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Abstract

It is well recognized, that outcomes of mutualistic plant-microorganism interactions are often context dependent and can
range from mutualistic to antagonistic depending on conditions. Instead, seemingly pathogenic associations are generally
considered only harmful to plants. The ergot fungus (Claviceps purpurea) is a common seed pathogen of grasses and
cereals. Ergot sclerotia contain alkaloids which can cause severe toxicity in mammals when ingested, and thus the fungal
infection might provide protection for the host plant against mammalian herbivores. Theoretically, the net effect of ergot
infection would positively affect host seed set if the cost is not too high and the defensive effect is strong enough.
According to our empirical data, this situation is plausible. First, we found no statistically significant seed loss in wild red
fescue (Festuca rubra) inflorescences due to ergot infection, but the seed succession decreased along increasing number of
sclerotia. Second, in a food choice experiment, sheep showed avoidance against forage containing ergot. Third, the
frequency of ergot-infected inflorescences was higher in sheep pastures than surrounding ungrazed areas, indicating a
protective effect against mammalian grazing. We conclude that, although ergot can primarily be categorized as a plant
pathogen, ergot infection may sometimes represent indirect beneficial effects for the host plant. Ergot may thus serve as a
conditional defensive mutualist for its host grass, and the pathogenic interaction may range from antagonistic to
mutualistic depending on the situation.
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Introduction

Interactions between plants and microorganisms have tradi-

tionally been characterized based on the often visible primary

effect of the microbe on plant fitness. Pathogens clearly deplete

host resources and act as harmful antagonists for the plant.

Mutualists, such as certain endophytes and mycorrhizas, offer the

host some beneficial service outweighing the consumption of the

host resources. These relationships are not straightforward in

nature, and the conditional characteristics of symbiotic (in the

sense of living together) species associations are well recognized

today. The presumed mutualists may not always be advantageous

for host fitness, and the total fitness effects may vary from

beneficial to antagonistic depending on the conditions [1–5]. By

contrast, the possible conditional aspect of seemingly pathogenic

interactions is much less discussed.

Mutualistic effects of mainly antagonistic associations have

previously been suggested in relation to plant adaptations to

herbivory, for grazing may improve plant fitness through

overcompensation in some situations (for discussion and referenc-

es, see [6–8]). Some animal-parasite interactions have also been

shown to turn beneficial for the host in certain special conditions

(rev. in [9]). Similar situations are likely in plant-pathogen

interactions as well, and several possible factors could contribute

to such an alternative outcome. Firstly, a pathogen may have

additional and often diverse subsidiary effects on its host (direct or

indirect, acting on host physiology or ecology [10]) that can be

difficult to uncover [4]. On the other hand, the manifestation and

impact of the effects on host fitness may vary depending on

conditions (i.e. interacting genotypes, other interacting species and

the growth conditions of the system) [1], [3], [5], [11], [12].

Moreover, a host’s compensation and even overcompensation for

primary cost may alter the initial situation [13].

The ergot fungus, Claviceps purpurea (Fr.) Tul., is a common seed

pathogen of temperate grasses and cereals. Ergot infects single

grass florets and develops a fungal tissue called a sclerotium instead

of a grass seed. Ergot is defined as a plant pathogen because it

depletes the host’s resources and causes direct seed loss to the host

plant (e.g., [14], [15]).

However, ergot sclerotia contain a variety of alkaloids, many of

which are toxic to mammals. Ingestion of ergot within grass or

grain products can cause severe and eventually lethal intoxication

in both cattle and humans. Accordingly, ergot has been

responsible for serious poisoning epidemics in human history

and is still a cause of economic losses in grain production,

especially because the sclerotia have to be removed from the

infected seed sets (rev. in [16–18]). Several plant inhabiting fungi,

like grass endophytes, have been suggested to play a part in the

herbivore defence of their host plants [19], [20]. In such a case, the

decrease in the palatability of a plant to herbivores is often due to
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toxic metabolites produced by the fungus, representing a form of

’acquired chemical defence’ [21]. Grass grazing mammals have

previously been shown to avoid eating grasses infected with

endophytic fungi that produce ergot alkaloids (e.g., [22]). Although

ergot is usually considered merely as a pathogen, such a protective

effect has been speculated to occur also with ergot [17], [19], [23–

25].

