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Abstract: Gender is an important risk factor in predicting chronic kidney disease (CKD); however, it
is under-researched. The purpose of this study was to examine whether gender differences affect
the risk factors of early CKD prediction. This study used data from 19,270 adult health screenings,
including 5101 with CKD, to screen for 11 independent variables selected as risk factors and to test for
the significant effects of statistical Chi-square test variables, using seven machine learning techniques
to train the predictive models. Performance indicators included classification accuracy, sensitivity,
specificity, and precision. Unbalanced category issues were addressed using three extraction methods:
manual sampling, the synthetic minority oversampling technique, and SpreadSubsample. The Chi-
square test revealed statistically significant results (p < 0.001) for gender, age, red blood cell count
in urine, urine protein (PRO) content, and the PRO-to-urinary creatinine ratio. In terms of classifier
prediction performance, the manual extraction method, logistic regression, exhibited the highest
average prediction accuracy rate (0.8053) for men, whereas the manual extraction method, linear
discriminant analysis, demonstrated the highest average prediction accuracy rate (0.8485) for women.
The clinical features of a normal or abnormal PRO-to-urinary creatinine ratio indicated that PRO ratio,
age, and urine red blood cell count are the most important risk factors with which to predict CKD in
both genders. As a result, this study proposes a prediction model with acceptable prediction accuracy.
The model supports doctors in diagnosis and treatment and achieves the goal of early detection and
treatment. Based on the evidence-based medicine, machine learning methods are used to develop
predictive model in this study. The model has proven to support the prediction of early clinical risk
of CKD as much as possible to improve the efficacy and quality of clinical decision making.

Keywords: gender differences; chronic kidney disease; machine learning; risk factors

1. Introduction

Chronic kidney disease (CKD) is a global public health problem that is related to severe
morbidity, mortality, and high medical resource utilization [1]. In 2017, the global estimated
prevalence of CKD was 9.1% with a total of 69.75 million cases and 1.2 million deaths. [2].
The global estimated prevalence of CKD is 9.1%. According to Taiwan’s Ministry of Health
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and Welfare, CKD accounts for the largest proportion of health insurance claims in Taiwan,
with a total of 364,000 patients accounting for costs of approximately TWD 51.3 billion
in 2018 [3]. Population aging and the associated increase in hypertension continue to
raise the prevalence of hyperlipidemia and hyperglycemia and thus the incidence of CKD.
Generally, two basic definitions of CKD are used: 1. Kidney damage for >3 months,
including structural and functional abnormalities, which may be pathological, blood, urine,
or imaging abnormalities; and 2. Glomerular filtration rate (GFR) < 60 mL/min/1.73 m2

for over 3 months. CKD is usually divided into five stages based on GFR [4] (see Table 1).
However, the adverse consequences and clinical risks of renal function insufficiency in
early cases differ between genders.

Table 1. Five stages of chronic kidney disease.

Stages Description GFR Value

1 CKD with normal or high GFR ≥90 mL/min/1.73 m2

2 Mild CKD 60–89.9 mL/min/1.73 m2

3
Moderate CKD 30–59.9 mL/min/1.73 m2

3a 45–59.9 mL/min/1.73 m2

3b 30–44.9 mL/min/1.73 m2

4 Severe CKD 15–29.9 mL/min/1.73 m2

5 End stage CKD <15 mL/min/1.73 m2

GFR: glomerular filtration rate; 3a: stage 3a of kidney disease; 3b: stage 3b of kidney disease.

The current literature mostly focuses on differences in kidney disease prognoses for
men and women of average age. In men, urinary albumin excretion, plasma glucose, and
systolic blood pressure are the most important predictors of severely declined renal func-
tion [5,6]. In addition, waist circumference and the cholesterol-to-high-density lipoprotein
ratio are positively associated with the maintenance of kidney function. Relative to women,
plasma glucose and systolic blood pressure are risk predictors of decreased renal function,
and triglycerides are positively related to maintaining renal function [5,6]. Related epi-
demiological studies show that the incidence of CKD in women is lower than in men [7,8].
In addition, estrogen was shown to protect kidney function in related animal models,
including glomerular sclerosis reduction and ischemic damage prevention [9,10]. Ricardo
et al. (2019) [11] found a significant difference in eGFR decline between men and women
(−1.09 mL/min/1.73 m2 for women and −1.43 mL/min/1.73 m2 for men (p < 0.001)).

