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Introduction
Avian influenza viruses (AIVs) naturally circulate 
in wild aquatic birds, such as ducks, geese, swans, 
gulls, shorebirds, and terns.1 AIVs of the subtype 
H5N1 are often highly pathogenic avian influenza 
viruses (HPAIVs), which was originally discovered 
in geese in China’s Guangdong province in 1996. 
Several outbreaks occurred in farmed geese in 
Sanshui, a small town 50 miles outside the capital 
of Guangdong with a mortality rate of more than 
40%.2 By 1997, the A/goose/Guangdong/1/1996-
like viruses spilled over into the live poultry mar-
kets in Hong Kong with high rates of mortality. 
Simultaneously, there were 18 confirmed human 
cases of HPAIV infection, 6 of whom died.3 There 
was a large degree of homology between the avian 
isolates and the viral isolates collected from these 
human infections indicating that these viruses were 
being transmitted from birds to human hosts.3

The 1997 outbreak was contained through the 
culling or ‘stamping out’ of all poultry in Hong 
Kong.4 However, AIVs continued to circulate in 
healthy duck populations in surrounding areas. Its 
re-emergence in 2003 resulted in the infection of 2 
human cases caused by novel H5N1 genetic vari-
ants that continued to circulate and evolve into 10 
phylogenetic clades (0–9).5 At the end of 2017, 
860 laboratory confirmed cases of H5N1 influenza 

virus infection from 16 different countries, result-
ing in 454 deaths had been reported to the World 
Health Organization (WHO).1 Infection of humans 
with AIVs are rare, but sporadic infections can 
occur due to direct contact with infected birds or 
through contaminated environments.6 According 
to the Food and Agriculture Organization of the 
United Nations (FAO), China has around 64% of 
the world’s domesticated ducks and 95% of the 
domesticated goose population breeding in live 
poultry markets alongside other poultry and swine. 
These conditions allow these markets to become 
breeding grounds for H5Nx influenza virus circu-
lation.7 Outbreaks caused by AIVs have devastated 
live poultry markets in Asia and have had a sub-
stantial negative impact on the US economy.7 In 
this review, H5Nx viruses will be discussed for 
their replication, infection, evolution, and threat to 
the poultry industry, with emphasis on the need for 
a broadly reactive vaccine to protect the human 
population.

Influenza virus replication cycle
Influenza viruses fall into the Orthomyxoviridae 
family, which consists of six genera, Influenzavirus 
A, Influenzavirus B, Influenzavirus C, Thogotovirus, 
Isavirus, and Quarajavirus, classified by serological 
cross reactivity to the nucleoprotein and matrix 
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proteins. Of the three types of influenza viruses, 
Influenza A has the most genetic variation and the 
broadest host range.8 Influenza viruses are further 
categorized into subtypes by their hemagglutinin 
(HA) and neuraminidase (NA) genes: as of now, 
there are 18 HA and 11 NA types. Phylogenetic 
analyses of viral genes have indicated that these 
viruses have a long-established history of infec-
tions in avian hosts. The nomenclature system for 
AIVs was established by WHO, the World 
Organisation for Animal Health, and the FAO.9 
Phylogenetic analysis is performed on HA 
sequences that have evolved from A/goose/
Guangdong/1996 H5N1 virus. Viruses are 
grouped into virus clades based on their phyloge-
netic characterization and sequence homology of 
the HA gene.9 The average percentage pairwise 
nucleotide distances between clades is greater 
than 1.5% and is less than 1.5% within clades.9 As 
these viruses evolve through time, new subclades 
emerge. Influenza A viruses contain negative-
sense, single-stranded segmented genomes that 

encode for 10 viral proteins: HA, NA, M1, M2, 
NP, NS1, NEP, PB1, PB2, and PA.10 The 10 
viral proteins are encoded by 8 segmented genomic 
strands,11 which are coated with NP, have a dou-
ble-helical hairpin structure, and carry one poly-
merase heterotrimer consisting of PB1, PB2, and 
PA (viral ribonucleoprotein particles [vRNPs]).12,13

Upon entry into a cell, the HA protein on the sur-
face of the virion recognizes and binds to sialic 
acid on the surface of host cells (Figure 1, step 1). 
After binding, the virus enters the cell through 
receptor-mediated endocytosis.14 The exact 
mechanism of endocytosis is not known, but it 
has been speculated that influenza can use both 
clathrin-dependent and clathrin-independent 
mechanisms to enter the cell.14 Upon entry, the 
endosome travels into the cell and undergoes a 
change in pH, progressively becoming more 
acidic.15 This acidification process causes an irre-
versible conformational change in the HA mole-
cule on the influenza virus and exposes the 

