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Abstract

This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. 

The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments 

in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which 

are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique 

(SMT), which factors out the neurite orientation distribution and thus provides direct estimates of 

the microscopic tissue structure. This technique can be immediately used in the clinic for the 

assessment of various neurological conditions, as it requires only a widely available off-the-shelf 

sequence with two b-shells and high-angular gradient resolution achievable within clinically 

feasible scan times. To demonstrate the developed method, we use high-quality diffusion data 

acquired with a bespoke scanner system from the Human Connectome Project. This study 

establishes the normative values of the new biomarkers for a large cohort of healthy young adults, 

which may then support clinical diagnostics in patients. Moreover, we show that the microscopic 

diffusion indices offer direct sensitivity to pathological tissue alterations, exemplified in a 

preclinical animal model of Tuberous Sclerosis Complex (TSC), a genetic multi-organ disorder 

which impacts brain microstructure and hence may lead to neurological manifestations such as 

autism, epilepsy and developmental delay.
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Introduction

In biomedical research and clinical practice, diffusion MRI is today’s method of choice for 

the noninvasive detection of microscopic tissue structure below the nominal image 

resolution. This technique provides measurements that are sensitive to diagnostically 

relevant features in the range of few micrometres like cell size, shape and density. Diffusion 
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tensor imaging (DTI), a popular method which builds on a second-order approximation of 

the macroscopic diffusion process (Basser et al., 1994), is routinely used for the clinical 

assessment of pathological changes in the brain microstructure. However, the DTI-based 

anisotropy indices are not only a function of microscopic tissue features, but are confounded 

by fibre crossings and orientation dispersion, which are ubiquitous in the brain 

(Schmahmann and Pandya, 2006). Consequently, it is difficult to trace the origin of observed 

signal abnormalities; whether they are due to intrinsic alterations in the tissue microstructure 

or are caused by deviations in the neural circuitry which have modified the neurite 

orientation distribution. Any comparisons of DTI anisotropy metrics between subjects are 

affected by the brain connectome, which exhibits both high complexity and interindividual 

variability.

The directional tissue architecture, including fibre crossings and orientation dispersion, can 

be accurately described by orientation distributions. The spherical convolution with the 

microscopic diffusion signal (also known as impulse response function), which denotes the 

signal arising from a potentially anisotropic microenvironment of nervous tissue, yields the 

MR signal observable on the voxel scale (von dem Hagen and Henkelman, 2002). Thus, two 

effects are interwoven in the macroscopic diffusion signal, that is, the microscopic diffusion 

process and the neurite orientation distribution. Deconvolution techniques aim to recover the 

orientation distribution from diffusion MR measurements. These methods may be 

categorised according to the signal dictionary in which the estimation problem is solved. 

Examples are spherical harmonics (Tournier et al., 2004; Anderson, 2005), maximum-

entropy regularisation (Alexander, 2005), mixtures of Bingham distributions (Kaden et al., 

2007), reproducing kernel Hilbert spaces (Kaden et al., 2008; Kaden and Kruggel, 2011) and 

Dirichlet process mixtures (Kaden and Kruggel, 2012), among others. However, these 

dictionaries model only subsets of neurite orientation distributions, as the space of all 

orientation distributions is far too large to be computationally manageable, hence 

introducing approximation errors.

Another limitation of DTI and most spherical deconvolution methods is that they ignore the 

presence of multiple tissue components, such as neurons, their cellular extensions, neuroglia 

and extracellular space, that compartmentalise water and may have different signal 

properties. Multiple tensor models typically describe two or more microscopic 

compartments (Niendorf et al., 1996) but neglect axon crossings and orientation dispersion, 

or are interpreted as multiple fibre bundles (Tuch et al., 2002) but ignore compartmentalised 

water on the (sub-) cellular scale. Since there is no significant attenuation of the intra-axonal 

diffusion signal perpendicular to highly myelinated fibres (in the absence of microscopic 

undulation) at gradient strengths of |G|≤100 mT/m and echo times of tTE≤125 ms, it appears 

reasonable to set the transverse diffusivity inside the axons to zero, as done by Behrens et al. 

(2003a, 2003b, 2007). Their “ball-and-stick” model, however, considers only a discrete set 

of axon orientations, neglecting orientation dispersion within the fibre bundles. WMTI 

(Fieremans et al., 2011) infers various microstructural features in the case of a single axon 

orientation, which are calculated from metrics obtained with diffusion kurtosis imaging. 

Hereafter we shall ignore biophysical models (see Panagiotaki et al. (2012) for a review) that 

aim to recover structural parameters like the axon diameter because current clinical scanners 

(with |G|≤100 mT/m) lack sensitivity to such features (Drobnjak et al., 2016). Moreover, the 
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assumption of a single axon orientation per voxel is grossly simplistic: even orientationally 

coherent white matter regions such as the corpus callosum exhibit significant directional 

heterogeneity featuring axon undulation and orientation dispersion (Axer et al., 2001; 

Mikula et al., 2012).

More recently, Jespersen et al. (2007, 2010) estimated the neurite density and per-dendrite/

axon diffusion coefficients in the presence of complex orientation distributions using low-

order spherical harmonics, which, however, exclude mixtures of Dirac masses and are 

impractical for crossings of three fibre bundles. These post-mortem studies of baboon and 

rat brain rest on rich MRI data sets with a multitude of b-values. The “ball-and-rackets” 

model (Sotiropoulos et al., 2012), a special case of parametric spherical deconvolution 

(Kaden et al., 2007), represents the directional tissue structure using mixtures of Bingham 

distributions. Their approach assumes that the parallel intra-axonal and isotropic extra-

axonal diffusivities are equal within a voxel. The NODDI technique (Zhang et al., 2012) 

attempts to recover the neurite orientation dispersion and density. This method describes the 

axon orientation distribution with a single Watson distribution and thus does not account for 

fibre crossings, which can be found in large parts of the brain white matter (Schmahmann 

and Pandya, 2006). The technique also assumes a single and fixed intrinsic diffusivity for 

nervous tissue (in human in-vivo studies 1.7 μm2/ms) over the whole brain and across MRI 

protocols, subjects of different age and patients with different neurological conditions, which 

is doubtful and a major source of the systematic overestimation of free-water content in the 

cerebral white matter, in contrast to what is known from T2-relaxometry (MacKay et al., 

1994) and neuroanatomy studies (Nieuwenhuys et al., 2008). Further, NODDI models the 

extra-neurite water pool in fast exchange over all neurite orientations, which is questionable 

since the microenvironment a diffusing water molecule covers during the observation time is 

orders of magnitudes smaller than the dimension of the voxel the measured signal comes 

from.

For the recovery of microscopic tissue features in the brain, it is clear that first and foremost 

we need to factor out the intra-voxel fibre orientation distribution. To achieve this, we use 

microscopic diffusion anisotropy mapping based on the Spherical Mean Technique (SMT). 

The key insight of the recently proposed method (Kaden et al., 2016) is that for any fixed 

gradient magnitude and timing, hence fixed b-value, the spherical mean of the diffusion 

signal over the gradient directions does not depend on the microdomain orientation 

distribution. In particular, the mean diffusion signal is only a function of the voxel-averaged 

microscopic diffusion process. This seminal result was formally proven for general 

microscopic diffusion models or, equivalently, impulse response functions. To demonstrate 

the approach, Kaden et al. (2016) have chosen, for low b-value measurements, a microscopic 

diffusion tensor that is rotationally symmetric, i.e. a second-order approximation of the 

microscopic diffusion process.