In this study, we present (1) a simple model showing how the

costs of ergot infection, in terms of lost viable seeds, may be

balanced by protective effects against grazing. Second (2), we

present empirical data for the support of the model. The costs of

ergot infection are estimated with seed data on wild red fescue

(Festuca rubra L. sl.). The demonstration of the actual protective

effect of ergot infection is done via sheep grazing: We compared

the abundance of ergot on red fescue inside and outside sheep

pastures. If the infection has protective effects on the host plant,

ergot infected inflorescences should be less frequently eaten and

therefore relatively more abundant inside the pastures. Further, we

present experimental results on domestic sheep food choice in a

situation where animals were provided ergot-free and, alterna-

tively, ergot-containing forage.

Predictions: how does ergot influence plant fitness?
We consider a condition where ergot infection would be

favourable to its host by comparing the average fitnesses of ergot-

infected and non-infected plants. Because ergot is toxic to

mammalian grazers, it is highly likely that ergot influences the

risk of grazing on the host plant. It is well-known that the presence

of a toxic plant can decrease grazing risk of its neighbours [26–28].

Accordingly, we can propose a hypothesis that a seed infected by

ergot may provide associational defence for other seeds in the

ergot-infected inflorescence. If so, then the net effects of ergot on

host fitness, relative to a non-infected plant, depends on how many

seeds it will lose due to the infection (cost of infection) and how

many it will save due to reduced seed predation.

Assume that B is the average number of seeds per plant in the

absence of grazing and fungal infection. If h is the risk of grazing

(0#h#1) and a is the relative decrease in seed number per plant

when being grazed (0#a#1), the expected fitnesses of non-

infected and infected plants will be B(1-ha) and B(1- b)[1-ha(1-d)],

respectively, where b denotes the relative decline in viable seeds

per plant if infected by ergot (0#b#1), and d is the relative decline

in the risk of grazing (h) if the plant has been infected by ergot

(0#d#1). The infection will be beneficial for the host if infected

plants have on average higher fitness than non-infected, or

otherwise expressed as,

bv

had

1{ha 1{dð Þ

Thus, ergot can benefit the plant if the cost of infection is low

enough and ergot infection has sufficiently high defensive effect

against seed predation (Figure 1).

This theoretical argument implies two main questions concern-

ing the fitness consequences of ergot on the host plant. First, is low

cost of infection a feasible assumption in the wild? Secondly, is

there any evidence that ergot could have a defence effect in favour

of the host plant? If the answers are positive, it is possible that the

ergot-plant relationship could represent a case of ‘‘defensive

mutualism’’, generally defined as a mutually beneficial relationship

between two species in which one protects the other from an

enemy that causes a fitness loss to the latter (e.g., [19]). In

defensive mutualism, the species that provides protection may or

may not itself incur a net fitness cost in response to the other

(Figure 2A and 2B, accordingly). In the case of grass-fungi

interactions, the first alternative (Figure 2A) would correspond to a

costly pathogen and the other one (Figure 2B), for example, to an

asexual Epichloë endophyte that causes no visible or apparent costs

to its host. In the first scenario the symbiont itself reduces host

fitness in the absence of the enemy (Figure 2A, h = 0), and hence

does not satisfy the general definition of mutualism in such

conditions. However, the situation changes in the presence of

enemies because now also a costly symbiont may improve host

fitness in relation to symbiont-free hosts (Figure 2A, h = 1).

Accordingly, Fellous & Salvaudon [9] have framed the concept of

‘‘conditionally helpful parasites’’, referring to parasites providing

beneficial fitness effects for a host in some special conditions and

being harmful in others. These cases are congruent with the

concepts of symbiotic relativism [20] and mutualism-parasitism

continuum [29], where the ecological outcome of symbiosis is seen

to vary from parasitic to mutualistic among different environ-

ments.

Materials and Methods

Study system
The fungus Claviceps purpurea has over 400 host species within the

family Poaceae, including rye and other economically important

cereals and forage grasses. Ergot is common in temperate climates

and it occurs also in subtropical and arctic regions [30], [31].

Ergot infection is restricted to a single ovary/seed, but one or

several other seeds in the inflorescence may carry sclerotia due to

separate primary infections or secondary infections by conidia

present in ‘‘honeydew’’ produced by the fungus in the early stage

of infection [14].

