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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the

US. Despite multiple large-scale genetic sequencing studies, identification of predictors of

patient survival remains challenging. We performed a comprehensive assessment and inte-

grative analysis of large-scale gene expression datasets, across multiple platforms, to

enable discovery of a prognostic gene signature for patient survival in pancreatic cancer.

PDAC RNA-Sequencing data from The Cancer Genome Atlas was stratified into Survival+

(>2-year survival) and Survival–(<1-year survival) cohorts (n = 47). Comparisons of RNA

expression profiles between survival groups and normal pancreatic tissue expression data

from the Gene Expression Omnibus generated an initial PDAC specific prognostic differen-

tial expression gene list. The candidate prognostic gene list was then trained on the Austra-

lian pancreatic cancer dataset from the ICGC database (n = 103), using iterative sampling

based algorithms, to derive a gene signature predictive of patient survival. The gene signa-

ture was validated in 2 independent patient cohorts and against existing PDAC subtype

classifications. We identified 707 candidate prognostic genes exhibiting differential expres-

sion in tumor versus normal tissue. A substantial fraction of these genes was also found to

be differentially methylated between survival groups. From the candidate gene list, a 5-gene

signature (ADM, ASPM, DCBLD2, E2F7, and KRT6A) was identified. Our signature demon-

strated significant power to predict patient survival in two distinct patient cohorts and was

independent of AJCC TNM staging. Cross-validation of our gene signature reported a better

ROC AUC (� 0.8) when compared to existing PDAC survival signatures. Furthermore, vali-

dation of our signature through immunohistochemical analysis of patient tumor tissue and

existing gene expression subtyping data in PDAC, demonstrated a correlation to the pres-

ence of vascular invasion and the aggressive squamous tumor subtype. Assessment of

these genes in patient biopsies could help further inform risk-stratification and treatment

decisions in pancreatic cancer.
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Introduction

Pancreatic cancer is the third leading cause of cancer related death in the US and is predicted

to become the second leading cause of cancer mortality by 2020 [1]. Despite recent advances,

the 5-year survival rate remains less than 7% [2]. The majority of patients present with

advanced stage disease, and available treatments with FOLFIRINOX or nab-paclitaxel plus

gemcitabine chemotherapy provide only modest survival benefit [3,4]. In addition, patients

who undergo attempts at curative surgery plus adjuvant chemotherapy still have a very poor

5-year survival rate at roughly 15–20% with 80% of patients relapsing after resection [5]. These

poor outcomes highlight the need for novel development of biomarkers to predict patient sur-

vival and treatment response with potential linkage to different therapeutic options.

The American Joint Committee on Cancer (AJCC) TNM staging system is currently the

most widely used prognostic factor for predicting survival in patients with pancreatic cancer

[6]. The system relies primarily on accurate assessment of tumor size, lymph node involve-

ment, and presence of metastasis. In an effort to develop better prognostic tools to stratify

patient survival, probability of recurrence, and treatment response, several groups have devel-

oped gene expression signatures utilizing microarray datasets derived from pancreatic cancer

patients [7–10]. While these signatures performed better than AJCC TNM staging in predict-

ing patient survival, clinical uptake has been lacking, in part because many of these signatures

were derived solely from microarray data which does not capture mRNA expression as accu-

rately as RNA-Sequencing and limits the dynamic range for detecting gene expression differ-

ences between patient samples [11].

With the advent of next-generation sequencing technologies, it is now possible to obtain a

complete picture of the mutational and transcriptional landscape of most tumors. In pancre-

atic cancer, this has been elucidated through many large-scale studies such as the Cancer

Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). These

analyses have identified many of the core genetic pathways activated in PDAC and have

enabled identification of distinct molecular subtypes associated with differences in therapy

response [10,12–16].