Figure 1.  Cartoon depiction of the replication cycle of influenza viruses. (Step 1) Viral entry into host cell. 
(Step 2) Virus endocytosis into host endosome and acidification, leading to conformational change of the 
HA molecule exposing fusion peptide and fusion of viral and host membrane. M2 protein pumps H+ atoms 
into the viral core, causing the dissociation of M1 and the release of vRNP. (Step 3) Release of vRNP into the 
cytoplasm and translocation into the nucleus. (Step 4) vRNP replication and transcription, and cap-snatching 
mechanisms occur in the nucleus. Viral proteins such as M1 and NS2 chaperone vRNP out of the nucleus 
and into the cytoplasm to be packaged into viral particles. (Step 5) Structural proteins are translated by host 
ribosomes and are transported to the endoplasmic reticulum for proper folding. (Step 6) Properly folded viral 
proteins are released from the endoplasmic reticulum and are directed towards the plasma membrane or to 
the Golgi for modifications prior to release. (Step 7) Movement of modified proteins from the Golgi network to 
the plasma membrane for viral budding. (Step 8) Release of infectious viral progeny.
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hydrophobic fusion peptide.16 The fusion peptide 
inserts into the endosomal membrane that causes 
the fusion of the viral and endosomal mem-
brane.17 The viral M2 protein forms a tetramer in 
the virion, where its transmembrane domain acts 
as a pore for the M2 channel.18–20 The M2 pro-
tein functions as an ion channel that modulates 
the intra-virion pH, pumping free hydrogen 
atoms into the viral core, causing the dissociation 
of the vRNPs from the M1 matrix proteins 
(Figure 1, step 2).20,21 This mechanism allows the 
inner contents of the viral core to be released into 
the cytoplasm and subsequently enter the nucleus 
(Figure 1, step 3).20 After dissociation from M1, 
vRNPs are translocated to the host nucleus where 
viral replication and transcription occurs (Figure 
1, steps 3 and 4).13,20 Influenza viruses are one of 
the few RNA viruses that can replicate in a host 
nucleus, due to the need for a cap sequence in 
order for the RNA polymerase to perform tran-
scription (Figure 1, step 4).22,23 Influenza viral 
RNA segments do not contain a 5’ cap in order 
for the RNA-dependent RNA polymerase to per-
form transcription, so the PB1, PB2, and PA 
components perform ‘cap-snatching’ of host 
DNA in order to complete this process.22–25 Cap-
containing viral mRNA is released into the cyto-
plasm to be translated by the host ribosome 
machinery. Surface proteins such as HA and NA 
are translated into the rough endoplasmic reticu-
lum and are then translocated into the Golgi 
apparatus for post-translational modifications.26 
(Figure 1, steps 5 and 6).

The viral nuclear export protein NS2 is critical to 
nuclear export of vRNPs, viruses that lack NS2 
resulted in reduced viral growth.27 After genomic 
replication, transcription, and protein synthesis, 
NS2 and M1 help escort the new viral proteins to 
the host cell membrane, where they assemble and 
bud newly synthesized virions (Figure 1, step 
7).28,29 As the nascent virions bud from the host 
cell, NA cleaves the sialic acid residues on the 
host cell membrane,30 which allows the viruses to 
escape the host membrane (Figure 1, step 8).31 
Antiviral drugs that block NA activity result in 
influenza viruses accumulating at the membrane 
and cannot further disseminate to cause infection 
of neighboring cells.32

HPAIV HA
HA is located on the surface of the influenza virus 
and it facilitates viral entry into the host cell by 
binding to sialic acid on the host cell surface.33 

Avian-adapted strains of influenza virus preferen-
tially bind to N-acetylneuraminic acid with α-2,3-
sialic acids.34 These sialic acids are located in the 
gut and the digestive tract of avian species and in 
the lower respiratory tract of humans.35,36 HA is 
synthesized as polypeptide chain-encoded 
domains HA1 and HA2, co-translationally trans-
located into the lumen of the endoplasmic reticu-
lum and eventually to the surface.37 The HA 
protein contains a cleavage site between the HA1 
and HA2 domains, cleavage is essential for infec-
tivity and allows the HA molecule to undergo an 
irreversible conformation change in acidic 
endosomes. This cleavage is performed by cellular 
proteases to create two subunit HA1 and HA2 
domains linked by disulfide bonds.38 The cleavage 
nature of H5 HA proteins is achieved when viri-
ons are incubated with trypsin. This results in the 
conversion of HA to HA1 and HA2. The cleavage 
of HA can be blocked by a protease inhibitor.37 
HA is expressed on the virion as a trimeric protein 
that is stabilized by residues on the HA2 region. 
The HA ectodomain is composed of two regions, 
a stem region and a globular head region.39 
Neutralizing antibodies directed to the globular 
head of HA are critical for reducing viral infection 
and disease.40 An important factor affecting viral 
pathogenicity depends upon the sequence of the 
amino acids in the HA0 cleavage site.41,42 HA pro-
teins from HPAIVs contain a multibasic cleavage 
site that is cleaved by the ubiquitous furin cellular 
protease.42,43 In contrast, in low pathogenic avian 
influenza viruses (LPAIVs), that contain only one 
basic amino acid, the cleavage of HA is tissue spe-
cific, which results in a lower clinical manifesta-
tion in poultry.