However, only few researchers focused on gender differences among adults [12].
Current screening standards provide measurements, but it is difficult to effectively predict
CKD precisely [13]. At present, at least 2 million patients are diagnosed with CKD in
Taiwan, but only 3.5% can secure an early diagnosis for timely treatment, leading to the
loss of 25% of kidney function before diagnosis. Thus, early detection helps to effectively
prevent deterioration. Evidence-based medicine requires gender heterogeneity to be taken
into account in CKD deterioration to inform the risk assessment, monitoring, and prognosis.
A recent survey showed that Taiwan has a high incidence of CKD, but public awareness of
the condition is extremely low. According to the 2012 report of the United States Preventive
Services Task Force and the American College of Physicians, kidney function is insufficient
for asymptomatic individuals, and the effective tools for CKD detection are lacking [14].
Regardless of the risk factors, the American Society of Nephrology strongly recommends
regular CKD detection [14].

This study used preventive health screening data from Taiwanese adults to assess the
impact of gender differences as risk factors for CKD in order to achieve early prediction of
reduced renal function. Since 2012, Taiwan implemented a 5-year plan for CKD prevention
and quality care improvement to reduce the need for dialysis after kidney transplantation
and improve the 5-year survival rate. However, in 2017, Taiwan reported 275,000 cases of
CKD, and 6743 of these resulted in deaths. The uncertainty of diagnosis usually results
from heterogeneity screening and clinical practices; thus, an accurate tool is needed for



Int. J. Environ. Res. Public Health 2022, 19, 1219 3 of 11

early prediction to ensure that potential patients receive and comply with preventive
health check-ups. Data mining has been successfully used to build predictive models
for healthcare prediction tasks [15–21]. The present study sought to evaluate the novel
hypothesis that men and women with CKD possess different risk factors. The objective of
this study was to develop a risk prediction model among gender by using seven machine
learning algorithms to predict early CKD.

2. Materials
2.1. Participants

In this study, we collected 19,270 valid health screening records from 32 health screen-
ing clinics and three specialized laboratories; this included 19,270 screening results that
were recorded between 1 January 2015 and 31 December 2019. Of the 8073 male and
11,197 female records, 5101 had CKD patients and 14,169 healthy samples. The average age
of CKD patients was 69.19, in the range of 58.45–79.93 years.

2.2. Instruments

Seven machine learning techniques were used to predict early CKD, including support
vector machine (SVM), linear discriminant analysis (LDA), logistic regression (LGR), C4.5
decision tree (C4.5), classification and regression tree (CART), random forest (RF), and C5.0
decision tree (C5. 0) [15–17].

CART is a decision tree algorithm that uses a binary process to sequentially divide
the data space and generate a simple prediction rule in each partition. CART not only
solves classification problems but also performs a regression analysis, which means that
this method generates a classification tree when the target of the predictor variable is clear.
The first step in the CART analysis is to construct all decision rules through a binary decom-
position process; the second step is to prune the overgrown trees to eliminate unnecessary
rule trees; and the last step is to determine the best tree rules using cross-validation.

C4.5 is a decision tree algorithm that uses the ID3 algorithm to produce an improved
iterative binary tree. It selects the attributes of the decision tree at each node according to
the information acquisition rate. According to information theory and probability statistics,
entropy is one of several ways to measure the average level of how many different types
exist in a dataset. C4.5 reflects the training set and gradually develops a tree structure for
attribute variables according to the maximum information gain ratio.

LDA is a widely used method for dimensionality reduction and classification. For
the data to be analyzed, LDA looks for different categories with their own dimensional
space in which the distance between samples of different categories gradually increases,
and, contrarily, the distance between samples of the same category decreases. In the
learning process, LDA can obtain the function to project different types of samples into
low-dimensional space and then performs feature decomposition to calculate the best
projection.

The C5.0 algorithm can generate decision trees or rule sets. The C5.0 model splits the
samples based on the maximum information gain. The sample subset determined by the
first split is then split again, usually based on another field, and this process is repeated to
cause the sample subset to split until it cannot be split any further. Finally, the lowest-level
split is re-captured, and the sample subsets that do not significantly contribute to the model
value are pruned.

RF is an overall classification method based on the statistical learning theory that com-
bines several separate classification trees. RF is a supervised machine learning algorithm
that considers the unweighted majority of classified votes. It first uses bootstrapping to
select various random variables as the training dataset. This widely used algorithm uses
random sampling and replacement to simultaneously reduce variance and avoid overfitting.
The classification tree of the selected sample is then used to construct the training process,
using a large number of classification trees to form the RF from selected samples. CART
is a classification method that is widely used for RF modeling. Finally, all classification
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trees are merged, with voting for each category, and then the winning category is selected
according to the number of votes to obtain the final classification result.