Our current study aims to integrate transcriptional analyses from multiple data sets and

platforms in order to identify genes with expression profiles predictive of survival in pancreatic

cancer patients. To define genes associated with survival we first analyzed RNA-Sequencing

and paired survival data from the TCGA database. The resulting genes were then intersected

with existing tumor and matched normal datasets to identify genes associated with transfor-

mation and with minimal normal tissue expression [17]. The resulting survival associated dif-

ferentially expressed genes (DEGs) incorporated expression differences from both the tumor

and stromal compartments of the tumor–which in combination are thought to more accu-

rately reflect the underlying biology of pancreatic tumors [15,18,19]. This set of genes was then

trained on the ICGC pancreatic cancer cohort to identify a 5-gene prognostic signature. Our

signature was tested against three other predictive PDAC signatures and performed markedly

well in two independent microarray datasets (GSE57495, GSE71729) [8,15]. The gene signa-

ture was also found to correlate with vascular invasion on histology and was predictive of sur-

vival independent of AJCC stage. Finally, the genes identified were highly associated with

molecular features of aggressive pancreatic tumor subtypes.

Methods and methods

The use of human tissues for immunohistochemistry was approved by the institutional review

board at the University of Pennsylvania. Formalin fixed, paraffin-embedded tissues of human

PDAC following surgical resection were obtained from the Cooperative Human Tissue
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query/acc.cgi?acc=GPL6244. Gene Expression

datasets to test signatures: Microarray downloaded

using GEOquery package in R from https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE57495 and https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE71729. TCGA Methylation

data was obtained from cBioPortal: https://github.

com/cBioPortal/datahub/blob/master/public/paad_

tcga.tar.gz. ICGC Data: https://dcc.icgc.org/

releases/release_22/Projects/PACA-AU. msigDB

Gene Sets: http://software.broadinstitute.org/gsea/

msigdb/download_file.jsp?filePath=/resources/

msigdb/5.2/msigdb.v5.2.symbols.gmt (Free login

required). GTEx: http://www.gtexportal.org/static/

datasets/gtex_analysis_v6p/rna_seq_data/GTEx_

Analysis_v6p_RNA-seq_RNA-SeQCv1.1.8_gene_

rpkm.gct.gz (Free login required).
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Network (CHTN: https://www.chtn.org/) and processed by Molecular Pathology and Imaging

Core (MPIC: http://www.med.upenn.edu/molecular/core_morphology.shtml) at the Univer-

sity of Pennsylvania.

Pancreatic cancer gene list development

TCGA Pancreatic RNA-Sequencing expression data and associated survival data were

obtained from the Broad GDAC Firehose site (https://gdac.broadinstitute.org/). RNA-Sequen-

cing data were first filtered to remove genes with general low expression (< 100 counts).

When multiple entries were found referencing the same gene, a single representative with the

maximum value was selected. These filtering steps dropped the number of candidate genes

from 20,330 genes to 12,959 genes. In addition, only samples with both RNA-Sequencing

expression and survival data were used for subsequent analysis comprising 178 patients. Sam-

ples were split into 2 groups for comparison, those surviving less than 1 year (Survival-) and

those surviving greater than 2 years (Survival+). Purity data for PDAC TCGA samples in Sur-

vival+/- groups was obtained from Raphael et. al. analysis of the TCGA PAAD dataset [20].

Data was available for 37 of the 47 samples on our survival cohort.

Microarray data for tumor versus normal comparison were obtained from GEO, entry

GSE28735 using the GEOquery R package [21]. Hugo Gene Symbols were mapped to each

probe in the platform (HuGene 1.0 ST) using the probeset annotation as specified in GEO.

Analysis was performed on the gene level and for each set of probesets mapping to the same

gene the one with the highest maximum value was chosen as the representative gene. This step

filtered the number of entries from 28,869 probes to 20,254 genes. The dataset itself were com-

posed of 45 tumor and normal-matched pairs comprising 90 samples in total, with associated

survival data. The patients were spread across different grades & stages. The ESTIMATE algo-

rithm was used to determine the relative purity of the 45 tumor samples [22].

For the analysis of the TCGA RNA-Sequencing data the voom package in R was initially

used to transform the data from counts into values amenable for linear modeling [23]. Follow-

ing this, the limma package in R was used to determine genes that were differentially expressed

between Survival- and Survival+ samples. This package was used similarly to determine genes

differentially expressed between tumor and normal tissue in the GSE28735 microarray dataset.

No initial conversion was needed in this case because data coming from the GEO data reposi-

tory were RMA normalized and log-transformed allowing for linear modeling. For both com-

parisons, an adjusted P-value (Benjamini-Hochberg) cutoff of 0.05 and a fold-change cutoff of

1.5 were used to determine differentially expressed genes (DEGs). The two DEG lists were

intersected to define the genes expressed in common.