The polybasic cleavage site on HA is a strong 
determinant for high pathogenicity of H5 viruses, 
however insertion of polybasic sequences into an 
LPAIV HA does not always result in a lethal phe-
notype as tested in chickens.44 Other influenza 
proteins such as PB2, PB1, and NP may increase 
pathogenicity of an influenza virus. The patho-
genic phenotype of H5 viruses is not HA depend-
ent. Pathogenicity and efficiency of replication can 
also be dependent on PB2, NP, NA, and M 
genes.45 The deleted stalk region of NA found in 
HPAIVs also confers pathogenicity, where rescue 
of the NA stalk region leads to a decreased patho-
genesis in chickens.45 Deletion of the stalk region 
increases lethality and transmission compared with 
the wild-type viruses that display a lower lethality. 
In addition to H5 viruses, this same NA stalk dele-
tion abrogates H2N2 virus replication in ducks, 
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but shifts the virus tropism from the intestinal tract 
to the respiratory tract in chickens.46 The presence 
of the polybasic HA cleavage site was sufficient 
enough to induce viral neurotropism.44

The dominant circulating AIV strains that have 
arisen since 2015 comprise viruses in the clade 
2.3.4.4, which includes reassortant viruses in the 
H5N6, H5N8, and H5N2 subtypes. However, 
the strains within this clade that have crossed over 
into the human population are limited to the 
H5N6 subtype. The ability of H5N6 viruses to 
spill over into the human population may be asso-
ciated with mutations in the HA molecule that 
affect the specific RBS binding preference of HA. 
These H5N6 viruses preferentially bind to differ-
ent sialic acids depending on the host from which 
each virus was isolated.47

NA in H5Nx viruses
Characterization of LPAIV or HPAIV infections 
in poultry usually refers to the pathogenicity of 
the virus during infection and whether the virus 
contains a polybasic cleavage site in its HA mol-
ecule (as reviewed above). However other pro-
teins, such as NA, can add to the pathogenic 
nature of the virus. To date, the newly circulating 
strains of AIV in China are H5N6, H5N8, and 
H5N2 of type H5Nx viruses.48 These viral reas-
sortments can result in a dominant NA molecule 
that increases the pathogenicity and release of 
viral particles. Overall, this can increase viral 
transmission between hosts. The role of non-HA 
viral gene products and how these proteins con-
tribute to viral tissue tropism and virulence are 
still not well understood. Multiple passages of 
H5N3 viruses in poultry result in a mutation in 
the catalytic site of NA, which increases the viru-
lence of these viruses in poultry.49 Mutations in 
internal genes, such as PB2, have also been linked 
to increased viral pathogenicity in H5Nx viruses. 
Multiple passages of H5N5 viruses in mice 
resulted in a substitution in amino-acid position 
627 from glutamic acid to lysine (E627K) in the 
HA protein.50 This adaptive mutation increased 
the pathogenicity of these viruses in mice by 
1000× and enhanced viral replication in vivo and 
in vitro.50 There were significant structural and 
functional differences in the NA proteins (N6, 
N8, and N2) from several viruses associated with 
the clade 2.3.4.4.49 The HA/NA interplay may be 
age dependent: whereas nonfunctional H5 viruses 
result in the death of day-old chickens, infection 
with the same virus in week-old chickens showed 

no signs of clinical illness at all.51 This seems to 
be an H5-specific phenomenon, whereas H7 
viruses were less dependent on a functional NA to 
cause illness. The dominant AIVs that infected 
humans have been associated with H5N6 viruses 
from clade 2.3.4.4. Out of the 17 human infec-
tions with H5N6 virus, 16 of the viruses contain a 
NA stalk deletion. Recombinant H5N6 viruses 
containing a 10 amino acid NA stalk deletion 
(amino acids 58–68) had an increase of viral rep-
lication in mammalian cell lines compared with 
the intact NA of H5N6 viruses. These viruses 
containing the NA stalk deletion also showed an 
increased viral replication in avian CEF cells, 
whereas H5N2 virus had lower titers in these 
cells.52 This recombinant virus with the NA dele-
tion (∆H5N6) did not infect neural tissue in mice, 
whereas the full length H5N6 recombinant virus 
was neurotropic.52 Wild-type H5N6 viruses had 
higher rates of viral transmission and were more 
lethal to poultry compared with the ∆H5N6 virus. 
Wild-type H5N6 viruses were 100% lethal to 
chickens. All birds died within 10 days postinfec-
tion, whereas, only 85% of the ∆H5N6 chal-
lenged chickens died by day 14 postinfection. 
These data suggest that the NA stalk region in 
H5N6 viruses plays an important role in patho-
genicity in mammalian hosts and displayed a 
decreased pathogenicity in chicken cells.

