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Abstract

Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of
materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim
of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as
temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy
logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four
random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the
results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity.
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Introduction

Electrochemical impedance spectroscopy (EIS) is at the heart of

our understanding of electrochemical characteristics of materials.

It determines diffusion impedance, rate of charge transfer, charge

transport processes, double-layer capacitance and solution resis-

tance [1–4]. One of the important factors which can be obtained

by EIS is conductivity. Bulk and interface physical properties, such

as mechanical, compositional, and crystallographic properties, and

specifically, electrical–change impulsive and heterogeneous distri-

butions of charge (polarizations), decrease the overall conductivity

of a system [5–9]. Owning to non-linear relationships involved in

the calculation of conductivity, most of the regression models are

not applicable in the prediction of conductivity.

Fuzzy logic is a powerful tool that can be used to model complex

systems [10,11]. It has become popular in the modeling of

different physical systems, including solar cells, fuel cells, super-

capacitors, corrosions and batteries [12–16]. However, far less

attention has been paid to employing this method in impedance

spectroscopy, despite combination of these two methods providing

a knowledge base which helps to save time, energy and material.

Fuzzy logic normally follows five steps. Firstly, input membership

functions (MFs) are assigned to input characteristics. Secondly, the

membership functions are linked to rules. Thirdly, the rules are

connected to output characteristics and then output membership

functions are assigned to the output characteristics. Finally, a one-

valued output is concluded from the output membership functions

[11,17].

Determining the membership functions and assigning rules is

sensitive work which requires expert knowledge. Artificial neural

networks can facilitate the automatic determination of member-

ship functions and rules. The combined structure is called a neuro-

fuzzy inference system (ANFIS) [18,19]. ANFIS provides a method

for fuzzy logic modeling to obtain information about input/output

data sets [20]. Accordingly, in cases where the results show

acceptable statistical features, the model can be applied to desired

sets of inputs to predict their outputs.

In this study conductivity was modeled in terms of four inputs.

Focus in the field of electrochemistry has changed from a time and

concentration interdependence, to frequency domain [2], thus,

one of the input factors chosen was frequency. As electrical

response can differ significantly depending on the nature, texture

and microstructure of polymer films, and the types of charge

present [21], two other input factors selected were the thickness

and weight percentage of salt in the polymer films. Although a

considerable amount of literature deals with measurements made

at room temperature [22–25], the temperature is effectively a

parameter in EIS and is therefore considered as the last input.

These four inputs are used to predict the ac-conductivity of a

polymer film; a development toward small-signal ac analyses.

The statistical characteristics examined included mean-absolute

error (MAE), mean-square error (MSE), root mean-square error

(RMSE), the factor of two (FA2), percentile variance (VAF), index

of agreement (IA), systematic and unsystematic MSE (MSES and

MSEU, correspondingly), intercept and slope and determination

coefficient (R2) and intercept and slope of linear regression

between model and experimental data [26].
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Methodology

Experimental Data Collection
Rice starch (Sigma-Aldrich) as a biopolymer and lithium iodide

salt (Aldrich, crystalline powder, 99.9% trace metal basis) were

used in this work. Each sample was prepared using a solution cast

technique. Rice starch (1 g) was dissolved in 25 ml of DI-water

and stirred and heated to 80uC until gelatinization. After

gelatinization, the solution was cooled to room temperature with

continued stirring and different amounts of lithium salt (LiI) were

added (5, 10, 15, 20, 25, 30 and 35 wt. %). The solution was

stirred to obtain a homogenous mixture. Solutions were then cast

onto Teflon petri dishes and oven dried at 60uC for 24 h. After

drying, solid films were cast.

Conductivity and frequency-dependent studies were carried out

using an electrochemical impedance spectroscopy (EIS) analyzer

(Hioki, 3532-50 LCR HiTESTER) with a frequency range of

50 Hz to 5 MHz. The samples were compressed between two

stainless steel blocking electrodes with areas of 2.98 cm2. The

imaginary parts of impedance were automatically computed with a

LCR HiTESTER. The ionic parameter of ac-conductivity was

calculated using following equation.

sac~e0e
00v ð1Þ

where e00is the imaginary part of impedance known as dielectric

loss, v is angular frequency and e0 is the permittivity of the free

space [27].