In this paper we extend SMT-based microscopic diffusion anisotropy imaging and introduce 

a multi-compartment model that takes the presence of multiple tissue components on the 

microscopic scale into account. The objective is to map, using clinically viable data, the 

neurite density and compartment-specific microscopic diffusivities unconfounded by the 

effects of fibre crossings and orientation dispersion. This multi-compartment microscopic 
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model overcomes key limitations in existing techniques like WMTI (Fieremans et al., 2011) 

or NODDI (Zhang et al., 2012) as we make no assumptions about the neurite orientation 

distribution (e.g. single orientations, spherical harmonics or mixtures of Bingham 

distributions) and estimate the microscopic diffusion coefficients from the data. Once the 

microscopic diffusion signal has been uncovered, we reconstruct the fibre orientation 

distribution using spherical deconvolution, which, unlike traditional methods, utilises a 

spatially varying multi-compartment impulse response function, and calculate the orientation 

dispersion entropy to quantify directional tissue heterogeneity.

To demonstrate the developed technique, we use high-quality diffusion data acquired with a 

bespoke scanner system from the Human Connectome Project (Van Essen et al., 2012). The 

aim is to establish the normative values of the simple-to-estimate biomarkers for a large 

cohort of healthy young adults, which may then support clinical diagnostics in patients. 

Multi-compartment SMT can be immediately used in the clinic, as well as with various 

retrospective studies, since the method requires only a widely available off-the-shelf pulse 

sequence with two or more b-shells and uniformly distributed gradient directions runnable 

within clinically feasible scan times. Second, we showcase the potential of the new 

technique for the detection of pathological tissue alterations in a preclinical animal model of 

TSC, a genetic multi-organ disorder which also impacts the structural integrity of brain 

tissue and hence may lead to neurological manifestations such as autism, epilepsy and 

developmental delay (Crino et al., 2006). This ex-vivo MRI study uses conditional 

knockouts (CKO) of Rictor and Tsc2 in Olig2-Cre mice, which both target the formation of 

oligodendrocyte precursors and oligodendrocyte differentiation (Carson et al., 2015; Kelm et 

al., 2016). A distinguishing feature in comparison to previous DTI-based studies (Jansen et 

al., 2003; Makki et al., 2007; Simao et al., 2010; Peters et al., 2012) is that the microscopic 

diffusion indices have factored out the neurite orientation distribution, which is useful for the 

evaluation of TSC pathology in tissue with complex directional architecture.

Methods and materials

Spherical Mean Technique

To examine microscopic tissue features unconfounded by the directional brain structure, we 

use the Spherical Mean Technique (SMT) to factor out the effects due to the neurite 

orientation distribution (Kaden et al., 2016). This method requires the parametric 

specification of a microscopic diffusion model describing the signal coming from a tissue 

microenvironment, which may be directionally anisotropic. The observable MR signal on 

the voxel scale is produced by a large population of microdomains that potentially have a 

complex orientation distribution. We assume that the microscopic tissue geometry is 

rotationally symmetric with rotation axis ω∈S2, henceforth called orientation, where S2 = 

{ω∈ℝ3: ‖ω‖ =1} denotes the two-dimensional unit sphere. Let b≥0 denote the diffusion 

weighting factor and g∈S2 the normalised gradient direction, whilst keeping the timing of 

the pulse sequence fixed. Then the microscopic diffusion signal

(1)
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depends only on the spherical distance 〈g,ω〉∈[−1,1] between any two points g,ω∈S2. We 

will use both notations in Eq. (1) interchangeably. The signal function hb is set to be 

antipodally symmetric, i.e. hb(g,ω)= hb(−g,ω).

Once the microscopic diffusion model has been defined, Kaden et al. (2016) proved that the 

spherical mean of the diffusion signal  over the gradient directions – with the other 

sequence parameters, in particular the gradient magnitude and timing, hence the diffusion 

weighting factor b, fixed – is invariant with respect to the neurite orientation distribution. 

More specifically, the mean diffusion signal takes the form

(2)

where θ is an auxiliary variable which encodes the angle between the gradient direction and 

microdomain orientation. Eq. (2) shows that, for a given b-value,  is fully determined by 

the microscopic diffusion model. This insight has enabled us to estimate the tissue 

microanatomy unconfounded by and without knowledge of the directional brain architecture 

in a simple, fast and robust way. SMT exploits this invariance property using a two-step 

procedure as follows (Kaden et al., 2016). First, the spherical mean signal is computed by 

averaging the T2-normalised diffusion signals acquired with uniformly sampled gradient 

directions for each b-value separately. Second, the parameters of the microscopic diffusion 

model (1) are estimated using a least-squares technique that fits the spherical mean version 

(2) of the model to the measured mean signals for a set of diffusion weighting factors.

Multi-compartment microscopic model

Next we shall develop a new microscopic diffusion model. The present work divides brain 

tissue into an intra-neurite domain and extra-neurite compartment. The former component 

consists of dendrites and axons, which may be surrounded by myelin sheath. A characteristic 

feature of these cellular extensions is their cylindrical geometry. The latter compartment 

includes neurons, glial cells, e.g. oligodendrocytes, neurolemmocytes and astrocytes, and 

extracellular space. The objective is to decompose microscopic diffusion anisotropy into 

signal components coming from the water pools inside and outside the neurites, respectively, 

based on the fact that these signal contributions are markedly different. Hence, the diffusion 

signal for a microscopic environment of brain tissue with orientation ω∈S2 is modelled as

(3)

where  denotes the signal from the intra-neurite water pool,  the signal component 

due to the extra-neurite compartment and vint∈[0,1] the intra-neurite volume fraction. Since 

water between the myelin layers, because of its rapid T2-relaxation (MacKay et al., 1994), 

does not significantly contribute to the measured signal at sufficiently long echo times, we 

do not include a myelin compartment, but assume that the intra- and extra-neurite water 

pools have a similar T2-relaxation behaviour.
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Under the assumption that the intra-neurite water pool is isolated from its surroundings, for 

low b-value measurements as commonly obtained in clinical practice the applied gradients 

are not strong and/or long enough to produce detectable attenuation of the signal component 

perpendicular to the neurites since the diameter of the dendrites and axons is too small. 

Therefore, we set the transverse microscopic diffusivity to zero as proposed in the “ball-and-

stick” model (Behrens et al., 2003a, 2003b). The microscopic signal from the intra-neurite 

compartment reads

(4)

where 0≤λ≤λfree is the intrinsic diffusion coefficient parallel to the neurites and the upper 

bound λfree is given by the free-water diffusivity. Note that λ is an apparent (or effective) 

parameter that depends not only on the diffusion process in the underlying material but also 

on the MRI experiment, such as the temporal profile of the gradient sequence (Grebenkov, 

2010).

Furthermore, we take into account that the extra-neurite tissue compartment potentially 

features a directionally anisotropic geometry on the micrometre scale. Thus, it is reasonable 

to describe this signal component with a rotationally symmetric microscopic tensor model

(5)

The first term on the right-hand side describes the microscopic diffusion process in the 

surroundings parallel to the neurites, while the second term quantifies the microscopic 

diffusivity in the characteristic vicinity perpendicular to the axons and dendrites. The 

transverse extra-neurite diffusion coefficient is modelled as a function of the intra-neurite 

volume fraction vint and intrinsic diffusivity λ. Here we use a basic approach to describing 

the microscopic diffusion process around the neurites, that is, the first-order tortuosity 

approximation  which was derived for a system of randomly placed parallel 

cylinders of variable diameter with impermeable boundaries in the long-time diffusion limit 

using effective medium theory (Bruggeman, 1935; Sen et al., 1981; Szafer et al., 1995). 