AVI infection in birds
Domesticated birds, such as chickens and tur-
keys, may become infected with AIVs through 
direct contact with infected waterfowl or infected 
poultry. AVis infect over 105 bird species across 
the globe, but the natural reservoirs for this virus 
reside in aquatic fowl such as gulls, terns, and 
shorebirds.53 Waterfowl can transmit AIV to 
other avian species such as terrestrial poultry. 
Infection of poultry with LPAIV can result in lit-
tle to no disease. Clinical signs of LPAIV infec-
tion are ruffled feathers and a drop in egg 
production.54 Infection of birds with LPAIV can 
result in the virus mutating and adapting to the 
unsusceptible bird, possibly creating an HPAIV 
in these birds.53 Adaptation of the virus to increase 
replication efficacy can result in a LPAIV trans-
forming into an HPAIV with the addition of basic 
amino acids inserted into the cleavage site on 
HA.54 Natural LPAIV infections in wild birds do 
not present with clinical signs of infection or tis-
sue lesions.55,56 The H5N1-associated response 
in chickens includes a massive influx of cytokines, 
antiviral cytokines, and interferons, which should 
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inhibit viral replication.57 However, some 
cytokines that are activated like IFN TNF-α, 
IL-8 and IL-6 may be responsible for influenza-
induced pathology.58

Wild birds, such as ducks, are more resistant to 
H5N1 HPAIV infection compared with gallina-
ceous poultry.59 The rapid disease progression 
seen in infected chickens is not observed in 
ducks.60 Ducks are able to maintain H5 infections 
without developing severe disease and continue to 
spread the H5 virus into susceptible chicken pop-
ulations.61 Infection with H5N1 in susceptible 
birds results in systemic infection, leading to mul-
tiple organ failure, damage to the cardiovascular 
and nervous systems, and ultimately death.53,54 
HPAIV H5 viruses replicate in the respiratory and 
gastrointestinal tracts of birds.59–61 Clinical signs 
of infection include loss of appetite, lack of energy, 
loss of coordination, discoloration and swelling of 
body parts, diarrhea, nasal discharge, coughing, 
sneezing, and misshapen eggs.54 Diagnosis of AIV 
in birds is carried out by taking throat swabs of 
birds; in wild birds, a fecal sample is taken instead 
and is tested through PCR analysis. Positive PCR 
results then leads to virus isolation and growth of 
the virus in an embryonated chicken egg.62

The evolution and spread of H5 viruses
The A/goose/Guangdong/1/96 virus was initially 
detected in wild birds in Southeast Asia, but 
shortly thereafter was detected in several areas in 
Asia, Europe, Africa, and recently North 
America.63 Sequence analysis of the H5N1 viral 
gene segments isolated from poultry in Hong 
Kong distinguished two groups of viruses circu-
lating in domestic poultry.64 During infection, the 
HA segment did not undergo mutation to adapt 
to the human hosts. However, the PA, PB2, NP, 
and M2 gene products had multiple amino-acid 
changes after replicating in human hosts.64 Those 
mutated amino acids were similar to those in 
viruses that commonly infect the human popula-
tion.64 There are nine different types of H5 viruses 
in wild-bird populations (H5N1, H5N2, H5N3, 
H5N4, H5N5, H5N6, H5N7, H5N8, and 
H5N9). These H5 subtypes can present consid-
erable risk to the human population.

This rapid expansion of the A/goose/
Guangdong/1/1996-like viruses was driven by 
reassortment with other AIVs.65 Following the 
goose/Guangdong virus emergence, H5N1 viruses 
continued to circulate in China with a seasonal 

pattern peaking from October to March when the 
temperature is below 20°C.65 In 2003, the H5N1 
outbreaks in humans revealed that the goose/
Guangdong-like viruses had diverged into eight 
genotypes. Several of these genotypes survived, 
while others went extinct.65 Specific adaptations 
to the viral genome led to an increased fitness of 
select strains that continued to circulate in south-
ern China.45 A series of genetic reassortment 
events led to the initial human outbreak in Hong 
Kong in 1997, which can be directly traced back 
to a viral genotype in chickens and ducks named 
‘Z’. Strains of the genotype Z replaced the geno-
types A-E, X, and Y in 1997 and then became 
dominant in aquatic fowl and terrestrial poultry. 
The overall prevalence of H5 viruses has increased 
since 2010. The most prevalent AIVs are viruses 
in the H5N6 and H5N8 subtype circulating in 
domestic waterfowl in China.66