We used red fescue, Festuca rubra, as the host plant and domestic

sheep as the herbivore in order to roughly estimate the costs and

possible defensive effects of ergot infection in nature. F. rubra is a

common grass species in the wild as well as in agricultural habitats

in northern Scandinavia, and is frequently infected with ergot

(Wäli et al., unpublished). The sheep pastures studied are semi-

Figure 1. Effect of ergot on host fitness. Parameter space where
ergot infection has a positive (below the lines) or negative (above the
lines) net effect on host fitness. b= relative loss of seeds due to ergot
infection, d = protective effect of ergot infection, ha= cost of herbivory.
doi:10.1371/journal.pone.0069249.g001

Ergot Pathogen as Defensive Mutualist
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natural meadows dominated by F. rubra and utilized for rotational

grazing. In rotational grazing animals are moved from pasture to

pasture during the grazing period. Thus, the pasture vegetation is

not fully consumed and grasses may flower and produce seed

during and outside grazing periods.

Effect of ergot on red fescue seed number
F. rubra individuals are mainly perennial and long-lived clonal

colonies formed of several ramets flowering in different years.

Therefore, we used the quantity of seeds produced per ramet

(inflorescence), a fitness correlating measure, to estimate the cost of

ergot infection. We collected mature inflorescences of F. rubra from

seven semi-natural meadows and one riverside population in

northern Finland in September 2008 and 2009 (Appendix S1).

Depending on the size and infection intensity of the population,

four to 20 ergot-infected and uninfected inflorescences were

collected randomly from the population. The number of seeds,

ergots and empty florets were recorded from each inflorescence,

constituting the total amount of florets per inflorescence. The full

florets were dissected to reveal possible small-sized sclerotia.

Effect of grazing on ergot infection frequencies
The effect of grazing on ergot infection frequencies was

estimated by sampling F. rubra inflorescences from sheep pastures

in northern Scandinavia (Appendix S2). We collected 24–61

samples from each of 6 separate locations in September 2006 and

2008. Inflorescences were collected at random from moderately

grazed sheep pastures and from corresponding ungrazed areas

outside the pasture fence. Inside the pastures the overall amount of

F. rubra inflorescences was diminished due to grazing and thus the

density of F. rubra inflorescences differed between the grazed and

ungrazed sites.

Sheep reaction to ergot containing feed
To test whether large herbivores avoid, or in the short term

learn to avoid eating ergot, we conducted food choice experiments

with domestic sheep at MTT Agrifood Research Finland, Animal

Production Research, Jokioinen. The single-day experiment was

carried out indoors in a sheep shed in December 2009. The

preference for ergot-containing and ergot-free forage was estimat-

ed in a pairwise test. Ergot sclerotia of rye (Secale cerale) were mixed

with forage pellets in a 1:4 volume ratio. Half litres of ergot-

containing and ergot-free control pellets were offered on similar

plastic trays placed side by side on the floor. A single sheep (male,

n = 6) was allowed to approach the trays at a time, and was

allowed to choose between the trays one to four times. Sheep were

allowed to visually examine, smell and touch the feeds, but a metal

fence placed above the pellets prevented actual eating. In the test,

the actions of positive choice (sheep trying to eat forage) or

rejecting the feed (after visual or other cue) were recorded. Activity

was recorded as a positive choice (eating decision) when sheep kept

their head in the tray, actively trying to eat for over 3 seconds, and

the test was continued each time until the sheep selected one of the

trays. Six rounds of the test were conducted, and the arrangement

of trays was changed randomly between animals.

Ethical statement
The sheep used in this research were experimental animals of

Animal Production Research of MTT Agrifood Research Finland,

Jokioinen, kept with institutional permits in accordance with The

Finnish Act on Animal Experimentation. The national Animal

Experiment Board of Finland was consulted, and no specific

permits were required for the food choice test described in this

study, as the sheep were not let to ingest ergot, and thus the test

did not meet the criteria for an animal experiment described in

The Finnish Act on Animal Experimentation (62/2006) as

"carrying out such experiments, tests, research or investigations

on animals. which may cause pain, suffering, distress or lasting

harm comparable at least to the pain caused by the introduction of

a needle". No protected or endangered species were used in the

field studies, and private owned land was accessed with

landowners’ permission.