Figure 1. General neuro-fuzzy arrangement for conductivity modeling.
doi:10.1371/journal.pone.0092241.g001

Figure 2. First-order Sugeno model with two inputs and two rules.
doi:10.1371/journal.pone.0092241.g002

Prediction of Conductivity by Neuro-Fuzzy Model

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e92241



Modeling Design
Artificial neural network techniques have been extensively

applied in different fields of study [28–30]. Nevertheless, one of the

major shortcomings in the application of these techniques is lack of

interpretation [31]. Fuzzy logic is another method for modeling

which can cover interpretation weakness in neural networks. The

fuzzy inference system is comprised of premises and antecedents,

which are connected by fuzzy rules. The structure of fuzzy logic is

in a sense analogous to neural network modeling. It represents

inputs through input membership functions and their related

parameters, then maps output membership and related parame-

ters of the output membership functions. This system can be

applied to interpret the input and output maps. The commercial

Fuzzy Logic Toolbox within the framework of MATLAB version

of 7.12.0.635 was used throughout the study. The extra code is

written to get the optimum desire results from the software.

Figure 1. Shows the schematic structure used for modeling with

neuro-fuzzy in the present study.

Sugeno is a form of fuzzy inference that the consequence of

each rule consequent is a constant or linear combination of the

inputs. The output variables are gained by using fuzzy rules to the

fuzzy input sets. Since it is supposed to use ANFIS, only zero-order

or first-order Sugeno fuzzy inference system can be applied. The

samples of zero-order and first-order rules are as follows [32–34]:

Zero{order : If x is MFx1ð Þ and y is MFy1ð Þ, then f1~c ð2Þ

First{order : if x is MFx2ð Þ and y is MFy2ð Þ,

then f2~a1xzb1yzc1

ð3Þ

In order to calculate the output, the weighted linear mixture of

the consequent is computed. A schematic combining the first-

order Sugeno model with two inputs and two rules is shown in

figure 2 [35] and the corresponding ANFIS structure is depicted in

figure 3 [32].

The first layer is the input layer. In the schematic shown figure 3

the input layer consists of two inputs, x and y, however, in actual

modeling, the input layer embraces four factors, namely:

frequency, film thickness, weight percentage of salt in the polymer,

and temperature.

The second layer is the fuzzyfing layer which allocates

membership functions to inputs. In fuzzy theory, membership

functions are linguistics labels which transform verbal data to

numeric data, whereas in the present study membership functions

are just part of the modeling. Three Gaussian membership

functions were used for each input as follows:

mxi~exp {
x{mffiffiffi

2
p

d

� �2
" #

i~1,2 and 3 ð4Þ

Figure 3. Schematic ANFIS structure for two inputs and two
rules.
doi:10.1371/journal.pone.0092241.g003

Figure 4. The optimum membership functions for frequency, salt weight percentage, thickness and temperature in three levels.
doi:10.1371/journal.pone.0092241.g004
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where m and d show the mean and the variance of Gaussian

function and i indicates the number of membership function

related to input x. Parameters in the fuzzyfing layer are denoted as

the premise parameters and are nonlinear parameters.

The third layer is the implification layer. Two methods can

apply to this layer; minimum and product methods, but the

product method is most commonly applied. Here, the incoming

inputs from the previous layer are multiplied and applied to an

antecedent formula to produce the outputs. This process can be

shown by the following formula:

w1~mximyi ð5Þ

mx and my are membership functions of input 1 and 2. In this

modeling study, the four membership functions multiply together.

The fourth layer is a normalizing layer. In order to normalize

the output value, the implication parameter, w, should be

normalized. The normalization follows the formula below.

wi~
wiP

wj

ð6Þ

For the schematic, input x and y simplify to �wwi~
wi

w1zw2
in which

i = 1,2. The wwi calculates the proportion of the ith rule’s strength

to the total summation of all rules’ strengths.