Unlike NODDI (Zhang et al., 2012), SMT does not assume that there is a fast mixing of 

extraneurite water across all axon and dendrite orientations. The microenvironment to which 

the diffusion process is sensitive (on the scale of the root-mean-square displacement of the 

water molecules) includes only an infinitesimal fraction of the large ensemble of neurites 

inside the voxel. In addition, this assumption gives rise to certain abnormalities, which are 

discussed in Appendix A.

Mean diffusion-signal model

Following (Kaden et al., 2016), we calculate the spherical mean of the diffusion signal for a 

large population of microdomains with potentially complex orientation distribution using 

Eq. (2). The mean diffusion signal takes the form
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(6)

where

(7)

and

(8)

are the spherical mean signals from the intra- and extra-neurite water pools, respectively. 

b≥0 denotes the diffusion weighting factor and erf the error function. Then we fit the 

spherical mean version of the multi-compartment microscopic diffusion model provided in 

Eqs. (6) to (8), which have factored out the effects due to fibre crossings and orientation 

dispersion, to the measured mean signals for a set of b-values. Given an extra-neurite 

diffusion model , the parameters to be estimated are the intra-neurite volume fraction 

vint∈[0,1] and intrinsic diffusion coefficient λ subject to the constraint 0≤λ≤λfree, where the 

free-water diffusivity λfree (Mills, 1973) is circa 1.88 μm2/ms at 17 °C (which is used for the 

ex-vivo mouse study) and about 3.05 μm2/ms at 37 °C (for in-vivo human imaging). Thus, 

the recovered model parameters are ensured to lie within a physically meaningful range.

Human data

To establish the normative values of the novel microscopic diffusion indices, we use high-

quality data kindly provided by the Human Connectome Project, WU-Minn Consortium 

(500 Subjects Data Release, Washington University, June 2014, available online at http://

www.humanconnectome.org). The data sets were acquired on a bespoke Siemens 3T MRI 

scanner equipped with a customised gradient insert featuring a maximum gradient strength 

of 100 mT/m (Van Essen et al., 2012). A Stejskal–Tanner sequence measured 90 uniformly 

distributed gradient directions for each b-shell of nominally 1000, 2000 and 3000 s/mm2, 

keeping the gradient timing fixed with pulse duration of 10.6 ms and pulse separation of 

43.1 ms. Only the magnitude, hence the b-value, and the directions of the diffusion encoding 

gradients were altered during the experiment. Additionally, 18 images without diffusion 

weighting were acquired. The spin-echo EPI scan with echo time of 89.5 ms and repetition 

time of 5.52 s was performed using a multi-band sequence (Setsompop et al., 2012) with 

slice acceleration factor of 3. The diffusion data were acquired with in-plane phase encoding 

in both right-to-left and left-to-right directions. SENSE1 multiple-coil combination was 

applied (Roemer et al., 1990). The diffusion-weighted images with an isotropic voxel 

resolution of 1.25 mm covered the whole brain.
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The data sets analysed in this study came from 100 unrelated adult subjects (47 male, aged 

29.1±3.7 years). The magnitude images were preprocessed using HCP’s Minimal 

Preprocessing Pipeline, version 3.1 (Glasser et al., 2013). Briefly, the signal intensity was 

normalised across the scan, the susceptibility-induced distortions were eliminated using the 

two images acquired with reversed phase-encoding polarities, and the data sets were 

corrected for eddy-current artefacts and subject motion (Andersson and Sotiropoulos, 2016). 

Spatial distortions due to gradient field nonlinearities were rectified and the diffusion-

weighting gradients were adjusted at each voxel. Finally, the diffusion images were aligned 

to the axes of MNI152 space using rigid transformations without scaling (Jenkinson et al., 

2002; Greve and Fischl, 2009). We analyse the diffusion data in the native volume space, 

which is consistently oriented across the cohort and faithfully represents the subject’s brain 

size and shape. Since the MR signal was combined with SENSE1 from multiple receive 

coils, the noise regime of the magnitude signal is well described by a Rician distribution 

(Gudbjartsson and Patz, 1995), albeit data preprocessing may alter its characteristics to a 

certain extent. To minimise potential effects of the noise-induced bias, the measurements 

were adjusted accordingly (Kaden et al., 2016).

Animal study

To test multi-compartment microscopic diffusion imaging for the evaluation of tuberous 

sclerosis neuropathology, we conducted an ex-vivo study with two knockout mouse models 

of TSC. The disease, inherited in an autosomal dominant manner or appearing sporadically 

due to spontaneous mutations, results from an inactivating mutation in either the Tsc1 or 

Tsc2 gene encoding hamartin and tuberin, respectively. These proteins control the activity of 

the mammalian target of rapamycin (mTOR) kinase, which regulates cell size, proliferation 

and differentiation (Tee et al., 2002). As a follow-on study to Carson et al. (2012, 2013), we 

used conditional knockouts of Rictor, the rapamycin-insensitive component of mTOR, and 

Tsc2 in Olig2-Cre mice, which have been introduced recently (Carson et al., 2015; Kelm et 

al., 2016). Both models are expected to impact myelination in the central nervous system, as 

Olig2 plays an important role in the formation of oligodendrocyte precursors and 

oligodendrocyte differentiation (Lu et al., 2000; Zhou et al., 2000). Rictor-deficient mice 

showed moderate adverse effects, whilst Tsc2 CKO resulted in a phenotype with severe 

adverse effects, yet the mice from both models were able to live into adulthood. All animal 

procedures were completed with approval of the Vanderbilt University Institutional Animal 

Care and Use Committee.

Eight normal, five Rictor and five Tsc2 P60 mouse brains were scanned on a 15.2 T Bruker 

Biospec system with a 35 mm quadrature volume coil at bore temperature of 17±0.5 °C 

(Kelm et al., 2016). The preparation of the excised brains followed standard procedures. In 

addition, the mouse brains were doped with 1 mM Gd-DTPA, lowering the T1-relaxation 

time to approximately 400 ms and thus increasing the SNR efficiency of the MRI scan. Note 

that D’Arceuil et al. (2007) found little change in various metrics obtained from diffusion 

tensor imaging over a wide range of Gd-DTPA concentrations of up to 10 mM. The data 

were acquired using a 3D diffusion-weighted fast spin-echo sequence with repetition time of 

200 ms, echo time of 19.0 ms, echo spacing of 7.1 ms and echo train length of 4. The scan 

with 128 × 96 × 72 image matrix and 19.2×14.4×10.8 mm3 field of view covered the whole 
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brain, resulting in an isotropic voxel resolution of 150 μm. Diffusion weighting was achieved 

with a Stejskal–Tanner experiment consisting of two b-shells of nominally 3000 and 6000 

s/mm2 with 30 gradient directions each, which were uniformly distributed (Jones et al., 

1999) and measured twice with the gradient polarity reversed. The timing of the gradients 

was fixed with pulse duration of 5 ms and pulse separation of 12 ms so that the same 

diffusion propagator is observed during the experiment. In addition, 5 images without 

diffusion weighting were collected. The total scan time was about 12 h per mouse brain.