Since 2008, HPAIV subtypes H5N5, H5N2, and 
H5N8 viruses have caused outbreaks in poultry 
across Asia, Europe, and North American.67–70 By 
2014, outbreaks of novel reassortant viruses such 
as H5N6 and H5N8 were reported in Asia.48,70 
Viral reassortants of H5N1 and H5N2 variants 
have also been isolated from chickens and water-
fowl and have caused outbreaks in chickens in 
Hebei Province in China during December 
2013.66 The H5N2 viruses expressing the HA 
gene from clade 2.3.2, 2.3.4 or 7.2 have been iso-
lated with internal genes from both clade 7.2 
H5N1 viruses and H9N2 viruses. H5N2 viruses 
contain gene segments from multiple viral clades 
including HA, PA, M1, PB2, NS1 from 2.3.4.4, 
and three American wild birds lineage genes NA, 
NP, and PB1.71,72 These H5N2 viruses were the 
source of an outbreak in Hubei, Shandong, and 
Henan Provinces in China. Low pathogenic 
H5N2 influenza viruses naturally infect wild 
birds.73 However, these LPAI H5N2 viruses can 
transform into an HPAIV isolate by either adding 
basic amino acids to its cleavage site or by loss of 
a N-glycosylation at amino acid site 11.74 These 
viruses rapidly adapted to replicate in terrestrial 
poultry by adding an additional glycosylation site 
on the HA molecule, as well as deleting 19 amino 
acids in the NA stalk region.73

The A/goose/Guangdong/1/1996-like viruses are 
still being detected in poultry and wild birds in 
many countries. The majority of these isolates are 
classified as clade 2, including the subclades 
2.2.1.2 in Egypt and 2.3.2.1a in Bangladesh, 
Bhutan, and India.75 H5 viruses designated in the 
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clade 2.3.2.1c have been detected in wild-bird 
populations in China, Southeast Asia, and 
Africa.75 H5 influenza viruses of the clade 2.3.4.4 
have been detected in wild birds around the 
world. The clade 2.3.4.4 viruses from Africa and 
Europe are primarily of the H5N8 subtype, 
whereas those viruses isolated in Asia are of the 
H5N6 subtype, and those strains isolated in the 
USA are classified as H5N2 isolates.75 Clade 
2.3.4.4 H5 influenza viruses have caused 1537 
outbreaks in birds in 14 countries over the past 
decade.76 These outbreaks have been associated 
with H5N6, H5N8, H5N2, and H5N3. These 
viruses emerged through multiple reassortment 
events with the H5N1 subtype and now routinely 
circulate in domestic poultry and waterfowl.76 
The first 2.3.4.4 virus that emerged was classified 
as a H5N6 subtype and it circulated throughout 
China and traveled to Southeast Asia causing the 
death of 457 birds in Laos in March 2014.77 The 
H5N6 subtype arose from a reassortment event 
with HA genes from H5N1 and NA genes from 
the H6N6 virus.77 The H5N8 subtype caused an 
outbreak in 2014 in South Korea leading to a dis-
tinction of two different H5N8 virus subgroups, 
group A and group B.78 Group A comprises a set 
of H5N8 isolates and is referred to as the inter-
continental group A (icA) group. The icA H5 
viruses further evolved into three different sub-
groups, icA1, icA2, and icA3. The icA1 subtype 
group contains viruses that were isolated from 
Europe, Russia, and Japan. The icA2 subgroup is 
composed of H5N8 and HPAIV reassortants 
H5N2 and H5N1 from North America in 2014. 
The icA3 subgroup is composed of H5N8 viruses 
isolated in Japan and Korea.78 In 2014, H5N8 
Eurasian subtypes emerged in Canada, Germany, 
The Netherlands, UK, and East Asia and was 
concurrently detected in the US state of 
Washington in captive falcons, wild birds, and 
poultry. It spread across US mid-western and 
north-central states causing devastation to the 
poultry industry. Over 48 million chickens and 
turkeys were culled, which led to a loss of 
US$1.6 billion.79 The spread of these interconti-
nental-like viruses coincided with bird migration 
out of Russia and most likely were spread by 
migratory birds.78 Clade 2.3.4.4 viruses are less 
pathogenic in wild waterfowl, which increases the 
chances of being spread through migratory birds.

Currently, organizations such as the WHO have 
taken global surveillance efforts in order to moni-
tor the occurance of influenza H5 infections in 
humans. The widespread epidemic of H5Nx 

strains in poultry poses a considerable threat to 
human public health. The specific objectives of 
the WHO include (a) monitoring the global 
occurrence of influenza H5 viral infection in 
humans; (b) identifying and characterizing emer-
gen inflluenza strains, (c) monitoring changes in 
transmission patterns of influenza H5 viruses and 
detecting potential human-to-human transmis-
sion of influenza H5 viruses; (d) monitoring unu-
sual morbidity and mortality due to acute 
respiratory illness; (e) contributing to the moni-
toring of outbreaks of HPAIV in animal popula-
tions.80 Surveillance efforts of H5 viruses will 
increase researchers knowledge on the nature of 
H5Nx reassortant events and can help govern-
ment organizations predict new reference strains 
for pandemic vaccine development.