Statistical analyses
The logistic regression (binomial distribution and logit link

function) of events/trials data was employed to three separate tests

to estimate 1) whether the proportional ergot sclerotia amount in

inflorescences differed among eight wild grass populations

(population as fixed factor) and 2) whether successful seeds from

all florets differed among these grass populations and among grass

inflorescences with and without ergot infection (population and

ergot infection as fixed factors). We tested further 3) whether the

number of ergot sclerotia as continuous variable affected the

proportion of successful seeds from all florets in inflorescences. In

Figure 2. Host fitness and context dependency in defensive
symbiosis. Average host fitness with or without a protective symbiont
in relation to risk of attack. Defensive mutualism assumes that the
symbiont improves host fitness in the presence of the enemy (h = 1),
however the symbiont itself may (A) or may not (B) incur a fitness cost
for the host in the absence of the enemy (h = 0).
doi:10.1371/journal.pone.0069249.g002
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this case, the scale parameter was estimated by the square root of

deviance/dof.

To compare ergot infection frequency of F. rubra inflorescences

in grazed and ungrazed areas and among sites, the data of ergot

incidence in grass inflorescences was analysed as event/trial data

with logistic regression (binomial distribution and logit link

function), the event being the presence of one or more ergot

sclerotia in a F. rubra inflorescence examined and the trial being a

F. rubra inflorescence collected and examined. Grazing (two levels)

and collection site (six levels) were used as fixed factors in the

model.

The food choice data was analysed as event/trial data with

logistic regression (binomial distribution and logit link function),

the event being the positive food choice and the trial being the

approach of the forage tray. We tested the effects of each three

factors (ergot, sheep individual and test round) in the food tray

choice of sheep in separate analyses due to the low number of

replicates. Because positive food choice was recorded every time

when the control tray was approached, the data of approaching

the ergot containing tray was used to test the differences among

sheep individuals. In case of test rounds, the scale parameter was

estimated by the square root of deviance/dof.

The analyses were performed using SAS 9.3, with the

GENMOD procedure.

Results

Effect of ergot on red fescue seed production
In wild grass populations the proportional ergot sclerotia

content in inflorescences did not differ among eight wild grass

populations in Finnish Lapland (x2 = 6.44, P,0.17). The overall

number of flowers and the seed production (number of seed)

varied greatly: in ergot infected inflorescences the seed number

varied between 0 and 69, and in uninfected between 0 and 73, and

the total amount of flowers per inflorescence was between 17 and

152 in infected and between 22 and 139 in uninfected

inflorescences. The proportional seed production varied signifi-

cantly between populations (x2 = 41.61, P,0.0001) (see Appendix

S1 for means and confidence intervals in seed production and

ergot content in inflorescences in each population examined).

Presence of ergot infection had no significant effect on successful

seed production (x2 = 1.20, P = 0.27), but the increase in propor-

tion of ergotic florets (as a continuous variable) decreased the

proportion of successful seed (x2 = 4.45, P = 0.035).

Effect of grazing on ergot infection frequencies
Ergot infection incidence in red fescue inflorescences differed

among grazed and ungrazed areas (x2
1 = 26.18, P,0.0001) and

among collection sites (x2
5 = 51.24, P,0.0001). Frequency of ergot

infected inflorescences was higher in pastures (43 %) than

surrounding non-grazed areas (16 %). Ergot infection frequencies

of grazed and ungrazed areas in different collection sites are

presented in Appendix S2.

Sheep reaction to ergot containing feed
Sheep actions at the ergot-containing tray differed from actions

at the control tray (x2 = 47.53, P,0.0001). All the sheep made

positive choice (eating decision) every time they approached the

control tray, but some avoidance was detected with the ergot-

containing tray. Actions did not differ significantly between rounds

(x2 = 3.32, P = 0.65), but sheep individuals differed in their

reactions (x2 = 48.64, P = 0.0001). Four of the six rams clearly

selected against ergot-containing feed, when two nearly always

made the positive choice from the tray they first approached

(Figure 3).