The MR images were reconstructed from the k-space data using a custom preprocessing 

pipeline, which includes Gibbs ringing suppression via Hann windowing, 3D Fourier 

transform and magnitude computation. Further, the diffusion scans were corrected for cross-

term effects using the images obtained with opposite gradient polarities (Neeman et al., 

1991). The microscopic diffusion indices are estimated in native measurement space, 

thereby neglecting the nature of Rician noise because SNR in tissue is about 100 for the zero 

b-value images. For comparison of the Rictor- and Tsc2-deficient models with control mice, 

we arbitrarily chose a mouse brain from the control group as reference, to which all other 

subjects were transformed using the FNIRT tool for nonlinear registration, as implemented 

in FSL (2012). After spatial normalisation of the microscopic diffusion maps, the voxelwise 

significance of any population differences were evaluated between Rictor and control as well 

as Tsc2 and normal mice via unpaired two-sample t-tests. We calculated the threshold-free 

cluster enhanced (TFCE) pseudo t-statistics using standard parameters (Smith and Nichols, 

2009). Multiple comparison correction across space was carried out by exhaustive 

permutation testing (Winkler et al., 2014) subject to the masked brain, which then yielded 

family-wise error (FWE) corrected p-value maps.

After MRI scanning, three Rictor, four Tsc2 and six normal mouse brains were sectioned for 

histological analysis. Following a midsagittal cut, we examined four white matter regions, 

i.e. the genu (GCC), midbody (MidCC) and splenium (SCC) of the corpus callosum as well 

as the anterior commissure (AC). The tissue sections were stained with 1% toluidine blue 

and scanned with an FEI Tecnai T12 transmission electron microscope at various 

magnifications. Since two sections from the Tsc2 model were corrupted during processing, 

we added a fourth Tsc2 subject. The images were segmented into myelin and non-myelin 

pixels (Otsu, 1979), from which we obtained histological measurements of myelin fraction 

fmyel and myelinated axon fraction fax. The myelinated axon density ρax was quantified by 

manually counting myelinated axons within the field of view. We refer the reader to Kelm et 

al. (2016) for technical details.

Results

Multi-compartment microscopic diffusion

From a population of 100 unrelated young adults we have chosen a representative subject to 

demonstrate multi-compartment microscopic diffusion imaging. Fig. 1 maps the intra-

neurite volume fraction vint (top) and apparent intrinsic diffusivity λ for various slices in the 

axial plane. In comparison to previous work, we have factored out the neurite orientation 

distribution, including fibre crossings and orientation dispersion, to obtain these microscopic 

diffusion parameters. The figure shows that the neurite density index is markedly higher in 
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brain white matter than in grey matter and microenvironments of white matter are 

heterogeneous across the cerebral white matter, even after the directional tissue structure has 

been integrated out. For instance, the intra-neurite volume fraction is higher in the corpus 

callosum and internal capsule compared to other white matter regions, which is presumably 

due to the converging pattern of the callosal fibres and corticospinal tract, respectively, that 

results in a reduction of the extra-neurite space together with a higher neurite density. Note 

that the intra-neurite volume fraction is measured with respect to the voxel volume 

excluding the myelin compartment because at an echo time of 89.5 ms the MR signal from 

myelin water is almost fully attenuated due to its short T2-relaxation time. Further, our data 

analysis suggests that the intrinsic diffusivity, which is the microscopic diffusion coefficient 

parallel to the neurites, varies substantially over the brain and is on average significantly 

higher in white matter tissue than earlier assumed (Zhang et al., 2012). The estimation of 

this parameter from the data is a key advantage of the new technique, as the intrinsic 

diffusivity strongly influences the quantification of other structural features such as the 

neurite density.

Another noteworthy result is that in the ventricular system and subarachnoid space the 

intrinsic diffusivity approaches the diffusion coefficient of free water and the intra-neurite 

volume fraction, i.e. the signal component of highly anisotropic microscopic diffusion, tends 

to zero. Fig. 2 (left) maps the transverse microscopic diffusivity  outside the neurites as a 

function of the intra-neurite volume fraction vint and intrinsic diffusivity λ, here 

. The right plot of this figure shows the microscopic mean diffusivity of the 

extra-neurite water pool, which is defined as

(9)

where  denotes the extra-neurite longitudinal microscopic diffusivity which equals λ. 

The figure demonstrates that the estimated microscopic diffusivities of the extra-neurite 

compartment are close to the self-diffusion coefficient of free water in the ventricles and 

around the cerebral cortex. It is straightforward to segment regions with high free-water 

content from these maps; especially the extra-neurite microscopic mean diffusivity  is a 

useful biomarker of cerebrospinal fluid, whose microscopic diffusion process is isotropic. In 

summary, the intra-neurite volume fraction and intrinsic diffusivity provide contrast between 

different types of nervous tissue without the confounding effects of fibre crossings and 

orientation dispersion. Multi-compartment microscopic diffusion imaging is also able to 

discriminate cerebrospinal fluid, even though the underlying model does not have a 

dedicated free-water component. Alternatively, we may eliminate partial volume effects due 

to cerebrospinal fluid contamination by adding a fluid attenuated inversion recovery 

(FLAIR) sequence.
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Sparse gradient sampling

To demonstrate the reliability of SMT, we simulate fibre orientation distributions that closely 

resemble the tissue geometry of white matter. Here a Dirichlet process mixture with bipolar 

Watson kernel (Kaden and Kruggel, 2012; Kaden et al., 2016) is used to draw random 

spherical density functions, which include a broad range of fibre crossings and orientation 

dispersion. In fact, under the topology of weak convergence the Dirichlet process mixture 

includes all orientation distributions in its closure. The spherical convolution of these 

synthetic distributions with the multi-compartment impulse response function (3) yields the 

diffusion signals, which are then disturbed by Rician noise. For our simulation experiments 

the ground-truth intra-neurite volume fraction vint and intrinsic diffusivity λ are uniformly 

drawn from the intervals [0,1] and [0,λfree], respectively. 50,000 trials each were run to 

investigate the estimation error of the microscopic diffusion indices under various scenarios 

after adjustment for the Rician noise bias. Fig. 3 shows the absolute error of the intra-neurite 

volume fraction and the relative error of the intrinsic diffusivity as a function of the signal-

to-noise ratio (SNR, left column), using the human acquisition protocol, and of the total 

number of diffusion gradients evenly distributed over three b-shells, here 1000, 2000 and 

3000 s/mm2. The fixed parameter is indicated in a corner of the plots. The box-and-whisker 

diagrams demonstrate that the variance of the estimator decreases as the signal-to-noise ratio 

and/or the number of diffusion gradients increase. This average-case study over density 

functions drawn from a Dirichlet process mixture suggests that SMT is a robust estimator of 

vint and λ. The simulations also show that adverse effects due to the Rician noise regime are 

removed to a large extent.

The HCP data sets were acquired on a bespoke scanner system using a sophisticated 

imaging protocol with lengthy scan time, which leads to unique data sets with 

unprecedented quality but extends only partially to clinical practice that generally needs to 

cope with modest hardware and limited time for MRI examination. These high-quality data 

total 270 diffusion-encoding gradients evenly distributed over three b-shells. Since the 

imaging gradients and field nonlinearities give rise to small spatial variations in the diffusion 

weighting factor, we will use the nominal b-values, in the present study 1000, 2000 and 3000 

s/mm2, to refer to them. The following experiment subsamples the diffusion gradients, 

noting that those gradients were arranged in a way so that a subset of the first n directions, 

together with their antipodal points, are approximately evenly distributed on the sphere 

(Caruyer et al., 2013). Fig. 4 plots the intra-neurite volume fraction vint and intrinsic 

diffusivity λ for subsets of 180, 90 and 45 diffusion gradients over the three b-shells. This 

figure also maps the difference  and ratio  with respect to vint and λ, which 

were estimated from the full data set, respectively. Fig. 4 demonstrates that SMT-based 

multi-compartment microscopic diffusion imaging produces reliable results with much less 

diffusion-sensitising gradients within clinically feasible scan times, but at the expense of a 

noisier appearance of the microscopic diffusion indices. Note, however, that these 

difference/ratio maps overestimate the estimation error since the microscopic diffusion 

parameters fitted from all 270 diffusion gradients are also subject to errors.