Transmission of HPAIV into swine
The ability of an AIV to transmit amongst humans 
may rely on the ability of the virus to replicate 
efficiently in swine cells. Swine are often the host 
for viral reassortment and generating novel viruses 
in the ecosystem (Figure 2).81 Cells found in the 
respiratory tract of swine species have both -2,3 
and -2,6 sialic acid receptors, making them a 
‘mixing pot’ for the generation of novel patho-
genic viruses.82 Reassorted H3N2 swine viruses 
cause epidemics in the swine population, as seen 
in the 1998 outbreak that occurred in the USA in 
North Carolina, Texas, Minnestota, and Iowa pig 
farm outbreaks.83,84 Genetic analysis of the swine 
viral isolates revealed viral genes from human, 
swine, and AIVs.84 Swine viruses are able to spill 
over into the human population and cause severe 
disease in people.85 There have been a total of 
three documentated swine infections in the 
human population recorded in the USA.83 
Although H3N2 and H1N1 viruses are known to 
replicate and reassort in swine, the ability of 
H5Nx viruses to infect these species is still under 
investigation. As of October 2018, there have 
been 50 submissions of H5N1 swine infection 
uploaded to the GISAID (https://www.gisaid.
org) website between 1968 and 2017, with 36 of 
the HA sequences being unique. Few pigs are 
naturally infected with H5 viruses. Surveillance of 
pig farms in Vietnam in 2004 showed that only 
0.25% of 3175 pig tested were positive for H5N1 
viruses.86 These H5N1 viruses were found to rep-
licate in naïve swine, but did not cause severe dis-
ease or weight loss, and did not transmit to naïve 
contact pigs.86 The potential for reassortment of 
AIVs and mammalian influenza viruses in pigs is 
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still unknown, but swine are permissive hosts for 
viral replication of AIVs.87–89 Newly characterized 
clade 2.3.4.4 H5Nx viruses do not readily infect 
trachea cell extracts collected from pigs.89 There 
are multiple studies showing that HPAIVs and 
LPAIVs do not cause clinical symptoms in naïve 
swine.87–91 Microscopic pathological analysis does 
reveal some cellular infiltrates, along with minor 
macroscopic lesions, but replication in these hosts 
does not permit transmission to naïve pigs.87 In 
addition, co-housing poultry that were infected 
with HPAIVs were not able to transmit the virus 
to naïve pigs.92 In pigs infected with H5Nx influ-
enza viruses the virus replicated in the lower res-
piratory tract, since nasal swabs were negative in 
reverse transcriptase polymerase chain reaction 

(RT-PCR) assays, but bronchoaveolar lavage 
fluid contained viral titers postinfection87 demon-
strating that AIVs replicate in the lower respira-
tory tract in pigs. This site of replication in the 
lungs is consistent with the location of the α-2,3 
alpha receptors found in the lower respiratory 
tract of pigs and not present in the upper res-
piratory tract.82 A survelliance study performed 
in China monitored and tested 16 swine farms 
in southern China, and serum samples col-
lected from the swine determined that no pigs 
were serologically positive for H5N1 virus.93 
These studies showed that pigs are not easily 
susceptible to H5Nx infection, and that those 
that do become infected do not easily transmit 
to naïve companions. However, there is always 

Figure 2.  Depiction of swine reassortants. Seasonal influenza from human hosts (left) can be transmitted 
into susceptible swine. Concurrent infection by avian strains (H5Nx) with seasonal influenza strains can lead 
to reassortants, novel influenza viruses that contain genetic segments from both humans and avian viruses. 
These novel viruses can then be transmitted into susceptible human populations, possibily leading to a 
pandemic outbreak.
Human outline: by Linda Salzman Sagan (original artwork); Tompw (GIF version); User:Holek (SVG) – Cut from 
File:Pioneer10-plaque.jpg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2647647.
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the concern that due to the lack of H5N1 virus-
induced clinical manifestations, H5Nx and sea-
sonal H1N1/H3N2 influenza viruses could 
co-infect the same animal resulting in a reas-
sortment event that leads to a human transmis-
sible H5 influenza virus.