Methylation analysis

Methylation data for the TCGA PAAD dataset was downloaded from the cBioPortal github

(https://github.com/cBioPortal/datahub/tree/master/public). For analyses of the methylation

data we first converted the data to M values using the lumi package and then used the limma
package to compare gene methylation profiles between the same Survival+ (28 samples) and

Survival- (19 samples) groups used in the differential expression analysis [24]. To call differen-

tial methylation we used an adjusted p-value (Benjamini-Hochberg) threshold of 0.05 and

additionally had a cutoff of delta beta�0.2 or delta beta�-0.2.

Signature development & ROC analysis

To define a survival signature, pancreatic cancer RNA-Sequencing data from the International

Cancer Genome Consortium (ICGC) was retrieved. Specifically, we obtained the Australian

Survival gene signature and pancreatic cancer
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Pancreatic Cancer data set from the ICGC (https://dcc.icgc.org/releases) encompassing 242

samples profiled on the Illumina HumanHT-12 V4.0 expression beadchip. The ICGC pancre-

atic cancer data were filtered to the set of genes (707 genes) stemming from the intersection of

the TCGA Survival Analysis and tumor versus normal comparison (GSE28735). From here

Survival+ (42 samples) and Survival- (61 samples) groups were defined in the ICGC data

according to the same guidelines employed previously with the TCGA survival analysis, con-

fining the analysis to 103 samples. S5 Fig shows a summary of the clinical data between the

two groups. We then used a sampling based method to iteratively (10 iterations) pull 15 sam-

ples (with replacement) from each group (Survival+ and Survival-) and used the limma pack-

age to determine DEGs (P-value < 0.05). Genes that were repetitively found significant in

more than 5 iterations (>50%) were included in the signature. After this step, there were 8

genes in the signature. From here, the signature was further filtered to remove genes that were

highly correlated to one-another. This was done manually through visual inspection of the cor-

relations, taking into account the predictive power of each gene, and resulted in the removal of

just 3 genes. Subsequently, the final signature (5 genes) was tested via receiver operating char-

acteristic (ROC) analysis on the ICGC data (42 Survival+ and 61 Survival- samples). The valid-

ity of signature was further established using ROC analysis on 2 separate pancreatic

microarray datasets in the GEO data repository, GSE57495 (63 samples, 12 Survival-/17 Sur-

vival+) and GSE71729 (357 samples, 41 Survival-/15 Survival+). Both datasets were down-

loaded using the GEOquery package in R. To perform ROC analysis each dataset was split into

Survival+ (alive greater than 2 years) and Survival- groups (survival of less than 1 year), similar

to thresholds employed in the discovery dataset and the ICGC data set. ROC analysis was also

performed on all three data sets using publicly available “gene signatures” for comparison [7–

9,25]. Area under the curve (AUC) calculation was ascertained using the AUC package in R.

For all three datasets 5000 random signatures composed of 5 genes were also generated and

signature scores were calculated. This was then used to generate a distribution of AUC’s, the

null distribution, to compare with our signature AUC with. In addition to ROC analysis,

Kaplan-Meier survival analysis was performed for both validation studies as well as the ICGC

data using the signature to delineate groups. In order to create groups for the Kaplan-Meier

analysis each dataset was iteratively split into two groups after sorting samples by the ordered

signature score. For each of these splits corresponding P-value was calculated by the Mantel–

Haenszel test and the lowest P-value was then chosen as the optimal breakpoint. As this

method suffers from an increased rate of false-positives a Benjamini–Hochberg correction is

applied to reflect the presence of multiple hypotheses testing. To prevent potential batch

effects, samples from all three datasets were normalized to a set of housekeeping genes (TBB,

ACTB, UBC, PPIA, and GUSB).

Correlation to subtype classification

To classify samples according to the Bailey molecular subtypes from studies GSE71729 and

GSE57495 we used the defined gene signatures for each subtype and calculated the sum of the

standardized gene expression measures for each of the four molecular subtypes and then nor-

malized it by the number of genes in the signature [12]. The class with the maximum normal-

ized standardized score was chosen as the assignment for that sample.