Next we sampled random subsets of diffusion gradients from the full data set (without 

replacement) to study the estimation precision of the new imaging biomarkers quantitatively. 
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SMT requires two or more b-shells for the recovery of the intra-neurite volume fraction and 

intrinsic diffusivity because otherwise the estimation problem is underdetermined. In detail, 

for the representative subject we investigated four different b-shell designs with {1000, 

2000}, {1000, 3000}, {2000, 3000} and {1000, 2000, 3000} s/mm2 over which various 

numbers of diffusion gradients were evenly distributed. Fig. 5 shows the results of this 

random subsampling analysis, which was repeated 100-times for each gradient design 

configuration. The top row of this figure plots the absolute estimation error of the intra-

neurite volume fraction, while in the bottom row the relative error of the intrinsic diffusivity 

is shown, both with respect to the full data set. The estimation error decreases with an 

increasing number of diffusion gradients. Moreover, a two-shell design with {1000, 3000} 

s/mm2 is statistically more efficient than two-shell designs with {1000, 2000}, {2000, 3000} 

s/mm2 or a three-shell design with {1000, 2000, 3000} s/mm2, which suggests that the b-

values should be separated from each other for better performance. In conclusion, we have 

demonstrated the clinical applicability of the developed imaging technique, which is able to 

recover microscopic diffusion-based features without the confounding effects due to the 

neurite orientation distribution.

Normative database

Next we establish the normative values of the new microscopic diffusion indices over a 

population of 100 healthy young adults coming from the HCP data set. For this purpose we 

spatially normalise the parameter maps, which were obtained in native measurement space, 

across the subjects using HCP’s Minimal Preprocessing Pipeline, version 3.1 (Glasser et al., 

2013). Briefly, the estimated maps were transformed into MNI152 space using the FNIRT 

tool for non-linear registration so that the brain size and shape are the same for all 

participants. Fig. 6 depicts the voxel-wise population averages of the intra-neurite volume 

fraction vint (top) and intrinsic diffusivity λ, which are shown for various axial slices. Note 

that the number in the upper right corner denotes here the plane in standard MNI152 space. 

All observations previously made on the representative subject extend to the cohort of 100 

unrelated adults, which demonstrates the consistency and reproducibility of the developed 

method. For instance, the neurite density index is considerably higher in brain white matter 

than in grey matter and the intra-neurite volume fraction is increased in the corpus callosum 

and internal capsule compared to other white matter regions. Fig. 7 maps the transverse 

microscopic diffusivity (left) and microscopic mean diffusivity of the extra-neurite water 

pool averaged across the subjects in stereotactic coordinate space. We observe that in the 

ventricular system and sub-arachnoid space the extra-neurite microscopic mean diffusivity 

approaches the self-diffusion coefficient of free water.

For a region-based population analysis the brain white matter was automatically segmented 

using HCP’s Minimal Preprocessing Pipeline, where the cortical parcellation obtained by 

FreeSurfer (2014) was expanded to white matter. A distance constraint halted the label 

propagation after 5 mm, thus producing an anatomical parcellation of the gyral white matter 

(Salat et al., 2009). Subsequently we computed the mean of the parameter under 

consideration over a region of interest in native measurement space for each subject. Fig. 8 

summarises the empirical distribution of the intra-neurite volume fraction vint and intrinsic 

diffusivity λ in various white matter regions for a cohort of 100 healthy young adults using 
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box-and-whisker plots (with 1.5-times the interquartile range). The figure shows that the 

neurite density index, which is obtained with respect to the voxel volume excluding the 

myelin compartment since the echo time of 89.5 ms is significantly longer than the T2-

relaxation time of myelin water, is substantially higher in the corpus callosum, which is most 

likely due to the dense packing of the converging fibres. The plot further illustrates the 

microscopic diffusion-based metrics in entorhinal, parahippocampal and precuneus white 

matter, which were recently proposed to be important for understanding entorhinal cortex 

pathophysiology and its propagation over the brain in early preclinical stages of Alzheimer’s 

disease (Khan et al., 2014). A key feature of the developed biomarkers is that they do not 

depend on the directional tissue architecture. Moreover, it is evident that the intrinsic 

diffusivity is not invariant in white matter and significantly higher than previously suggested 

(Zhang et al., 2012).

Neurite orientation distribution

Once the microscopic diffusion process has been recovered voxel by voxel, we are able to 

estimate the fibre orientation distribution from the diffusion measurements using spherical 

deconvolution (Tournier et al., 2004; Anderson, 2005). Knowledge of the microscopic 

diffusivities is crucial for the specification of the impulse response function and hence the 

quantitative estimation of neurite orientation dispersion. The density function may be found 

in a reproducing kernel Hilbert space (Kaden et al., 2008; Kaden and Kruggel, 2011), which 

does not truncate the spherical harmonic expansion and ensures its characteristic properties, 

namely antipodal symmetry, non-negativity and normalisation with one. In previous work a 

microscopic diffusion tensor was used as impulse response function, which is here replaced 

by the multi-compartment model formulated in Eqs. (3) to (5). Fig. 9 demonstrates the 

recovery of the neurite orientation distribution from all b-shell data for a representative 

subject. The density function p is visualised by the quasi-spherical surface 

S2∋ω↦p(ω)ω∈ℝ3. The figure shows the crossing of the callosal fibres and corona radiata 

in the centrum semiovale of the left hemisphere. Further, the orientation dispersion in the 

corpus callosum seems to be higher than previous studies have suggested, but is in 

agreement with histological findings (Axer et al., 2001; Mikula et al., 2012). We may also 

use alternative deconvolution techniques based on, for example, mixtures of Bingham 

distributions (Kaden et al., 2007; Kaden and Kruggel, 2012).

Moreover, we may calculate summary statistics of the neurite orientation distributions. A 

useful example is the relative entropy H(p) of the density function p : S2 → [0, ∞), which is 

defined as Kullback–Leibler divergence

(10)

with respect to a reference measure, here the uniform distribution q(ω)=1/(4π), ω∈S2 on the 

sphere. Fig. 10 shows maps of the orientation dispersion entropy for various slices in the 

axial plane, which were estimated in native measurement space. In contrast to previous 

work, this index takes the full axon orientation distribution into account. The orientation 
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dispersion entropy is close to zero when the estimated microdomain orientation distribution 

approaches the spherical uniform distribution, such as in the ventricular system, 

subarachnoid space and parts of the grey matter. In the corpus callosum, internal capsule and 

other white matter regions mainly formed by a single fibre bundle with a coherent 

orientational structure, the relative entropy of the neurite orientation distribution is high. 

Whereas the orientation dispersion entropy describes the directional tissue architecture, the 

fractional anisotropy of the classical tensor model encodes both the microscopic diffusion 

process and the neurite orientation distribution. We obtain similar results for the other 

subjects studied in this work. To conclude, SMT does not only allow to recover the 

microscopic diffusion process but also facilitates the quantitative estimation of neurite 

crossings and orientation dispersion, for the first time without any assumptions on unknown 

diffusivities.