SVM is a machine learning algorithm that is based on the principle of structural risk
minimization and is used to estimate the function by minimizing the upper limit of the
generalization error. SVM modeling can initially use a linear or nonlinear kernel function
to map the input vector to a feature space. Then, in the feature space, SVM tries to find the
best linear division to construct a hyperplane that separates various types.

LGR is a classification algorithm rather than a regression algorithm. Usually, the
known independent variable is used to predict the value of a discrete dependent variable
(for example, a binary value of 0/1, yes/no, and true/false). It predicts the probability of
an event by fitting a logit function, thus producing a probability value between 0 and 1.

2.3. Procedure and Data Analysis

Previous studies revealed that gender is associated with CKD deterioration [3,22,23].
The urine protein (PRO)-to-urine creatinine ratio (UPCR) is the most important risk factor
this consequence [24–26]. The UPCR is used for the next section of analyzing the impact
of gender differences to predict the risk factors for CKD. Important risk factors of CKD
were analyzed through discussions with clinical experts and a review of the relevant
literature. The data were cleaned, re-encoded, ranked in importance using the gain ratio
and information gain classifier, and then divided into training and test sets (at a 7:3 ratio)
through 10 rounds of random sampling. Gender prediction and a clinical risk factor analysis
were then performed using seven machine learning classifiers. On the basis of expert input
and the relevant literature, 11 independent predictive variables were selected (see Table 2).

Table 2. Data sources and variable codes.

Variables Name Normal Range

X1 Gender 1 male/2 female
X2 Age Continuous
X3 RBC 0–5
X4 GLU 70–100
X5 TG 50–150
X6 T-CHO 50–200
X7 HDL >40
X8 LDL <130
X9 ALB 3.5–5.0

X10 PRO Random < 12 mg/dL
X11 UPCR <150

Y eGFR
1. <90 mL/min/1.73
2. ≥90 mL/min/1.73 m2

RBC: red blood cell; GLU: glucose; TG: triglycerides; T-CHO: total cholesterol; HDL: high-density cholesterol;
LDL: low-density cholesterol; ALB: albumin; PRO: proteinuria; UPCR: urine protein-to-creatinine ratio; eGFR:
estimated glomerular filtration rate.

Regarding the imbalance issue, we adopted the following kinds of sampling tech-
niques: manual extraction technique, synthetic minority over-sampling technique (SMOTE),
and SpreadSubsample. Manual extraction is an easy extraction technique, and it under-
sampled the majority category data at random. The synthetic minority over-sampling
technique (SMOTE) is an over-sampled minority category data that creates synthetic sam-
ples, and it makes extra data by actual examples. SpreadSubsample is one of under
sampling method to solve the issue of data imbalance, and it can be balanced with the
minority class. Three types of extraction techniques were used to solve the majority and
minority data imbalance problem. Using the above classification methods, we used the
rpart package (version R4.1.15) to build the CART prediction model. The OptimClassifier
suite (version R0.1.5) was used to determine the tree depth, the number of observations in
the terminal node, and the pruning tree parameters to search for the best parameter set to
generate the CART model [22]. The RWeka suite (version R0.4–42) was used to construct
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the C4.5 model. The caret suite (version R 6.0–84) was used to identify the best parameter
set to effectively build the C4.5 model. LDA used the MASS suite (version R7.3–51.5). The
ELM model was constructed by running the elmNN package in the R1.0 version [23]. The
caret suite (version R6.0–84) was used to adjust important hyperparameters to find the
best number of hidden layer neurons to generate the best ELM model [23]. Classification
accuracy was assessed based on accuracy, sensitivity, specificity, and the receiver operating
characteristic curve by estimating the area under the curve (AUC).

3. Results
3.1. Risk Factors for Predicting CKD

This study used the adult health screening data to predict risk factors for CKD. The
results of the Chi-square statistical test are summarized in Table 3. Gender, age, urinary red
blood cells (RBC), fasting blood glucose (GLU), neutral lipid (triglyceride) (TG), high-density
lipoprotein (HDL), PRO, and the urinary protein-to-creatinine ratio (UPCR) were all found to
be statistically significant. In terms of gender, the majority of male participants were found to
have CKD (48.3% CKD vs. 39.6% healthy). The proportion of participants with abnormal RBC
in the CKD group was higher than that in the healthy participants group (23.2% vs. 19.1%).
The GLU in the CKD group was higher than that in the healthy participants group (20.7% vs.
18.8%). Compared with the healthy group, the CKD group had a higher proportion of TG
abnormalities (60.6% vs. 58.5%). In the CKD group, the proportion of PRO abnormalities was
higher than that in the healthy participants group (82.1% vs. 35.0%), as was the UPCR (67.9%
vs. 12.7%). No significant differences were found for serum total cholesterol (p = 0.491),
low-density lipoprotein (p = 0.782), or albumin (p = 0.457).