The next layer is a defuzzyfing layer. It applies wi to linear

function f. For two inputs, the definition of f is based on a, b and c

antecedent linear parameters. When n input parameters exist,

there are n+1 antecedent parameters.

wifi~aixzbiyzci ð7Þ

The backpropagation neural network adjusts in order to obtain

the desired output which matches to the target experimental data.

The last layer is the total summation of wifi, which provides the

final output [34].

The output shape varies with premise and antecedent param-

eters. Neuro-adaptive learning helps to automatically adjust these

parameters by applying a backpropagation algorithm alone or

with a least squares method (hybrid method). This allows fuzzy

systems to learn from the data they are modeling. The

membership functions parameters will change during the learning

process. A gradient vector enables the tuning of these parameters.

This vector presents a measure to evaluate the quality of the fuzzy

system in the modeling of the given input and output sets. Once

the gradient vector was found, any of the standard optimization

methods could be used to tune the parameters in order to decrease

error. Generally, the sum of the squared differences between

experimental and model outputs is used for error measurement. In

this paper, the conductivity estimation was performed using a

hybrid learning algorithm.

Logarithmic pretreatment was applied to the raw frequency

data to convert them from high range to normal range. The data

sets were separated randomly into three subsets; training, checking

and testing data sets. Overfitting contributes to high testing error

and can lead to poor prediction. Two solutions can be considered

to avoid overfitting. Firstly is the use of a large random number of

input data for the training set. In this paper, the total number of

random training sets was 6830. The second solution is to use data

which check the error measurement of checking and training data
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after each epoch. Here, 3400 checking data were randomly chosen

for training purposes. The model performance was tested via

separate test data sets randomly chosen from the experimental

data set. 3400 data were selected for the testing set.

Results and Discussion

Three Gaussian membership functions were chosen for each

input. After optimizing with a hybrid learning algorithm, the

parameters of the optimum membership functions were obtained.

Figure 5. Regression plots of model and experimental data for four datasets: Total, Train, Check and Test values.
doi:10.1371/journal.pone.0092241.g005

Figure 6. Model prediction of changing conductivity in terms of four experimental factors; weight percentage of salt, temperature,
thickness of film and logarithm of frequency.
doi:10.1371/journal.pone.0092241.g006
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figure 4 shows the optimal Gaussian function in terms of the lowest

mean squared error in three levels; low, medium and high.

In the present study the statistical features were employed to

measure the goodness of the model. In the literature, different

descriptive statistical values have been used for model evaluation.

These features include MAE, MSE, RMSE, FA2, VAF, IA, MSES

and MSEU, intercept and slope and R2 of linear regression

between model and experimental data [26,36–38].

MAE is a measurement used to determine how close the model

data are to the experimental data and is defined as:

MAE~
1

n

Xn

i~1
Oi{Tij j~ 1

n

Xn

i~1
eij j ð8Þ

As the name implies, the mean absolute error is an average of

the absolute errors ei~ Oi{Tij j, where Oi is the model output, Ti

the experimental target value, and n the number of data.

MSE is another way to measure the difference between model

values and the experimental values. It is defined as an average of

the squared errors using the following formula:

MSE~
1

n

Xn

i~1
Oi{Tið Þ2~ 1

n

Xn

i~1
eið Þ2 ð9Þ

RMSE, also distinguished as the quadratic mean of errors, is

another statistical gauge of the amount of error.

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1
Oi{Tið Þ2

r
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1
eið Þ2

r
ð10Þ

FA2 is expressed as a fraction of the data in which the ratio of

model to experimental data is between 0.5 to 2%.

FA2~(Fraction of data which 0:5ƒ
Oi=Ti

ƒ2:0|100 ð11Þ

The ideal value for this statistical feature is 100 percent.

Another factor to measure the correctness of a model is the

percentile variance. The percentile variance (VAF) computes the

variance accounted for among two sets of data. The VAF between

experimental target data Ti and the model data Oi is expressed as.

VAF~ 1{
var(Ti{Oi)

var(Ti)

� �
|100 ð12Þ

where var indicates the variance among the data.

IA is a standardized measurement of the model prediction error.