Multivariate testing of signature score with clinical parameters

In order to test whether the signature was able to accurately determine survival independent of

other clinical variables a Cox proportional hazard model was used taking into account tumor

Survival gene signature and pancreatic cancer
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grade, sex, and age. This was performed on the ICGC dataset, comprising 237 samples (after

removing missing data).

Visualizations and statistical analysis

Volcano plots, scatter plots, boxplots, and ROC curves were generated using the ggplot2 pack-

age. Venn diagrams were generated using the VennDiagram package in R (Version 3.3). Subse-

quently, certain images were then amended and updated in Adobe Illustrator (AI) [26,27]. All

statistical analysis and data processing were performed in the R statistical language. Full code

and detailed descriptions of all packages and data sources required for this analysis can be

found in a Github repository (https://github.com/PichaiRaman/PDACSurvivalAnalysis).

Immunohistochemistry

Formalin fixed, paraffin-embedded tissues of human PDAC following surgical resection were

obtained from the Cooperative Human Tissue Network (CHTN: https://www.chtn.org/) and

processed by Molecular Pathology and Imaging Core at the University of Pennsylvania. Only

samples with accompanying pathology reports from a trained pathologist were used for analy-

sis (n = 10). Tumor stage, differentiation status, and histological evidence of vascular invasion

were extracted from the pathology reports (S5 Table). Tissues sections were deparaffinized,

hydrated, and immersed in 1x R-buffer (Electron Microscopy Sciences) for epitope retrieval in

a pressure cooker. Endogenous peroxidase activity was quenched in 3% hydrogen peroxidase

for 15 minutes, and slides were then incubated in 0.3% triton-x100 in PBS with 5% normal

donkey serum to block nonspecific immunoreactivity. The anti-ADM antibody (1:20, R&D

Biosystems, AF6108), anti-ASPM antibody (1:500; Novus Biologicals, NB100-2278), anti-

DCBLD2 antibody (1:50, Sigma-Aldrich, HPA016909), anti-E2F7 antibody (1:500, Abcam,

ab56022), or anti-KRT6a antibody (1:100, Sigma-Aldrich, SAB2700299) was applied and incu-

bated at 4c overnight followed by staining with appropriate biotinylated secondary antibodies

(1:200, Jackson ImmunoResearch). Slides were developed with the DAB peroxidase substrate

kit (Vector laboratories, SK-4100) and counterstained with hematoxylin. Patterns of staining

were evaluated and quantified using the histological score (H-score) [28].

Results

Generation of a tumor gene expression profile that correlates with survival

in pancreatic cancer

To determine which genes expressed in pancreatic cancers are associated with survival, the

TCGA RNA-Sequencing pancreatic cancer data set was segregated into two groups, one with

poor survival (Survival-), and another with better survival (Survival+). With regard to survival

time, Survival- groups consisted of patients living less than one year (28 patients) whereas Sur-

vival+ groups corresponded to patients living greater than 2 years (19 patients). The split (a

full quartile difference) was made at the following intervals to maximize the survival differ-

ences in time (1 year) while also ensuring a reasonable number of samples in each group, facili-

tating detection of differentially expressed genes (DEGs) with potentially low effect sizes (S1

Fig). Aggregate statistics around clinical data between both groups revealed no significant dif-

ferences in age based on the Kolmogorov-Smirnov test (p-value = 0.39) or gender using the

fisher test (p-value = 0.34). In contrast, based on the fisher test, stage and tumor grade were

significantly different (p-value = 0.01 and 6x10-4, respectively) (S2 Fig). Most Survival- patients

were grade 2 whereas many Survival+ patients were more likely to be grade 1. This was not

surprising given that tumor grade has been shown to be a marker of survival [29].

Survival gene signature and pancreatic cancer
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TCGA samples are derived from bulk tumor tissue which contains tumor cells, stroma, and

normal tissue contamination. While this could confound tumor-cell specific analyses, recent

evidence suggests that therapy response and aggressiveness in many tumors, including pancre-

atic tumors, derive from the combination of tumor and stromal cell composition in the tumor

[15,18–20,30]. Thus, to incorporate gene expression differences in both the tumor and stromal

cells we compared the RNA expression profiles of the bulk tumors between the survival

groups. We identified a total of 3,588 DEGs (Fig 1). In total 2,100 genes were up-regulated and

1,488 were down-regulated (fold-change of 1.5 and an adjusted p-value of 0.05) in the Survival-

cohort compared to Survival+ (Fig 2A).