Table 3. Descriptive analysis of variables.

Items Healthy CKD p-Value χ2

n (%) 14,169 (73.5%) 5101 (26.5%)

Gender
Male 5608 (39.6%) 2465 (48.3%) <0.001 ** 117.817

Female 8561 (60.4%) 2636 (51.7%)

Age
Mean (±SD) 63.37 ± 11.56 69.19 ± 10.74 <0.001 * 699.271

RBC
Normal 11,460 (80.9%) 3917 (76.8%) <0.001 ** 38.956

Abnormal 2709 (19.1%) 1184 (23.2%)

GLU
Normal 2667 (18.8%) 1055 (20.7%) 0.004 ** 8.321

Abnormal 11,502 (81.2%) 4046 (79.3%)

TG
Normal 5878 (41.5%) 2012 (39.4%) 0.011 * 6.466

Abnormal 8291 (58.5%) 3089 (60.6%)

T-CHO
Normal 9198 (64.9%) 3284 (64.4%) 0.491 0.474

Abnormal 4971 (35.1%) 1817 (35.6%)

HDL
Normal 11,954 (84.4%) 4369 (85.6%) 0.029 * 4.763

Abnormal 2215 (15.6%) 732 (14.4%)

HDL
Normal 11,400 (80.5%) 4095 (80.3%) 0.782 0.076

Abnormal 2769 (19.5%) 1006 (19.7%)

ALB
Normal 14,162 (100.0%) 5097 (99.9%) 0.457 0.553

Abnormal 7 (0.0%) 4 (0.1%)
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Table 3. Cont.

Items Healthy CKD p-Value χ2

PRO
Normal 9203 (65.0%) 915 (17.9%) <0.001 * 3324.451

Abnormal 4966 (35.0%) 4186(82.1%)

UPCR
Normal 12,364 (87.3%) 1639 (32.1%) <0.001 * 5739.411

Abnormal 1805 (12.7%) 3462 (67.9%)
** p-value < 0.01; * p-value < 0.05. RBC: red blood cell; GLU: glucose; TG: triglycerides; T-CHO: total cholesterol;
HDL: high-density cholesterol; LDL: low-density cholesterol; ALB: albumin; PRO: proteinuria; UPCR: urine
protein-to-creatinine ratio.

3.2. Prediction Models for CKD

A comparison among the three modes of extraction techniques (Manual, SMOTE,
and SpreadSubsample) was performed by using seven machine learning techniques to
train the predictive risk models of each mode for male and female groups, as shown in
Figures 1 and 2. On the basis of manual extraction techniques, risk factors in the male
participants group were age, RBC, GLU, HDL, PRO, and UPCR, with LGR exhibiting the
highest AUC (0.834) (Figure 1a), whereas in the female participants group, they were age,
RBC, T-CHO, PRO, and UPCR, with LDA exhibiting the highest AUC (0.8485) (Figure 2a).
Common risk factors for both genders were age, RBC, PRO, and the UPCR. When using
the synthetic minority oversampling technique (SMOTE) extraction analysis, the most
significant risk factors in the male participants group were age, RBC, GLU, HDL, PRO, and
the UPCR, with LGR exhibiting the highest AUC (0.824) (Figure 1b), whereas in the female
participants group, they were age, RBC, T-CHO, HDL, PRO, and the UPCR, with LGR
exhibiting the highest AUC (0.837) (Figure 2b). The common risk factors for both genders
were age, RBC, HDL, PRO, and the UPCR. When performing SpreadSubsample extraction
analysis techniques, the most significant risk factors in the male participants group were
age, RBC, GLU, HDL, PRO, and the UPCR, with LGR exhibiting the highest AUC (0.833)
(Figure 1c), whereas in the female participants group, they were age, RBC, T-CHO, PRO,
and the UPCR, with LGR exhibiting the highest AUC (0.8472) (Figure 2c). The common
statistically significant risk factors for both genders were age, RBC, PRO, and the UPCR.
Regardless of the extraction method, the top three risk factors for deteriorating CKD in
male participants were the UPCR, PRO, and age, whereas in females, they were the UPCR,
PRO, and age.
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females. (a) Manual extraction. (b) SMOTE extraction. (c) SpreadSubsample extraction.