When taking averages over rounds of individual sheep and over

six individuals, the animals had an almost equal probability of

approaching control or ergoty trays (Figure 4). The most

pronounced difference was found concerning how the rams

responded to food quality. When approaching the control tray, the

sheep always made a positive choice and never shifted away to the

ergoty tray. In contrast, when they first approached the ergoty

tray, they chose that tray only in 65 % of cases, and shifted to the

control tray in 35 % of cases. Because of the shift from the ergoty

to the control tray, control food was selected more often (69 %) as

compared to 31 % of the ergoty food.

Concerning the variability in the average responses between

individual sheep, individual A slightly more frequently (62 % cases)

approached the control tray and always rejected the ergoty food

(Figure 3). On the other hand, individuals E and F approached

more frequently (78 % and 65 %, respectively) the ergoty tray and

nearly never changed to another tray (Figure 3).

Discussion

Our model predicts that, in spite of possibly losing some seeds

due to infection, a host plant may benefit from the ergot-provided

protection against grazers, and by these means save more seeds

than it loses in the presence of grazers. Our empirical observations

confirm that this hypothesis is plausible. First, the seed loss of a

ramet caused by the infection is rather small or even non-existent if

only a few sclerotia per inflorescence are produced. Secondly, the

ergot frequencies were higher in sheep pastures than surrounding

ungrazed areas. This difference may well be the consequence of

selective foraging, where sheep have favoured uninfected flower

heads and avoided infected ones. This is in accordance with the

results of the food choice experiment, where sheep often changed

from a sclerotia-containing feed to a sclerotia-free alternative and

never vice versa.

Direct costs and host control over infection
According to our field data, ergot may not self-evidently cause

marked direct costs to its host. By contrast, clearly negative effects

of ergot on grain and seed production (number and weight of

grain/seed) have been reported with agricultural crops and

Kentucky bluegrass (Poa pratensis) grown for seed [32], [33].

However, the results from cultivated grasses and cereals may not

correspond to the situation in nature, due to the selective breeding,

genotypic uniformity of host populations and artificial, rather

constant growth conditions, like high density and high nutrient

concentrations [2], [3], [34]. With wild salt marsh Spartina species,

negative, but similarly to our results, also neutral and even positive

effects of ergot infection on seed set have been reported,

depending on the infection level, host species and/or different

habitats [35], [36].

In addition to seed number, the total costs of ergot infection

may include additional effects, like reduced weight, quality and

viability of uninfected seeds in the inflorescence [32], [37]. We did

not test for the effects on viability of seeds or seedling

establishment in this research, but in studies with wild Spartina

foliosa and cultivated Kentucky bluegrass ergot infection caused no

effect on seed germination, although Kentucky bluegrass seed

storability was somewhat impaired [32], [36].

The seemingly minor costs of ergot infection may be due to

several factors: e.g. host resistance and tolerance to ergot, offering

the host ways to control and compensate for the infection.

Resistance can be seen as factors limiting the chance and extent of

Ergot Pathogen as Defensive Mutualist
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infection (e.g., [38], [39]). C. purpurea has an exceptionally wide

range of hosts including the entire subfamily Pooideae [30]. Even

though being of great interest, finding completely resistant

cultivars or varieties of grass and cereal ergot host species has

not been very successful. No specific resistance genes have been

detected in cereal crops [40], but genetic variability in ergot

resistance has been found e.g. in Kentucky bluegrass and rye [37],

[41]. This indicates that there has not been strong selection for

resistance to ergot in the pooid family, further implying that the

net costs of ergot infection for the host are not high in general.

Instead, host grasses may have adapted the ability to restrict

ergot infection to a tolerable level. This is in accordance with our

results, as the infected inflorescences most commonly bore only

one or two sclerotia. One mechanism of restriction could be the

escape of infection by asynchronous flower development within

grass inflorescences, as it is known to affect, for example, seed

predation [42]. The differences of ergot resistance in cereals

indicate the potential to limit the size and the resources consumed

by an ergot sclerotium. The detected low level of ergot infection

within grass inflorescences may also alternatively or partly result

from various environmental factors such as weather and available

sources of infection.