Although the composition of the tumor stroma is a contributor to survival we wanted to

ensure our analysis of Survival+ and Survival- did not directly correlate with the amount of

stroma (i.e. tumor purity). To examine this relationship, we obtained data from Raphael et. al.

in which they classified PDAC TCGA samples into high and low purity based on several crite-

ria [20].We found that, of the 37 samples in our survival cohort that were classified, more than

twice as many Survival- tumors had high purity (19 high purity compared to 8 low purity),

whereas Survival+ tumors had an equal number of low and high purity tumors (S3A Fig).

While the sample size was small, there was not a high degree of association between stromal

content and poor survival (Survival- group) in this cohort. Additionally, we performed the

same survival analysis only using the high purity Survival- and Survival+ group and compared

the log fold change of the 3,588 DEG. There was a correlation of 0.68 corresponding to a p-

value of< 2.2 x 10−16 for this set of genes between the two analyses (S3B Fig). Although some

degree of correlation was expected, given this subset of high purity samples represents half of

the original samples used, the high degree of correlation and the similar direction of fold-

changes suggest that using low purity samples did not greatly impact the result except for

increasing statistical power.

To identify genes associated with transformation we performed a tumor versus normal

comparison on a separate dataset (GSE28735) from the Gene Expression Omnibus (GEO)

resource. This study, which encompasses many histologies, has much higher tumor purity,

with a median of 0.63 (95% CI: 0.60–0.67), based on the ESTIMATE algorithm (S4A Fig) than

the TCGA, which is 0.35 (95% CI: 0.32–0.38). Hence, intersecting this data has the added bene-

fit of potentially removing some of the stromal contamination. For this data analysis, we com-

pared the 45 tumors to their matched normal tissue. Using the same fold-change and adjusted

p-value cutoffs, we derived 1350 DEGs consisting of 830 up-regulated and 520 down-regulated

genes (S4B Fig), which likely represent gene changes associated with malignant transforma-

tion. We then performed an intersection of the two lists to identify which genes were associ-

ated with malignant transformation, survival, and aberrantly expressed in reference to normal

tissue. After removing genes that moved in opposite directions in the two comparisons (S4C

Fig), we identified 707 potential genes of interest (Fig 1 and S1 Table). Specifically, 602 genes

were found to be up-regulated in tumor and associated with poor survival whereas 105 genes

were down-regulated in tumor and associated with improved survival with only 32 or 4.3% of

the list not following the trend (S1 Table).

Validation of survival based DEG list

To assess the ability of our approach in detecting cancer-related gene expression changes that

reflect the underlying biology of PDAC, we first compared our list to those found in the public

gene database, mSigDB, and gene signatures found in the literature. Our list identified several

genes that have been found to be activated in pancreatic cancer such as MET, MAP4K4, and

ITGA2 [31,32]. To determine if the enrichment for PDAC associated genes in our list was

Survival gene signature and pancreatic cancer
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statistically significant, we compared it to a gene set from a meta-analysis performed to deter-

mine high-confidence pancreatic cancer associated genes across multiple studies [33]. Of the

357 genes found up-regulated in PDAC, 92 were in our list of 602 genes associated with poor

survival corresponding to a p-value of 6.2 x 10−68 based on the hypergeomtric test. Similarly,

of the 202 genes found down-regulated in PDAC, 12 were in our list of 105 genes associated

with better survival corresponding to a p-value of 5.6 x 10−11.

Next, we performed pathway analysis on our gene list and identified 46 genes sets that are

highly up-regulated in pancreatic cancer based on the Reactome database, including Extracel-
lular Matrix Organization (adjusted p-value of 6.91x10-15) and Integrin cell surface interactions
gene sets (adjusted p-value of 5.63x10-10) (Fig 2B and S2 Table). These pathways are known to

regulate stroma formation in PDAC, which in turn influences the aggressiveness of the pheno-

type [34]. In addition, axon guidance, platelet-derived growth factor, and interferon-gamma

signaling pathways were also found to be highly up-regulated in concordance with the litera-

ture [35–37].