AIV: human transmissible agent
HPAIV infection in humans occurs sporadically 
in Asia, Africa, Europe, and the Middle East.1 As 
of October 2018, there have not been any reported 
cases of human H5N1 infection in the USA, but 
one case was reported in Canada in 2014 from a 
person who had recently traveled from China.94 
HPAIV H5 virus infection in humans can initially 
present as an uncomplicated seasonal influenza 
infection with clinical signs of fever, body aches, 
and upper respiratory tract symptoms.1,95–97 
However, the infection eventually progresses into 
a lower respiratory tract infection. The infection 
can progress to become severe pneumonia, multi-
organ failure, encephalitis, and septic shock.1,95,96 
The incubation period for H5N1 virus infection 
is estimated to be 7 days, but is more commonly 
2–5 days after exposure. In the rare cases where 
human-to-human transmission occurred the 
incubation period varied from 3–4 days to 
2–10 days. Variability in this incubation period 
can possibly reflect the level of viral shedding, 
exposure, and immunological factors.98 A 
reported pediatric case with H5N1 virus infection 
presented with fever, diarrhea, and seizures, 
which progressed to a coma and eventually devel-
oped into encephalitis. The patient had con-
tracted the virus from his sister 2 weeks earlier 
who also suffered from encephalitis and died. 
Neither patient presented with any respiratory 
symptoms.99 The severity of the illness varies with 
the virus clade, age of the patient, and other 
unknown genetic factors. Rapid disease progres-
sion following AIV infection occurs in the major-
ity of human cases. Extrapulmonary complications 
that arise from H5 viral infections include cardiac 
failure, kidney failure, encephalitis, muti-organ 
failure, and intravascular coagulation.97,100–102 
Human-to-human transmission of avian H5N1 
virus has been recorded in several households, 
but is often limited.95,96 Transmission usually 
results from close intimate contact and/or care of 
a family member infected with H5N1 viruses. 
Surveillance by RT-PCR of contact patients led 
to the detection of mild cases of infection in older 
adults and an increased number of seropositive 
families in northern Vietnam.103

During influenza infection, a large infiltration of 
cytokines, inflammatory cells, and tissue damage 
in infected individuals increases the morbidity 
and mortality rate of influenza disesase.104,105 
Elevated levels of proinflammatory cytokines, 
also known as a ‘cytokine storm’ significantly 
impact the recovery of infected individuals.104,105 
Increased cytokine levels are often found in clini-
cal specimens from patients infected with H5N1 
influenza viruses.105–107 Autopsy studies revealed 
alveolar damage and high levels of circulating 
chemokines and cytokines in the peripheral blood 
of the patient.107 H5N1 viral infections in humans 
induce a higher transcription of proinflammatory 
cytokines than seasonal H3N2 or H1N1 influ-
enza viruses.108 The cytokines TNF-α and IL-β 
are significantly elevated following H5N1 viral 
infection.108 This is partially due to the nonstruc-
tural gene segment of the H5N1 viruses,109 and 
may contribute to the overall severity of H5N1 
influenza virus infections in humans.108

As of July 2018, HPAIVs have caused a total of 
860 confirmed cases and resulted in 454 deaths 
worldwide.110 The reported number of human 
infections has been decreasing since 2003. 
Although there have been a few cases of docu-
mented human-to-human transmission, these 
viruses are not easily transmitted in humans. 
This may reduce the threat of H5Nx viruses 
causing widespread infections in people and 
becoming a pandemic issue in the human popu-
lation. However, the virus only needs to accumu-
late minor mutations in order for viruses with H5 
HA proteins to transmit easily between mamma-
lian hosts.111 One factor that may increase the 
pandemic potential of AIVs is the ability of these 
viruses to be transmitted through aerosolized 
particles.112 This is largely dependent on the abil-
ity of the virus to replicate in the upper respira-
tory tract of mammalian cells. Distribution of 
sialic acid receptors between human and avian 
hosts differ, with α-2,6 sialic acids being predom-
inant in the upper respiratory tract of humans, 
and α-2,3 sialic acids being more predominant in 
the lower respiratory track of humans, whereas 
avian species have α-2,3 sialic acid receptors pre-
dominantly expressed in both the respiratory 
tract and digestive tract. Therefore, sustained 
human-to-human transmission of AIVs may also 
include the switch from α-2,3 sialic acid binding 
to preferentially α-2,6 sialic acid binding to 
ensure dissemination through aerosolized drop-
lets from the upper respiratory tract.112 Sialic 
acid preference is not solely responsible for the 
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pathogenicity of AIV in mammalian cells.113 AIV 
mutants that preferentially bind to α-2,6 sialic 
acid receptors have lower viral replication rates 
compared with wild-type viruses.113 Efficient 
transition for AIV to replicate in human hosts is 
dependent on more than receptor binding prefer-
ence. Replication and release of these infectious 
particles are also critical when discussing the 
switch of infection from birds to mammals. A 
specific mutation in the polymerase protein PB2 
in site 627 from a glutamic acid to a lysine 
(E627K) increases the pathogenicity of AIV 
infection in mammalian models.114–116 Influenza 
viruses that readily infect humans hosts predomi-
nantly display a lysine in site 627 in the PB2 pro-
tein. In avian species, the 627 site in the PB2 
protein is glutamic acid. The function of PB2 is 
restricted in mammalian cells when these AIVs 
contain glutamic acid (E) in site 627. These 
viruses do not assemble into ribonucleoprotein 
complexes and have decreased genome transcrip-
tion and virus production.114 The lysine (K) 
amino-acid substitution in the PB2 protein allows 
the virus to replicate in the lower temperatures of 
the upper respiratory tract of mammals (33°C), 
as opposed to the higher temperature (41°C) in 
the gastrointestinal tracts of avian species (117). 
H5N1 viruses that contain the PB2 E627K sub-
stitution have increased viral replication in the 
nasal passages of mice compared with viruses 
with the E627 wild-type virus.117 Other changes 
in PB2, such as the D701N mutation, have been 
associated with an increased animal tropism, 
increased polymerase activity, and enhanced 
pathogenicity in mammals. The SR polymor-
phism in PB2 allows the polymerase to escape 
species-specific restriction factors that target pol-
ymerases from AIVs.117 These mutations increase 
the overall viral replication of AIVs in mamma-
lian hosts cells and ensure a high replicative titer 
and infection. Viral reassortments containing 
replicative proteins from multiple species can 
help AIVs to expand their tropism and adapt to 
new hosts.118