Tuberous Sclerosis Complex

The following ex-vivo study of age-matched mice demonstrates that features of the 

microscopic diffusion process provide valuable biomarkers sensitive to TSC-induced 

abnormalities in the brain microstructure. Fig. 11 plots the voxelwise difference of the 

population means we observe between Rictor CKO and controls (top) as well as FWE-

corrected p-value maps quantifying the significance of voxelwise group differences between 

Tsc2 CKO and normal mice for the intra-neurite volume fraction vint (left) and intrinsic 

diffusivity λ. The underlying maps in the bottom diagrams display, in the coronal plane, the 

population average of the microscopic diffusion indices over normal controls. Moreover, we 

study the four white matter regions examined in histology, i.e. the genu (GCC), midbody 

(MidCC) and splenium (SCC) of the corpus callosum as well as the anterior commissure 

(AC) in the midsagittal plane, which were delineated in the population average of the control 

mice. Fig. 12 shows a region-based group analysis for Rictor and Tsc2 CKO with respect to 

normal controls using unpaired two-sample t-tests. For Rictor-deficient mice, which result in 

a phenotype with moderate adverse effects, we observe only minor deviations in the SMT 

estimates (which are not statistically significant in the voxel-level analysis), whereas Tsc2-

deficient mice show a significant decrease in the neurite density index over wide areas of the 

brain white matter, presumably leading to the severe adverse effects seen in this TSC model. 

The abnormal intrinsic diffusivities suggest an altered intra- and/or extracellular milieu due 

to ongoing neuropathological processes. Further, in contrast to the in-vivo human data sets, 

we observe, at a b-value of 6000 s/mm2, a relatively high diffusion signal for gradient 

directions parallel to the main fibre orientation in the corpus callosum and other white matter 

regions, suggesting the presence of a signal component of very slow diffusion (Stanisz et al., 

1997; Alexander et al., 2010), which, however, is not explicitly modelled here.

Finally, we report quantitative histology results from a subsample of the experimental 

animals. An initial examination shows that the overall architecture of the mouse brains 

remains intact, but with diffuse hypomyelination. In addition, decreased oligodendrocyte 

number was appreciated in the Tsc2 CKO. As seen with other mouse models of TSC, we 

could not observe cerebral tubers, i.e. benign focal malformations at the grey-white matter 

junction disrupting the normal lamination of the cortex and a hallmark of the disease, nor a 

gross inflammatory response (Carson et al., 2015; Kelm et al., 2016). Fig. 13 shows (from 
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left to right) the group mean and standard error of the histological myelin fraction fmyel, 

myelinated axon fraction with the myelin fraction excluded fax/(1−fmyel), where fax denotes 

the histological axon fraction, and myelinated axon density ρax, i.e. the number of 

myelinated axons per unit area, for four white matter regions in normal controls, Rictor- and 

Tsc2-deficient mice. Significant group differences of the respective histological measures 

compared to controls, based on a Wilcoxon rank-sum test, are indicated. This figure 

demonstrates a reduction of the myelin fraction and myelinated axon density, thus 

hypomyelination, in the Rictor and especially Tsc2 CKO. The decrease in myelinated axon 

fraction (with the myelin fraction excluded) is reflected by a reduction of the MRI-based 

intra-neurite volume fraction, which has excluded the myelin compartment because of its 

short T2-relaxation time, but generally includes unmyelinated axons. Note that observed 

abnormalities in the MRI measure may be not only due to alterations in the total axon 

density, but also secondary effects of reduced myelination, which might lead to substantial 

water exchange between the intra- and extra-neurite compartments during the diffusion time.

Discussion

This paper has introduced multi-compartment microscopic diffusion anisotropy imaging 

based on the recently proposed Spherical Mean Technique (SMT, Kaden et al., 2016). The 

rationale of this technique is that the macroscopic signal we measure on the voxel scale 

conflates two physical effects, which are microscopic diffusion anisotropy and the 

microdomain orientation distribution. Both features are crucial to data analysis since, if the 

microscopic environments were uniformly oriented and/or not directionally anisotropic, we 

would not be able to observe macroscopic diffusion anisotropy. Because of that, a primary 

aim of modern diffusion MRI in neuroscience research and clinical neurology is to 

disentangle these two effects. SMT-based microscopic diffusion anisotropy mapping has 

enabled us to do this, using off-the-shelf sequences with two (or more) b-shells achievable 

on standard clinical scanners. Once the two key contributors of the diffusion signal have 

been separated from each other, we are able to recover microstructural parameters in the 

presence of directional heterogeneity. Examples are the neurite density index and intrinsic 

diffusivity in nervous tissue, as shown in Figs. 1 and 6. At the same time, we can quantify 

the microdomain orientation distribution, including fibre crossings and orientation 

dispersion that are ubiquitous in the brain, and calculate summary statistics such as the 

orientation dispersion entropy (compare Figs. 9 and 10).

Model assumptions

To establish clinical practicability, we need to limit the complexity of the diffusion model 

and thus the amount of experimental data required to fit its parameters robustly, which 

inevitably means that we need to make simplifying assumptions. It may then come to a 

surprise that a distinguishing feature of SMT (Kaden et al., 2016) is that it makes no 

assumptions about the a priori unknown orientation distributions and hence recovers the 

microscopic features in an unbiased way. The technique is solely based on the insight that 

for any fixed gradient magnitude and timing, thus fixed b-value, the spherical mean of the 

diffusion signal over the gradient directions does not depend on the neurite orientation 

distribution, but is only a function of the microscopic diffusion process. In this paper we 
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have proposed a new multi-compartment model decomposing the microscopic signal into 

intra- and extra-neurite water pools, which are described by two rotationally symmetric 

microscopic diffusion tensors. The developed model does not include a myelin 

compartment, as the T2-relaxation time of water between the myelin layers is much shorter 

than the echo time of standard clinical scans. Therefore, the obtained volume fractions 

should be interpreted accordingly.

We impose three constraints on the double-microscopic-tensor model since otherwise the 

estimation problem is underdetermined for two-shell diffusion data, which can be easily 

seen after factoring out the microdomain orientation distribution using SMT. Compare also 

Jelescu et al. (2016) for an exhaustive analysis of a related model. First, we assume that the 

effective transverse diffusivity inside the neurites is zero (Behrens et al., 2003a, 2003b). This 

is a sensible choice for myelinated axons because the myelin sheath isolates the intra-neurite 

water pool from the surroundings to a large extent and the low b-value measurements 

typically performed in clinical practice do not give rise to any significant attenuation due to 

the small diameter of the axons. However, for unmyelinated axons and dendrites this 

approximation may hold only partially because of the permeability of membranes and 

possible neurite undulation on the microscopic scale (Nilsson et al., 2012). Second, the 

proposed method does not differentiate between the longitudinal microscopic diffusivities 

inside and outside the axons and dendrites (which might be different), but estimates a voxel 

average over the intra- and extra-neurite compartments. A key feature of the present work is 

that the intrinsic water diffusivity, which describes the hindered diffusion process across 

neurons and glia as well as cell organelles and cytoskeleton, is obtained from the data. Our 

results in Figs. 1, 6, 8 and 11 demonstrate that this parameter varies markedly in the brain, 

reflecting the fine-structural variability of the underlying cellular milieu.