We next sought to determine if differences in methylation of our genes could explain the

differential gene expression between survival groups. Using the TCGA methylation profiles of

the same Survival- (28 patients) and Survival+ (19 patients) cohorts, we found that of our 707

genes, 676 were also found to be differentially methylated. Assuming that gene expression is

correlated inversely with methylation status, we found that in 83% of detected genes, methyla-

tion patterns were highly consistent with fold changes in expression (Fig 2C and see S3 Table).

To determine the extent of overlap between our DEG list and previous pancreatic survival

signatures we compared the genes from our discovery analysis with a prognostic 15-gene sig-

nature from the Moffitt Cancer Center, a 36-gene prognostic signature from Barts Cancer

Institute, and a 48-gene pancreatic cancer angiogenic signature developed at the Indiana Uni-

versity School of Medicine [8,9,25] (Fig 2D). Analysis of the overlap using the hypergeometric

test revealed that our list captured many genes from the Moffit (p-value of 2.02x10-6) and Barts

(p-value of 5.90x10-6) signature, and several genes from the angiogenesis gene list from Indi-

ana. Additionally, many genes not captured in any of the previous signatures were also identi-

fied; suggesting the potential for novel PDAC associated genes to interrogate.

Generation of a gene signature predictive of patient survival

From our list of 707 survival associated DEGs, we next sought to identify a set of genes from

our list that could accurately predict differences in patient survival (Fig 1). This was accom-

plished using the ICGC PDAC dataset to establish a training set of Survival+ and–samples (S5

Fig). Employing a sampling-based approach, we derived a 5-gene expression panel signifi-

cantly associated with survival (Table 1 and S6 Fig). Multivariate testing of the 5-gene signa-

ture in the ICGC PDAC dataset found that the signature is predictive of survival (p = 1.3x10-

10) independent of age, grade, and sex (S4 Table).

Gene signature correlates with vascular invasion and aggressive tumor

subtypes

To determine the relationship of the 5-gene signature to histological features of PDAC we

examined expression of the 5 genes using immunohistochemistry (S7 Fig) in a panel (n = 10)

human pancreatic tumors obtained following surgical resection for either AJCC stage I (3/10)

Fig 1. Survival based gene expression gene analysis in PDAC. Flow diagram depicting analysis pipeline to identify 707 differentially expressed genes (DEG) between

Survival- and Survival+ groups with subsequent analysis to determine a survival signature.

https://doi.org/10.1371/journal.pone.0201751.g001
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or II (7/10) tumors. Samples were comprised of well-to-moderate (6/10) and poorly-differenti-

ated tumors (4/10) with histological evidence of vascular invasion in 4/10 tumors. Longitudi-

nal survival data was not available for this dataset. A composite H-score (which normalizes for

tumor cellularity differences between samples) was calculated for IHC staining (S7 Fig) for

each of the 5 genes in our signature [28]. Comparison of scoring between tumor samples

found no correlation between our signature and tumor grade or stage (Fig 3A). Interestingly,

the tumors with the highest signature score were those where tumor histology revealed evi-

dence of vascular infiltration (Fig 3A) suggesting that our signature may correlate with inva-

sive phenotypes that are seen on histology but not reflected in the AJCC stage [38].

We next sought to determine if our signature could capture the survival differences pre-

dicted by recent pancreatic subtype classification systems [12]. Utilizing two independent gene

expression datasets (GSE71729 and GSE57495), we compared the signature score to subtype

classification and found the median signature score was significantly higher in the squamous

tumors (Fig 3B and 3C) [12].

Gene signature provides improved survival prediction

We next compared our 5-gene signature to previous pancreatic cancer survival signatures

using ROC analysis [7–9,25]. Using these signatures to classify patient survival in the ICGC

pancreatic cancer dataset (Fig 4A), we found that our 5-gene signature had a significantly bet-

ter AUC. This was not surprising considering that our signature was derived using the ICGC

cohort, so we also performed ROC analysis on 2 separate pancreatic microarray datasets in the

GEO data repository, GSE57495 (63 samples, 12 Survival-/17 Survival+) and GSE71729 (357

samples, 41 Survival-/15 Survival+), which have been used previously to predict survival in

PDAC [8,15]. In both datasets, our signature had better ROC characteristics with an AUC of

.79 and .83 respectively (Fig 4B). The exception to this was the 15-gene Moffitt Cancer Center

signature, which had a better AUC than our signature in GSE57495. However, this was the

data set used to derive their initial signature. To account for multiple testing in comparing

gene signatures, we also generated 5000 random 5-gene signatures from each data set then

compared to our own. We found that in all 3 datasets, our signature significantly (P< 0.005)

outperformed randomly generated signatures (S8 Fig). In addition to AUC, we also performed

Kaplan-Meier analysis using our 5-gene signature in the ICGC, GSE57495, and GSE71729

datasets and found that our signature could predict survival differences of� 12 months in all

three data sets (Fig 4B).