Further, grasses seem to have a high tolerance to ergot, for

example, the ability to mitigate or offset the adverse fitness effects

of ergot infection (e.g., [38], [39]). According to Jaroz & Davelos

[43], a floral infection may not directly reduce plant reproductive

effort because plants can often produce more flowers than mature

seeds. Such was the case with our data, as the seed production of

Figure 3. Individual sheep reactions to ergoty feed. Single rams’ (A–F) actions relating to ergot-containing feed on different rounds of a food
choice test. The column colours indicate the proportion of actions within trials: white, ergoty feed not approached; grey, ergoty feed rejected; black,
ergoty feed chosen.
doi:10.1371/journal.pone.0069249.g003

Ergot Pathogen as Defensive Mutualist
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wild red fescue (when compared to the flower amount) was overall

very low and not all florets produced seed. Thus, ergot may not

actually always reduce seed number by taking a place of a seed,

and the host may have the potential to allocate resources to

uninfected flowers instead of infected ones.

Salvaudon et al. [13] have speculated about reproductive

compensation, and even overcompensation, of a plant for a

predictable attack by parasites, similarly to the compensation for

herbivory. With ergot this could be via delaying the development

of florets and/or using resources limitedly in populations with high

pressure of pathogen attack. ‘‘In case’’ of ergot infection grasses

might then be able to allocate spared resources to reproduction

within, or also between inflorescences, since many perennial grass

species produce several flowering shoots at different times during a

growing season. Accordingly, Raybould et al. [35] have proposed

that ergot could encourage seed set by causing changes in the

host’s resource allocation by increasing the investment to flower

heads and seed production at the expense of other plant functions.

A similar mechanism is suggested to cause some positive effects of

closely ergot-related Epichloë endophytes on seed production

during some life stages of its host grasses [44], [45]. The

physiological mechanism for this change in resource allocation

may be due to fungal compounds acting like plant hormones, as

some fungal endophytes may produce auxin-like plant-growth

regulators [46].

Herbivory and indirect benefits of infection
We found clear differences in overall ergot infection frequencies

between moderately grazed pastures and surrounding ungrazed

areas. The higher infection incidence in pastures indicates that

grazing somehow affects the proportion of ergot-infected inflores-

cences. One probable explanation could be selective grazing

preferring the uninfected grass inflorescences with ergot-infected

ones left uneaten. Documenting actual plant selection in the field

by grazing animals is needed for a more accurate confirmation of

the exact level of host tiller and genet protection by ergot.

Our food choice experiment supported the hypothesis of

selective grazing, as the overall choice against ergot-containing

forage was significant. The sheep individuals however differed in

their actions, with four out of six rams clearly avoiding the ergot-

containing forage, and two always trying to eat from the container

they first approached. The variance in behaviour among

individuals, which is common in choice experiments on learning

behaviour (e.g., [47]), may be due to the individual characters and

abilities, either in adjusting to short-term experimental settings or

in the ability to detect and/or avoid ergot. With the latter, there

may also have been differences in ergot-related history between

the rams, e.g. previously encountering ergot in the pasture. The

animals were also not allowed to actually eat the forages in this

test, so possible aversion learning must have taken place earlier.

Mammalian herbivores are most likely able to distinguish the

presence of ergot. Mammals can detect and avoid endophyte-

infected plants, even by their alkaloid profile [48]. This is possibly

due to the bitter taste of alkaloids [19], and ergot sclerotia can

contain high doses of similar alkaloids [16], [19], [49]. Ergot is also

claimed to have a distinctive smell detectable even by man (rev. in

[23]). Moreover, the fully developed dark-coloured sclerotia of C.

purpurea are usually larger than seeds and often curved, which

makes them clearly visible when protruding from florets. Lev-

Yadun and Halpern [25] suggested that the colour of ergot could

even provide a visual aposematic signal for mammalian herbi-

vores. The authors also speculated about the possibility of

development of food aversion towards ergot-infected grasses.

Ingestion of ergot sclerotia in low levels is not lethal, but can cause

symptoms which make development of food aversion possible [25].

Bakau & Bryden [50] have detected avian discrimination of ergoty

food in a longer-term food choice study in which birds had the

possibility to also ingest ergot.

With our data, it is impossible to propose the actual mechanism

for ergot avoidance. However, from a plant’s perspective, the

reason and mechanism of ergot-induced avoidance is irrelevant. If

the presence of ergot negatively affects the seed predation

probability of an inflorescence, the plant gains a protective effect.

Accordingly, ergot may well provide defence for other tillers of the

host plant, and even for neighbouring plants.