In contrast to previous work, we do not approximate the extra-neurite signal component with 

an isotropic diffusion model (Behrens et al., 2007; Jespersen et al., 2007; Sotiropoulos et al., 

2012), but allow for microscopic anisotropy in the case of high neurite densities. As a third 

constraint, the transverse microscopic diffusion in the extra-neurite compartment is 

represented as a function of the intra-neurite volume fraction and intrinsic diffusivity using a 

first-order approximation of the tortuosity effect (Bruggeman, 1935; Sen et al., 1981; Szafer 

et al., 1995). This model is based on effective medium treatment of a system of randomly 

placed parallel cylinders of variable diameter with impermeable boundaries in the long-time 

diffusion limit, which may only partially reflect the underlying microgeometry because of 

microscopic neurite undulation and the permeability of membranes in unmyelinated axon 

and dendrites. Alternatively, we may use a more advanced extra-neurite model (Novikov and 

Fieremans, 2012; Novikov et al., 2014) or estimate the transverse microscopic diffusivity 

outside the neurites from the data, which, however, requires a more sophisticated experiment 

design. Especially in highly densely packed white matter regions like the corpus callosum, 

where the microscopic diffusivity perpendicular to the axons is very low, diffusion 

measurements with higher b-values may be able to resolve the transverse microscopic 

diffusion process more accurately. Although the general approach of SMT naturally extends 

to more complex microscopic diffusion models as formally proven by Kaden et al. (2016), 

the presented multi-compartment model provides simple-to-estimate markers of 
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microstructural tissue features achievable on standard scanners, acknowledging the tight 

time constraints in clinical settings.

Comparison with WMTI and NODDI

In the following we compare multi-compartment microscopic diffusion imaging with two 

related techniques. WMTI (Fieremans et al., 2011) attempts to infer microstructural 

parameters from metrics obtained with diffusion kurtosis imaging. This method provides 

independent estimates of the intra-axonal volume fraction vint, the intra-axonal longitudinal 

diffusivity , the extra-axonal longitudinal diffusivity  and the extra-axonal transverse 

diffusivity , thereby setting the intra-axonal transverse diffusivity  to zero and 

assuming that the tangential distribution of the intra-voxel fibre population at millimetre 

resolution is a Dirac mass, which means that all axons form straight lines and run parallel to 

each other. The latter is overly simplistic as fibre crossings and orientation dispersion are 

ubiquitous in the human brain. Even in the corpus callosum the directional architecture is far 

from homogeneous (Axer et al., 2001; Mikula et al., 2012). In contrast, SMT does not make 

any assumptions about the fibre orientation distribution and hence is universally applicable. 

The proposed technique estimates a voxel average of  and , which we call intrinsic 

diffusivity λ, and the extra-neurite transverse diffusivity is inferred from λ and the intra-

neurite volume fraction vint, as demonstrated in Figs. 2 and 7. Furthermore, even if the 

diffusion signal from a single microdomain is modelled by a microscopic diffusion tensor 

(thus is mono-exponential in all directions), the diffusion signal observed at the voxel level 

is in general not mono-exponential for complex orientation distributions. Fieremans et al. 

(2011) made no attempt to relate higher-order effects seen in diffusion kurtosis imaging to 

directional tissue heterogeneity.

The NODDI technique (Zhang et al., 2012) models the neurite orientation distribution with a 

single Watson density and hence ignores fibre crossings which are a distinctive feature of 

human connectional neuroanatomy. Specifically, Kaden et al. (2007) showed in a diffusion 

MRI study that the majority of white matter voxels features multiple fibre bundles whose 

accurate representation requires two or more Bingham distributions. In comparison, SMT is 

free of orientation distribution models. NODDI assumes a single and fixed intrinsic 

diffusivity λ (in human in-vivo studies 1.7 μm2/ms), whereas the developed method 

estimates the microscopic diffusion coefficients from the data. Figs. 1, 6, 8 and 11 

demonstrate that λ varies significantly over the brain white matter with an average value that 

is considerably higher than earlier assumed (Zhang et al., 2012). We also expect to see 

differences in λ across age and neurological conditions, making the intrinsic diffusivity a 

valuable biomarker (compare Figs. 11 and 12). Moreover, the underestimation of λ in 

NODDI gives rise to a systematic overestimation of free-water content in the cerebral white 

matter, which stands in contrast to T2-relaxometry (MacKay et al., 1994) and well-known 

neuroanatomy (Nieuwenhuys et al., 2008), and may adversely affect the recovery of other 

parameters such as their neurite density index. Lastly, the NODDI method assumes that the 

extra-neurite water pool is in fast exchange across all neurite orientations, which is doubtful 

and leads to contradictory results as detailed in Appendix A. Multi-compartment 

microscopic diffusion imaging overcomes these model inconsistencies.
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Tuberous Sclerosis Complex

Pathological manifestations of tuberous sclerosis are manifold, but the impairment of the 

structural integrity of brain tissue contributes substantially to the morbidity seen in patients. 

Recent studies with mouse models of TSC (Meikle et al., 2008; Carson et al., 2012, 2013) 

suggested that global diffuse changes in white matter might give rise to universal cortical 

dysfunction together with various neuropsychiatric conditions, in addition to the multifocal 

tuber pathology. Indeed, Marcotte et al. (2012) demonstrated widespread microstructural 

alterations distinct from tubers in human patients via histological analysis of post-mortem 
brain specimen. This ex-vivo MRI study with conditional knockouts of Rictor and Tsc2 in 

Olig2-Cre mice has shown that the developed technique is capable of discovering non-tuber 

white matter abnormalities, e.g. a significant reduction in the neurite density index (Figs. 11 

and 12), in agreement with histological measurements (Fig. 13). Note, however, that for low 

myelinated and unmyelinated axons there might be significant exchange between the intra- 

and extra-neurite water pools, making the differentiation between hypomyelination and 

reduced axon density solely based on diffusion experiments not that straightforward. Our 

findings have clear translational significance as SMT may help oversee treatment success in 

promising clinical trials (Franz et al., 2006; Bissler et al., 2008; Krueger et al., 2010; Tillema 

et al., 2012) where patients receive mTOR inhibitors such as everolimus and sirolimus. 

Unlike the DTI-derived anisotropy metrics, the novel biomarkers are invariant with respect 

to the axon orientation distribution, which exhibits a high variability between subjects, and 

thus have potential to increase the detectability dramatically.

Clinical translation

To establish the normative values of the microscopic diffusion indices, we have used high-

quality data sets from a large cohort of healthy young adults acquired on a bespoke scanner 

(cf. Figs. 6 to 8). Our experiments have demonstrated that the acquisition time can be greatly 

reduced for rapid adoption in hospitals. Indeed, a moderate number of diffusion gradients 

evenly distributed over two b-shells is sufficient to recover the new biomarkers efficiently, as 

shown in Figs. 4 and 5. For example, a diffusion protocol with 30 gradient directions for 

each b-value of 1000 and 2500 s/mm2 – just twice as many as in standard DTI (Jones et al., 

1999) – does not exceed 5 min of scan time on a today’s clinical MRI scanner when 

acquired with a multiband EPI sequence (Setsompop et al., 2012) for whole brain coverage 

in 2 mm isotropic resolution. As SMT is computationally very fast, microscopic diffusion 

maps can be made available to clinicians shortly after the scan has been finished. In 

conclusion, multi-compartment microscopic diffusion imaging has enabled us to reveal key 

features of brain microanatomy, such as neurite density, without unwanted side effects due to 

fibre crossings and orientation dispersion. The novel technique provides direct sensitivity to 

abnormalities in the microscopic tissue structure, as demonstrated in a model of tuberous 

sclerosis, and offers unique opportunities for various applications, ranging from clinical 

diagnostics to early patient stratification and treatment response assessment in interventional 

trials. Moreover, this framework recovers the neurite orientation distribution completely, 

which allows us to track crossing fibre pathways and then to quantify neural connectivity in 

the individual brain.