Fig 2. Validation of survival DEG list. (A) Volcano plot highlighting genes associated with survival from TCGA dataset. (B) Bar graph depicting the top 26

enriched pathways based on Reactome pathways analysis of the 602 up-regulated gene from the 707 DEG list. (C) Scatter plot of log fold change of

differentially expressed genes vs delta beta of differentially methylated genes between Survival- and Survival+ samples. False indicates methylation status

opposite of predicted for gene expression change (total of 31 genes). True indicates concordance between methylation status and gene expression change (total

of 676 genes). (D) Bar chart showing percentage overlap of Pancreatic Cancer DEG list with indicated published signatures.

https://doi.org/10.1371/journal.pone.0201751.g002

Table 1. 5-Gene pancreatic cancer survival signature.

Gene P-value Direction Chromosomal location Gene Description

ADM 2.29x10-4 Up 11p15.4 Adrenomedullin

ASPM 2.35x10-6 Up 1q31 Asp (abnormal spindle) homolog, microcephaly associated

DCBLD2 6.95x10-6 Up 3q12.1|3 Discoidin, CUB and LCCL domain containing 2

E2F7 7.37x10-5 Up 12q21.2 E2F transcription factor 7

KRT6A 2.51x10-4 Up 12q13.13 Keratin 6A

https://doi.org/10.1371/journal.pone.0201751.t001
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Discussion

In the current study, we performed an integrative analysis of pancreatic gene expression data

derived from the TCGA, ICGC, and Gene Expression Omnibus (GEO) to derive a 5-gene

expression signature that predicts overall patient survival. The signature stratifies patients into

short (less than one year) and long (greater than two years) survivors. Importantly, the associa-

tion with survival is independent of AJCC TNM staging, age, gender, and other commonly

used clinical factors. Immunohistochemical analysis of human pancreatic tumor samples sug-

gests that our signature is correlated with vascular invasion which is indicative of more aggres-

sive tumor phenotypes [38]. Additionally, our signature was associated with the squamous

subtype of PDAC, which is known to have a poor prognosis. Finally, our signature outper-

formed previously reported signatures across the datasets we tested. From a personalized med-

icine standpoint, our signature offers a small set of genes that could be readily tested in patient

biopsy samples to help risk-stratify patients and inform treatment decisions. However, this

will require further validation in larger prospective studies.

Fig 3. 5-gene signature captures histological and molecular features of aggressive PDAC. (A) Box plots showing composite H-score from immunohistochemistry

staining of human PDAC samples for ADM, KRT6a, ASPM, DCBLD2, and E2F7 with samples grouped based on AJCC stage, differentiation status, and presence of

vascular invasion on histology. N = 10 human PDAC tumor samples. (B) Signature score boxplot versus GSE71729 and (C) GSE57495. �p = 0.01381 and ns = non-

significant based on t-test. ��p = 4.6 x 10−8 and ���p = 7.1 x 10−7 based on Anova analysis.

https://doi.org/10.1371/journal.pone.0201751.g003
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While various gene signatures have been developed to predict patient survival in PDAC,

these studies were single center and often utilized microarray datasets, which limits the ability

to capture the heterogeneity in gene expression that exists in pancreatic tumors. Our integra-

tive approach capitalizes on the diverse patient populations present in the TCGA and ICGC

datasets and extends the dynamic range of detectable gene expression changes through analy-

sis of RNA-Sequencing data. Additionally, our initial 707 DEG list identified many of the

genes present in these separate studies. Thus, our analysis could capture the heterogeneity in

gene expression changes associated with patient survival in PDAC. Importantly, examination

of methylation patterns in short and long survivor groups captured a large fraction of the

genes in our DEG list and were consistent with the detected fold changes in expression. This

suggests that survival differences among patient groups may in part be regulated at the epige-

netic level.