The UPCR was further used to divide the following stage, which was used to analyze
gender differences and predict CKD risk factors based on UPCR status. Different sampling
method results are presented below.

Through manual extraction analysis techniques, the most significant risk factors for a
normal UPCR in male participants were age, RBC, TG, HDL, and PRO, with LGR exhibiting
the highest AUC (0.715), whereas in female participants, they were age, RBC, GLU, TG,
HDL, and PRO, with LGR exhibiting the highest AUC (0.7039). Common risk factors for
both genders were age, RBC, TG, HDL, and PRO. Using SMOTE extraction analysis, the
most significant risk factors for a normal UPCR in male participants were age, RBC, TG,
T-CHO, HDL, and PRO, with LDA exhibiting the highest AUC (0.693), whereas in females,
they were age, RBC, GLU, TG, T-CHO, HDL, LDL, and PRO, with LDA exhibiting the
highest AUC (0.7061). Common risk factors for UPCR in both genders were age, RBC, TG,
T-CHO, HDL, and PRO. Using SpreadSubsample extraction analysis techniques, the most
significant risk factors of a normal UPCR in male participants were age, RBC, TG, and PRO,
with LDA exhibiting the highest AUC (0.657), whereas in females, they were age, RBC,
GLU, TG, and PRO, with LDA exhibiting the highest AUC (0.7142). Common statistically
significant risk factors for UPCR in both genders were age, RBC, TG, and PRO. Regardless
of the extraction method, the top three risk factors for CKD deterioration under normal
UPCR in male participants were PRO, RBC, and age, whereas for females, they were PRO,
age, and RBC.

The most significant risk factors for abnormal UPCR in male participants included
age, RBC, GLU, HDL, and PRO, with LDA exhibiting the highest AUC (0.741), whereas
in females, they were age, RBC, GLU, GLU, T-CHO, and PRO, with LGR exhibiting the
highest AUC (0.7318). Common risk factors for UPCR abnormalities in both genders were
age, RBC, GLU, and PRO.

3.3. Decision Tree Analysis

This study sought to set up a precise prediction from routine health screenings of
asymptomatic adult patients. A comprehensive clinical prevention method that considers
all these factors is needed to successfully solve the problem of high-risk exposure in the
adult population and aid in successful prevention specifically for these populations. As
shown in Figure 3, through decision tree analyses, all samples pass through 12 subsets
of different branches, from the root node to the leaf node, by conditional screening. As
mentioned earlier, gender has a strong influence on CKD interpretation and was selected
as the root node of the classification decision tree. The second-order decision tree node is
the UPCR. The third-order decision tree is generated by age, RBC, TG, PRO, T-CHO, and
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LDL, with classification prediction accuracy ranging from 55.2% to 84.9%. Table 4 presents
the results of the 12 combinations of conditions.
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Figure 3. Decision tree for predicting variables by gender. RBC: red blood cell; GLU: glucose; TG:
triglycerides; T-CHO: total cholesterol; HDL: high-density cholesterol; LDL: low-density cholesterol;
ALB: albumin; PRO: proteinuria; UPCR: urine protein-to-creatinine ratio; eGFR: estimated glomerular
filtration rate.

Table 4. Classification and regression tree (CART)decision rule for predicting variables by gender.

Rule No. The Composition of Risk Factors No. Status Accuracy

1 Gender (Female) + UPCR (<150) + PRO (<12) 1799 Non-CKD 77.5%

2 Gender (Female) + UPCR (<150) + PRO (≥12) + Age (<65) +
T-CHO (50–200) + LDL (<130) 21 Non-CKD 71.4%

3 Gender (Female) + UPCR (<150) + PRO (≥12) + Age (<65) +
T-CHO (50–200) + LDL (≥130) 12 CKD 66.7%

4 Gender (Female) + UPCR (<150) + PRO (≥12) + Age (<65) +
T-CHO (<50 or >200) 74 CKD 60.8%

5 Gender (Female) + UPCR (<150) + PRO (≥12) + Age (≥65) 85 CKD 78.8%
6 Gender (Female) + UPCR (≥150) 4335 CKD 84.9%
7 Gender (Male) + UPCR (<150) + Age (<65) 1038 Non-CKD 82.3%
8 Gender (Male) + UPCR (<150) + Age (≥65) + RBC (0–5) 218 Non-CKD 72%