Kaden et al. Page 18

Neuroimage. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Software

The software is available online at https://ekaden.github.io.
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Appendix A. Extra-neurite water diffusion

In the following we shall compare two different approaches to modelling the diffusion 

process in the extra-neurite compartment. Specifically, NODDI (Zhang et al., 2012) assumes 

that extra-neurite water is in fast exchange across all axon and dendrite orientations within a 

voxel, which is, however, questionable. The microenvironment a diffusing water molecule 

covers during the observation time is typically orders of magnitudes smaller than the 

dimension of the voxel the measured signal comes from. In more detail, Zhang et al. (2012) 

model the extra-neurite diffusion signal  for a given b-value and gradient direction g 
as

(A:1)

where p(ω) denotes the neurite orientation distribution and 

 the extra-neurite diffusion tensor for a dendrite or axon 

with orientation ω.  and  are the parallel and perpendicular diffusivities, respectively. 

In plain words, Eq. (A.1) averages the microscopic diffusion tensor over the microdomain 

orientation distribution, instead of averaging the microscopic diffusion signal from the 

microscopic diffusion tensor as done in SMT-based microscopic diffusion anisotropy 

imaging, to obtain the macroscopic diffusion signal at the voxel level.

Furthermore, the fast-exchange approach leads to certain model inconsistencies. Let us 

consider a high-resolution image consisting of n equally sized voxels with neurite 

orientation distributions pi(ω) for i= 1, …,n, where all other parameters are the same. The 

extra-neurite diffusion signal of voxel i reads . If we reduce the 

resolution to one big voxel retrospectively, the total signal takes the form

(A:2)

Kaden et al. Page 19

Neuroimage. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ekaden.github.io


On the other hand, we next measure a low-resolution image with just one voxel. The total 

neurite orientation distribution is then  and, according to Eq. (A.1), the 

extra-neurite diffusion signal reads

(A:3)

which may be rewritten as

(A:4)

It is obvious that in general Eqs. (A.2) and (A.4) give rise to different signals, which is 

contradictory. For this reason, in addition to the observation that the diffusing water 

molecules sense only a small environment in the range of few micrometres which typically 

includes merely a fraction of the neurite orientations present in a voxel, we do not assume 

the fast-exchange regime for the extra-neurite compartment here.
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Fig. 1. 
This plot depicts the intra-neurite volume fraction vint (top) and intrinsic diffusivity λ for an 

example subject, shown for various slices in the axial plane from left to right. The key 

feature of these maps is that the confounding effects due to fibre crossings and orientation 

dispersion have been factored out. Abbreviations: left (L), right (R).
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Fig. 2. 
The left-hand side maps the transverse microscopic diffusivity of the extra-neurite water 

pool, while the extra-neurite microscopic mean diffusivity is shown on the right-hand side. 

Both indices provide useful contrast mechanisms for cerebrospinal fluid. The number in the 

upper right corner denotes the plane in unscaled MNI152 space.
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Fig. 3. 
Estimation accuracy of the intra-neurite volume fraction (top) and intrinsic diffusivity. In the 

left column the estimation errors are shown for the acquisition protocol and various signal-

to-noise ratios. The right column depicts box-and-whisker plots (with 1.5 times the 

interquartile range) for different numbers of diffusion gradients evenly distributed over three 

b-shells. See text for more details about the simulation study.
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Fig. 4. 
Sparse gradient sampling for (from top to bottom) 66.7%, 33.3% and 16.7% subsets of 

diffusion gradients evenly distributed over three b-shells, here 1000, 2000 and 3000 s/mm2. 

The first two columns depict the intra-neurite volume fraction vint and difference , 

while in the last two columns the intrinsic diffusivity λ and ratio  are shown. The 

reference neurite density index vint and intrinsic water diffusivity λ are both estimated from 

the full data set (cf. Fig. 1).
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Fig. 5. 
Random subsampling analysis for determining the estimation precision of the intra-neurite 

volume fraction (top) and intrinsic diffusivity as a function of the total number of diffusion 

gradients for different b-shell designs. The box-and-whisker plots (with 1.5-times the 

interquartile range) quantify the absolute and relative errors, which are calculated with 

respect to the estimates obtained from the full data set.
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Fig. 6. 
This plot displays the population mean of the intra-neurite volume fraction vint (top) and 

intrinsic diffusivity λ over 100 unrelated subjects, shown for various slices in the axial plane 

from left to right. These multi-compartment microscopic diffusion maps establish the 

normative values of the novel biomarkers for a cohort of healthy young adults.
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Fig. 7. 
The left-hand side plots the extra-neurite transverse microscopic diffusivity, while the 

microscopic mean diffusivity of the extra-neurite water pool is shown on the right-hand side. 

Both parameter maps are voxel-wise averages over a cohort of 100 healthy young adults. 

The number in the upper right corner denotes the plane in MNI152 space.
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Fig. 8. 
Box-and-whisker plots (with 1.5-times the interquartile range) of the intra-neurite volume 

fraction vint (left) and intrinsic diffusivity λ in various white matter regions for a population 

of 100 unrelated subjects. Abbreviations: genu (GCC), midbody (MidCC) and splenium 

(SCC) of the corpus callosum, entorhinal (Ent), parahippocampal (PHipC), precuneus 

(PCun), cingulate (Cing), insula (Ins) and cerebellum (Cbl) white matter, brain stem (BSt).
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Fig. 9. 
The plot depicts the neurite orientation distribution estimated by a reproducing kernel 

Hilbert space (RKHS) technique (Kaden et al., 2008; Kaden and Kruggel, 2011). The fibre 

orientation field reveals the radiation of the corpus callosum (CC), the corona radiata (CR) 

and their crossing, shown in the coronal plane. The underlying map displays the standard 

fractional anisotropy. Abbreviations: cingulum (CG), superior longitudinal fasciculus (SLF).
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Fig. 10. 
These scalar maps depict a summary statistics of the neurite orientation distribution in native 

measurement space, shown for various slices in the axial plane from left to right. The 

orientation dispersion entropy is defined as Kullback–Leibler divergence (or relative 

entropy) of the fibre orientation distribution with respect to the uniform spherical 

distribution as reference measure.
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Fig. 11. 
The plot shows the voxelwise difference of the population means between Rictor-deficient 

and control mice (top) as well as FWE-corrected p-value maps quantifying the significance 

of group differences between Tsc2-deficient and normal mice for the intra-neurite volume 

fraction vint (right) and intrinsic diffusivity λ. The underlying maps in the bottom diagrams 

display the control group averages of the respective biomarkers.
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Fig. 12. 
This region-based group analysis depicts the population mean and standard deviation of the 

intra-neurite volume fraction vint (right) and intrinsic diffusivity λ for four white matter 

regions in the midsagittal plane. Significant group differences of Rictor- and Tsc2-deficient 

mice compared to normal controls are indicated with (*) p≤0.05, (**) p≤0.01 and (***) 

p≤0.001. Abbreviations: genu (GCC), midbody (MidCC), splenium (SCC) of the corpus 

callosum, anterior commissure (AC).
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Fig. 13. 
Statistical analysis of quantitative histology measures, showing the group mean and standard 

error of the myelin fraction fmyel, myelinated axon fraction with the myelin fraction 

excluded fax/(1−fmyel) and myelinated axon density ρax (from left to right) for control, 

Rictor and Tsc2 CKO mice as well as the significance of group differences with respect to 

normal controls. Significance codes: (*) p≤0.05, (**) p≤0.01, (***) p≤0.001.
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