform lighting can also be very useful for studying the mixing effi-
ciency and lighting uniformity in a mixing system with top blown gas flow. The numbers M1−​M9 denote different 

Figure 6.  Evolution of S2 of the RGB components and gray scale values in our experimental cases: (a) applied 
the proposed new method to quantify the evolution of flow boiling bubbles; (b) applied UC-LD, UC-CD and 
UC-WD to quantify the evolution of flow boiling bubbles; (c) applied the proposed new method to a mixing 
system with top blown gas flow.

Parameters M1 M2 M3 M4 M5 M6 M7 M8 M9

l(cm) 5 5 5 6 6 6 7 7 7

Q(L/h) 500 1000 2000 500 1000 2000 500 1000 2000

TB(s) 85.99 16.83 13.67 36.23 12.33 9.00 30.06 14.87 9.80

TS(s) 81.35 12.52 11.11 39.22 17.32 9.48 36.62 14.19 10.04

Table 4.   Experimental parameters of top blown gas flow mixing system.
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experimental cases, l (cm) is the submerged length of the top-blowing pipe and Q (L/h) (liter per hour) is the flow 
rate of the gas (Table 4). Taking images regularly from the beginning of mixing to the end by above methodology, 
the evolution of S2 with time can be obtained. The inflection point TS(s) is approximately equal to the mixing time 
TB(s) obtained from the Betti numbers4 (Table 4).

To show the potential of the presented statistical testing method, nine experimental levels M1-M9 were 
employed. All the representative experimental cases of the mixing system with top blown gas flow were chosen 
to be illustrated in Figs 7 and 8. It is evident that the final obtained location is not strictly fixed for every pattern 
because the variance of the random error is not identically equal (Fig. 7). Since the horizontal and vertical ordi-
nate are both positive, the light comes from the top-left corner of the experimental equipment and the values 
of coordinates smoothly oscillate about their averages x =​ 1.11, y =​ 1.26 with the standard deviation of 0.028%, 
0.46%, respectively. It is evident that M6 has the best mixing effect and M1 has the worst mixing effect (Fig. 8). It is 
clearly observed that S2 decreases at the beginning of M6 and then rapidly becomes stabilized after fluctuations. In 
addition, the S2 of M1 and M7 smoothly oscillated about their averages. Interestingly, the new index S2 decreases 
at the beginning of the mixing and then rapidly becomes stabilized after fluctuations. This means that that the 
two independent random variables, the abscissa u and the ordinate v, would change together decreasingly when 
multiphase components or tracers are visually distinguishable. Clearly, the final obtained location is not strictly 
fixed for every pattern because the variance of the random error is not identically equal.

Particles mixing.  In a previous work, the RGB images of red (hot) and white (cold) particles mixing in a pan 
coaster during the first 60 s in test 1# (the white particles have the room temperature 20 °C while the red particles 
have a relatively high initial temperature 40 °C) was reported by Liu et al.17. The proposed methodology was 
applied to the RGB images of particle mixing on the bed surface (Fig. 9a). The RGB images were delimited by the 

Figure 7.  500 light source coordinates (x, y) with time obtained from images taken regularly from the 
beginning of mixture to the end in each experimental case M1–M9 and the values of coordinates smoothly 
oscillate about their averages (1.11, 1.26). 
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Photoshop software. The values of S2 at t =​ 0 s, t =​ 2 s, t =​ 10 s, t =​ 30 s, t =​ 60 s were obtained by the MATLAB soft-
ware, respectively. The time evolution of S2 of the RGB components and gray scale values was illustrated (Fig. 9d). 
The result indicates that S2 of the green, blue components and gray scale values increase during the time change, 
which is not the case with the red component. For the red component, at t =​ 2 s, only a few white (cold) particles 
reach the bed surface on which a majority of red (hot) particles are exposed; the value of S2 at t =​ 2 s described 
the bad particle mixing quantitatively. Moreover, the estimated average value of coordinates of light source is 
(−​1969.13, 633.28). It was estimated that the light comes from the bottom-left corner since the horizontal ordi-
nate is negative and the vertical one is positive at every time during the mixing process. This was verified visually.