It varies from zero to one. It can be calculated from the following

formula:

IV~1{

Pn
i~1 Ti{Oið Þ2Pn

i~1 Ti{T
�� ��z Oi{T

�� ��� �2
ð13Þ

where T is the mean of the measured values. A value of one reveals

a perfect agreement between the experimental and predicted

values, while 0 shows no agreement at all [38]. The index of

agreement can find additive and proportional alterations in the

measured and modeled means and variances; although, IV is

overly sensitive to extreme quantities owing to the squaring of the

differences.

When a linear regression exists between model and experimen-

tal values, the linear regression line pass best fit from them. These

lines can be different to the both measured and model data. These

errors are measured using MSES and MSEU, defined as:

MSES~
1

n

Xn

i~1
Ti{ÔOi

� 	2

ð14Þ

MSEU~
1

n

Xn

i~1
Oi{O

_

i

� 	2

ð15Þ

WhereO
_

iis the predicted value obtained from the linear regression

O
_

i~azbTi

� 	
Table 1 indicates the above statistical features for the current

modeling.

The average results are 4.98E-05, 5.03E-05, 4.92E-05 and

4.98E-05 for train, check, test and total data, respectively. By

comparing the error measurement with average data, it can be

seen that MAE and RMSE are one order less than the average

data and MSE is six orders less. This result is acceptable. From the

factor of two index, it can be seen that 83% of predicted data is

neither lower than half nor greater than twice the real data. From

the percentile variance, it can be seen that the prediction error

variance is almost the same as the measured error variance, with

almost 100% accuracy. The index of agreement shows that error

in the model data with 99.99% accuracy is the same as error in

the real data. The MSES and MSEU imply the amount that the

experimental and modeling data differ from the normal trend. The

sum of these two errors gives the mean squared error.

The slope of the linear regression of the parameters, the y-

intercept and R2 are used to assess the correctness of a model. The

y-intercept and slope of the linear regression line can show how

well model data match experimental data. The slope shows the

relative association between model predictions and measured data

and experimental values. Since the perfect model is the one in

which they are same, the ideal slope is one. The y-intercept shows

the existence of a lag between the model and experimental values;

a value of zero implies that the data are not completely aligned.

Pearson’s determination coefficient R2 describes the degree of

linearity between model and experimental data. The determina-

tion coefficient, which ranges between zero and one, is an index of

the relationship between observed and model and normally values

greater than 0.5 are considered acceptable. However, when this

value is close to one a strong relationship between the model and

measured data is implied, and this links to the power of the model.

Figure 5 shows that the slope is very close to a value of one and the

intercept is four orders less than the average data. Moreover, the

determination coefficient suggests a strong relationship between

the model and experimental data. By comparing these results for

train, check, test and total data sets, it can be understood that the

model is not only able to predict the current experimental results

but also can be applied for unknown future data.

Figure 6 illustrates the results obtained from the modeling of

conductivity. The figure depicts the trend of variation in

conductivity based on experimental factors. The three factors of

weight percentage of salt, temperature and thickness are shown

with a normal scale, while the frequency parameter is shown with

a logarithmic scale. This figure provides information about the

Prediction of Conductivity by Neuro-Fuzzy Model
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surface trend and optimum point of the experiment. Furthermore,

it shows the possible error in preliminary experiments. As can be

seen in the graphs, surface plot of the thickness fluctuates, while

the other parameters have a smooth surface. It is likely that there

were some errors in the measurement of thickness due to

equipment inaccuracy or human error. These plots also provide

information about the importance of parameters. Parameters that

exhibit a steep slope have more significance since a slight change

in the parameter causes large variation in results.

Conclusions

This paper presents a neuro-fuzzy model to predict conductivity

of polymer film. The key to this model is to forecast conductivity in

terms of basic experimental factors, namely frequency, tempera-

ture, thickness of the polymer film and weight percentage of salt.

The model is validated with three sets of data; training, checking,

testing data set. The performance of model evaluated with several

statistical characteristics. These characteristics included error

measurement, variance measurement, model evaluation and linear

regression between model results in four sets of data; train, check,

test and total dataset and the experimental data. All the statistical

features imply the correctness and power of the model. The model

can be applied as an advisory system to inform researchers about

trends and possible optimum points, error measurement and the

importance of factors.
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