Fig 4. 5-gene signature enhances prediction of patient survival in PDAC. (A) ROC curve demonstrating predictive power of pancreatic survival signature

in the Pancreatic ICGC (left), GSE57495 (middle), and GSE71729 (right) datasets. (B) Kaplan-Meier plot demonstrating predictive power of pancreatic

survival signature in Pancreatic ICGC (left), GSE57495 (middle), and GSE71729 (right) datasets.

https://doi.org/10.1371/journal.pone.0201751.g004
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In addition to functioning as predictors of patient survival, the genes in our signature also

have important roles in the underlying biology of PDAC and other cancers. This may explain

their association with poor patient survival, vascular invasion, and correlation with the aggressive

squamous PDAC subtype. ADM is a multi-regulatory peptide known to regulate pancreas func-

tion through direct effects on insulin secretion in ß-cells and amylase secretion in acinar cells. In

the setting of pancreatic cancer, increased circulating levels of this hormone are associated with

poor prognosis. In part, this effect is mediated through secretion into exosomes that then directly

act on adipocytes to increase lipolysis leading to cachexia and on ß-cells resulting in diabetes

[39–41]. It is also thought to regulate angiogenesis in PDAC and is secreted in response to hyp-

oxia leading to increased invasiveness [42–44]. ASPM is a centrosomal protein that normally reg-

ulates neural development and brain size [45]. In PDAC, gliomas, ovarian cancer, and

hepatocellular cancer it is up-regulated and associated with poor survival [46–49]. In the context

of PDAC, ASPM promotes Wnt activity to regulate cancer stemness and thus enhances tumor

progression [49]. The roles of DCBLD2, E2F7, and KRT6A have not been explored in PDAC but

these proteins are known to have context dependent effects in various cancers. DCBLD2 is a ner-

uopilin-like membrane protein that modulates PDGFR-B and increases during vascular injury.

In gastric cancer its down-regulation leads to progression however in glioblastoma, colorectal

cancer, and lung cancer it is up-regulated and associated with increased tumorigenesis and inva-

sion [50–53]. E2F7 is a known cell cycle regulator that is associated with poor survival in squa-

mous cancers, upregulates c-MYC in various cancer cell lines, and induces tamoxifen resistance

in breast cancer [54–56]. Finally, KRT6A is a cytoskeletal scaffolding protein whose increased

expression is associated with improved survival in breast cancer but portends a worse prognosis

in lung cancer and is associated with squamous differentiation [57–59].

While our study provides an improved survival gene signature in PDAC, the analysis was

primarily derived from patients with surgically resectable disease and annotated survival data

which may limit the prognostic value of our signature to a subset of the PDAC patient popula-

tion. Future studies aimed at replicating our findings in larger PDAC patient cohorts will be

needed. In addition to limitations in patient selection, our studies were also confined to the

analysis of RNAseq and microarray data derived from bulk primary tumor. In the TCGA

PAAD dataset, samples have high stromal content thus limiting direct assessment of tumor

cell specific gene expression. However, our approach sought to incorporate gene expression

differences reflective of both the tumor and stromal compartments. Recent evidence suggests

that in addition to the tumor cells, the composition of the stroma (rather than the actual

amount of stroma/tumor cell purity) is critical to the underlying biology of the tumor [15,18–

20]. This is supported by our finding that tumor cell purity is not predictive of survival and did

not significantly influence our survival associated DEGs. Thus, our approach sought to capture

the survival associated gene expression of the bulk primary tumor. In addition, a list that

includes tumor and stromal gene expression is likely clinically relevant as genomic analysis is

often performed on bulk tumor samples.

Conclusions

In the current study, we perform an integrative analysis of large-scale pancreatic gene expres-

sion datasets to define a gene signature predictive of survival. Our analysis identified a 5-gene

panel that performed well against previous signatures across multiple datasets and captures

subtype-specific differences in patient prognosis. Further testing in a larger cohort will be

needed to validate the prognostic value of our gene signature. We hope that our in silico
approach enables accurate prediction of patient survival from biopsy specimens in PDAC and

provides a framework for similar assessments in other cancers.
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