Other applications.  The methodology also can be used to study the polymer solar cells. The pending atomic force 
microscopy (AFM) images were delimited from previous investigation18 which was reported (Fig. 9b). The values 
of S2 the AFM height images of the poly(3-hexylthiophene) (P3HT): (C61-butyric acid methyl ester) PCBM blend 
films with and without solvent annealing, the AFM phase images of P3HT: PCBM blend films that were solvent 
annealed for 0, 10, 18, and 30 min are shown (Fig. 9e). It is noticed that S2 of the AFM height image is greater, 
which is also corresponded to the indicator of phase separation. Also, S2 of the phase images of P3HT:PCBM 
blend films exhibits an increasing tendency corresponding to the trend that the normalized interface length (LN) 
increases with increasing the solvent annealing time (tα) as a whole. Although light or electricity has no effect on 
AFM imaging basically, this could be useful to study the quantitative characterization of phase separation in the 
photoactive layer of polymer solar cells by the phase image of AFM. The last subgraph clearly shows the tendency 
of S2 of Fig. 3(b) in the literature19 and this is benefit for accurate determination of the mixing time in orbitally 
shaken bioreactor (Fig. 9f). According to Rodriguez et al.19, the white light was homogeneous. It is interesting to 
note that the variation of S2 exhibits fluctuations, which, as expected, can be used to study the mixing transient. In 
this case, owing to the complexity of the multiphase structure, it is difficult to convert into a black-white image to 

Figure 8.  Evolution curves of the estimate of error variance, S2, in a mixing system with top blown gas flow 
and representative experimental design. 
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obtain a binary image by applying an appropriated grey level threshold for the colour video images. Experiments 
indicate that, S2 of the red component shows good correlation with the normalized red channels with time in the 
literature19. The absolute value of correlation coefficient is 0.6227. The feasibility of our method was verified from 
this application.

Summary and Conclusions
In this study, the mixing uniformity influenced by a fixed light in a DCHE was investigated using an image 
analysis technique and a statistical method based on linear model. This method presents an alternative route to 
exploring the relationship between the flow patterns of bubble swarms influenced by fixed light and heat transfer 
from the viewpoint of experimental analysis. The summary and conclusions of this paper are as follows:

1.	 The F-test was employed to conclude that the hypothesis that the gray distribution is uniformly distributed is 
overwhelmingly rejected.

2.	 The direction of the light source was estimated correctly, validated by the previous design of the experiments. 
The accurate location of the light source, which has a significant effect on some specific experiments, such as 
sensitivity to light, was also determined and expressed by coordinate values in a coordinate system, which is 
the main merit of the proposed method.

3.	 S2, the estimate of error variance, was newly proposed to quantify the flow patterns contaminated by light. 
The inflection point of its changing patterns approximately equals the mixing time.

4.	 The parameter St
2, combined with t and S2, provides a good description to characterize the entire contaminated 

flow patterns. In particular, the experimental results showed a good fitting curve between St
2 and hV . Hence,  

a general quantify model was first introduced to demonstrate their relationship.
5.	 In addition, it can be of interest to the general public who wants to investigate the various relevant area in 

term of mixing process in which mutliphase components or tracers are difficultly or easily distinguishable by 
investigating RGB components or gray value images. In our experimental cases of flow boiling bubbles, the 
new index S2 increases at the beginning of the mixing and then rapidly becomes stabilized after fluctuations; 
In our experimental cases of a mixing system with top blown gas flow, the new index S2 decreases at the 
beginning of the mixing and then rapidly becomes stabilized after fluctuations. This means that that the two 
independent random variables, the abscissa u and the ordinate v, would change together increasingly when 
multiphase components or tracers are difficultly distinguishable whereas they would change together decreas-
ingly when multiphase components or tracers are visually distinguishable. Hence, the topic of this manuscript 
used a simple visual method to perform unintrusive measurements or solve a complicated problem. Also, it 
can be applied in the relevant areas of powder technology, solar cells, biochemical engineering such as the 
particles mixing process in a pan coater, polymer solar cells, mixing time in the orbitally shaken bioreactors.

Figure 9.  Evolution of S2 of the RGB components and gray scale values in applications: (a) particles mixing 
images reported by Liu et al.17; (b) AFM images reported by Gao et al.18; (c) images in the biorector reported by 
Rodriguez et al.19; (d) S2 of (a); (e) S2 of (b); (f) S2 of (c).
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