9 Gender (Male) + UPCR (<150) + Age (≥65) + RBC (<0 or >5) +
TG (50–150) + PRO (<12) 384 Non-CKD 55.2%

10 Gender (Male) + UPCR (<150) + Age (≥65) + RBC (<0 or >5) +
TG (50–150) + PRO (≥12) 30 CKD 70%

11 Gender (Male) + UPCR (<150) + Age (≥ 65) + RBC (<0 or >5) +
TG (<50 or >200) 149 CKD 59.7%

12 Gender (Male) + UPCR (≥ 150) 4097 CKD 83.8%

RBC: red blood cell; TG: triglycerides; T-CHO: total cholesterol; LDL: low-density cholesterol; PRO: proteinuria;
UPCR: urine protein-to-creatinine ratio.
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4. Discussion

Effective prediction of patient risk of developing CKD allows for early detection and
treatment. The data analysis results show that the most important risk factor in CKD
prediction in both genders was the UPCR, followed by PRO and age. Regardless of a
normal or abnormal UPCR in male participants, the top three risk factors for CKD were
PRO, age, and RBC, and the same results were observed in the females analyzed for UPCR.

Our findings are consistent with previous findings in that it was demonstrated that
gender is very important in predicting CKD [9–11], and also in accordance with the National
Health Research Institutes Annual Report on Kidney Disease regarding the UPCR [3] and
the RBC [24]. The findings of the ALB and GLU are consistent with our previous studies [18].
Similarly, Kshirsagar et al. [25] reported that age, and gender are important risk factors
for prediction of chronic kidney disease. Other risk factors included UPC, age, RBC, GLU,
TG, T-CHO, HDL-C, LDL-C, ALB, and PRO were important risk factors in this gender
difference analysis [27]. The result is consistent with previous reports, including research
reports on the role of UPCR and RBC in CKD from the National Institutes of Health [3].
The results for PRO are consistent with [28–30], and the findings for ALB and GLU are
consistent with previous studies [31–34]. Other studies found that the prevalence of CKD is
often positively correlated with diabetes, hypertension, and obesity [35–37], which is also
consistent with the results of the present study.

Nevertheless, the key analyzed risk factor in this study was gender. This study
indicated that CKD epidemiology differs by gender, affecting more females than males.
Although females have a higher prevalence of chronic kidney disease, men with CKD have
a faster progression to kidney failure and represent a greater proportion of the population
with kidney failure. On the other hand, females are less likely to receive dialysis on
observation. A possible alternative explanation for the existing gender differences in CKD
outcomes is that females tend towards conservative care. More investigation is still needed
to identify biologic and psychosocial factors underlying these gender disparities [38,39]. In
this light, machine learning-based risk prediction models can provide supportive evidence
for the robustness of early clinical risk assessments and CKD prediction.

5. Conclusions

Previous research has highlighted the need for new technologies to diagnose, prevent,
treat, and raise awareness about CKD. The specific and autonomous predictive model of
CKD could improve clinical care. As a result, the application of AI has great potential
in the field of nephrology. Assessing kidney health in different settings offers a more
precise, effective, and often more practical method. This study used a large dataset of
adult health screening results to identify important risk factors for gender differences in
predicting CKD. The results indicate that, regardless of gender, health screenings should
emphasize the UPCR, PRO, and age. For male UPCRs, attention should be paid to PRO,
age, and urine RBC. For female UPCRs, attention should be paid to PRO, age, and urine
RBC. In addition, this research also offers several predictive models that, unlike traditional
statistical methods, are effective in predicting a patient’s risk of developing CKD for early
detection and treatment.

Although there is much evidence that artificial intelligence appears to be a potentially
useful tool with which to overcome the challenges faced by nephrologists. The development
of this approach in nephrology is still limited by the huge heterogeneity (not always readily
available) of clinical data that needs to be integrated to optimize the performance of these
models. Further investigation of prediction needs to be conducted after CKD diagnosis,
and follow-up is necessary to track patients. Additionally, previous studies often showed
imbalances in data categories; we recommend that these experiments be trained in a broad
range of cases that represent the entire population, representing the current large-scale
implementation and limitations of individual patient treatment. In summary, the aging of
the population and the chronic nature of several diseases seem to justify the prevalence of
CKD and the increase in acute renal insufficiency. New technologies, including artificial
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intelligence, are a valuable and potentially useful tool that can optimize work in this area
and improve the management and treatment of patients with kidney disease.
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