In our model, we have assumed that ergot infection causes

direct loss of seeds, and hence beta (i.e. the relative decline in

viable seeds per plant if infected by ergot) can achieve only positive

values. The argument can be expanded so that beta may also

result in negative values indicating that ergot-infected plants

produce more seeds than non-infected plants. In such a case ergot

would be beneficial to the plant without any protective effects. In

fact, herbivores could theoretically even be slightly attracted by

ergot infected plants and still ergot would be beneficial to the host

as far as the loss of seeds due to the greater risk of grazing is

smaller than the overall improved seed production of ergot

infected plants. In this study we found only a very low cost

associated with ergot infection in terms of seed number per

inflorescence, so this scenario might be possible in some ergot-

grass species combinations.

Ergot – a conditionally helpful pathogen
In this study, we only refer to fitness effects on the host on the

ecological time scale. The alkaloids produced by ergot, which are

the cause for the host-acquired chemical defence, have probably

evolved to protect the fungus itself, and have a protective effect on

the host as a by-product. Such a case can be defined as ‘‘by-

product mutualism’’ [7]. Regarding the evolutionary history of the

relationship, our study is not sufficient to claim that the interacting

species have evolved special adaptations to receive ‘‘mutualistic

benefits’’ from each other (see [6], [8]). Such a coevolved

mutualistic symbiosis is most easily developed when transmission

of the symbiont is vertical (e.g. Epichloë grass endophytes), whereas

according to some species interaction models in horizontally

transmitted symbionts, like ergot, higher virulence would evolve

more easily (e.g., [51]). On the other hand, mutualism is

commonly detected among free-living species, e.g. among

ectomycorrhizal fungi and plants as well as pollinating insects

and plants, and thus, evidently, vertical transmission is not a

necessary condition for mutualism to evolve [52]. Actually each

Figure 4. Overall reaction of sheep to ergoty feed. A decision
tree representing the average probabilities of rams’ (n = 6) approaches
and decisions between ergoty and control forage in a food choice test.
The final choice signifies the alternative eventually chosen for eating.
doi:10.1371/journal.pone.0069249.g004
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plant is a part of a complex web of interacting mutualists, both

vertically transmitted symbionts and free-living organisms, co-

evolving together [53].

Fellous & Salvaudon [9] have discussed the evolution of

parasitic interaction into a mutualistic relationship in relation to

conditionally helpful parasites. They suggest, that if the beneficial

fitness effect is strong, even the rarely occurring mutualistic

situation may select against resistance to the parasite infection.

According to Fellous & Salvaudon [9], the interaction may evolve

towards mutualistic symbiosis especially if the parasite provides a

completely new trait or function for the host. Ergot-grass

interaction demonstrates this scenario, since grasses usually do

not have chemical defence mechanism against herbivores, but

cope with herbivores by tolerating grazing [19] and with weak

phytolith (silica bodies) defence [54]. Toxic ergot provides the host

with a new trait, the acquired chemical defence, compared to

uninfected grasses. Grasses seem not have evolved strong

resistance against ergot, which indicates the lack of straightforward

selection against ergot infection. In many grassland ecosystems

grasses experience recurrent grazing, which is the situation where

grasses would benefit from any additional protection against

herbivory.

We conclude that ergot infection involves direct costs to the host

grass, but the costs may not necessarily be notable in wild grass

populations. Ergot may provide the host with indirect, ecological

benefits via acquired chemical defence in conditions were

mammalian herbivores are present. Thus, we suggest that the

ergot-grass system is an example of conditional pathogen-host

interaction in which the outcome may fall on different parts of a

continuum from parasitism to mutualism depending on the

specific situation. The interaction may be defined as conditional

defensive mutualism.

The protective effect provided by ergot is concentrated on

reproduction and reproductive tissue, inflorescence and the seed

set, where the fitness effects are most pronounced. This is the case

especially in conditions where large herbivores consume most of

the inflorescences. In fact, the defensive effect of ergot has acted

against human exploitation, as heavily affected seed and grain sets

have been, and still are, disposed of. Our argument could partly

explain why grasses are commonly susceptible and rather tolerant

to ergot and no effective resistance mechanisms have evolved over

time. This might provide new insight into plant breeding programs

of pooid cereals, where ergot resistance is one of the goals.
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