PB1-F2 is a small protein that is encoded from the 
same vRNA segment as PB2 from a +1 reading 
frame. PB1-F2 protein is an important virulence 
factor in influenza viruses and can have three roles 
in viral infection, that is (a) regulate antiviral 
innate immunity; (b) enhance viral polymerase 
activity; (c) induce cellular apoptosis.119 Viruses 
isolated from the 1997 H5N1 pandemic con-
tained an amino acid at position N66S that cor-
related with high pathogenicity in mice.120 When 

an S66N mutation is introduced into the PB1-F2 
protein of an H5N1 virus, there is an attenuation 
of disease in mice. Viruses that contain a N66S 
mutation have increased disease severity and pro-
duction.120 The truncated version of PB1-F2 does 
not increase virulence in mice or their predisposi-
tion to co-infection by bacterial strains.121 
However, the PB1-F2 protein that lacks an ATG 
start site was 1000-fold more pathogenic than the 
full length PB1-F2 containing an ATG site.122 
The ability of H5Nx viruses to replicate success-
fully in human hosts is dependent on the adapta-
tion of multiple viral RNA segments and are not 
restricted to HA and NA activity.

Future perspective
In order to combat the evolution and divergence 
of H5Nx avian influenza, a universal avian influ-
enza vaccine (UAIV) for the human population 
should be developed. A UAIV would be broadly 
protective against multiple viruses that span 
throughout several clades and against multiple 
mismatched NA (H5N1, H5N2, H5N6, H5N8). 
This vaccine should provide protective antibody- 
or cell-mediated response against viral challenge 
with one vaccine dose. Multiple or boost vacci-
nation has been attempted with heterologous 
prime-boost strategy in AIV vaccination studies. 
123–125 Although these types of vaccine protocols 
have proven successful, in the event of an epi-
demic, single-dose adjuvanted vaccination would 
be less time consuming and more cost effective. 
In the event that a single dose is sufficient, a 
greater portion of the population would have 
access to the vaccine compared with a two-dose 
strategy where perhaps only half the population 
would receive the dose.126 Protective efficacy 
would also span multiple age groups, taking into 
account pre-immunity to seasonal influenza 
strains such as H1N1 and H3N2. Although these 
qualifications for a UAIV may seem too far 
fetched, there has been progress in recent years. 
Our group has reported on a computationally 
optimized broadly reactive antigen adjuvanted 
vaccine that provides protection against heterolo-
gous challenges in mice, ferrets, and nonhuman 
primate models,127–131 and is being analyzed for 
potential vaccine candidacy.

Conclusion
The molecular basis of HPAI H5Nx viruses to 
induce pathogenicity, as well as the potential for 
these viruses to adapt to humans was reviewed. 
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The segmented genome of the influenza virus 
facilitates reassortment in hosts that are infected 
with more than one strain of influenza virus. 
These reassortment events in birds and swine 
have generated new and novel strains of AIVs, 
including the divergent 2.3.4.4 clade viruses that 
contain avian NA proteins. Influenza viruses with 
genomic RNA segments coding for internal and 
nonstructural proteins such as PB1, PB2, PA, 
and NS1 have increased viral replication and 
overall enhanced pathogenicity. Reassortment of 
AIV RNA segments with seasonal human influ-
enza virus strains in swine by co-infection may 
not factor into the evolution of novel avian viruses. 
Swine that are infected with AIVs have no clinical 
signs of infection and do not transmit nascent 
virions to immunologically naïve hosts. However, 
these animals may have a subclinical infection 
that could in fact promote reassortment events 
upon co-infection.

The next influenza pandemic is inevitable and 
most likely will emerge from a novel subtype to 
which the human population has no pre-existing 
immunity. The ability of an HPAIV to accumu-
late the appropriate mutations or reassortment 
with an efficient human or swine virus resulting 
in a human transmissible virus is possible and 
could initiate a new pandemic. Therefore, con-
tinued scientific studies and surveillance of AIVs 
are essential to develop vaccines and therapeu-
tics, not only for the poultry industry, but also to 
prepare for the next AIV emergence into the 
human population.
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