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Overview
Defining the extent of epistasis—the nonindependence of the effects of mutations—is essential
for understanding the relationship of genotype, phenotype, and fitness in biological systems.
The applications cover many areas of biological research, including biochemistry, genomics,
protein and systems engineering, medicine, and evolutionary biology. However, the quantita-
tive definitions of epistasis vary among fields, and its analysis beyond just pairwise effects
remains problematic in general. Here, we bring together a number of previous results that
show that different definitions of epistasis are versions of a single mathematical formalism—

the weighted Walsh-Hadamard transform. We demonstrate that one of the definitions, the
background-averaged epistasis, may be the most informative for describing the epistatic struc-
ture of a biological system. Key issues are the choice of effective ensembles for averaging and to
practically contend with the vast combinatorial complexity of mutations. In this regard, we dis-
cuss strategies for optimally learning the epistatic structure of biological systems.

Introduction
There has been much recent interest in the prevalence of epistasis in the relationships between
genotype, phenotype, and fitness in biological systems [1–7]. Epistasis here is defined as the
nonindependence (or context-dependence) of the effect of a mutation, which is a generaliza-
tion of Bateson’s original definition of epistasis as a genetic interaction in which a mutation
“masks” the effect of variation at another locus [8]. It is also in line with Fisher’s broader defini-
tion of “epistacy” [9]. Epistasis limits our ability to predict the function of a system that harbors
several mutations, given knowledge of the effects of those mutations taken independently [10–
13], and makes these relationships increasingly more complex [14–19]. From an evolutionary
perspective, the presence of epistatic interactions may limit or entirely preclude trajectories of
single-mutation steps towards peaks in the fitness landscape [20–29]. With regard to human
health, epistasis complicates our understanding of the origin and progression of disease [30–
37]. Thus, interest in the extent of epistatic interactions in biological systems has originated
from the fields of protein biochemistry, protein engineering, medicine, systems biology, and
evolutionary biology alike.

Originally, epistasis was considered in the context of two genes, but we can define it more
broadly as the nonindependence of mutational effects in the genome, whether the effects are
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within, between, or even outside protein coding regions (e.g., in regulatory regions). The per-
turbations may go beyond point mutagenesis, but we limit the discussion here for clarity of
presentation. Importantly, the definition of epistasis can be extended beyond pairwise effects to
comprise a hierarchy of three-way, four-way, and higher-order terms that represent the com-
plete theoretical description of epistasis between the parts that make up a biological system.

How can we quantitatively assign an epistatic interaction given experimentally determined
effects of mutations? Because epistasis is deviation from independence, it is crucial to first
explicitly state the null hypothesis—asserting what exactly it means to have independent con-
tributions of mutations. This by itself is typically nontrivial. In some cases the phenotype is
directly related to a thermodynamic state variable, and the issue is straightforward: indepen-
dence implies additivity in the state variable. For example, for equilibrium binding reactions
between two proteins, independence means additivity in the free energy of binding ΔGbind,
such that the energetic effect of a double mutation is the sum of the energetic effects of each
single mutation taken independently. However, in general, many phenotypes cannot be so
directly linked to a thermodynamic state variable, and quantification of epistasis needs to be
accompanied by a proper rationale for the choice of null hypothesis. In what follows, we will
assume this step has already been carried out and we will equate independence with additivity
of mutational effects. Epistasis between two mutations is then defined as the degree to which
the effect of both mutations together differs from the sum of the effects of the single mutations.

In this paper, we describe three theoretical frameworks that have been proposed for charac-
terizing the epistasis between components of biological systems; these frameworks originate in
different fields and use seemingly different calculations to describe the nonindependence of
mutations [2,14,24,33,38–46]. We extend previous observations [47–50] to show that these for-
malisms are different manifestations of a common mathematical principle, which explains
their conceptual similarities and distinctions. Each of these formalisms has its value depending
on depth of coverage and nature of sampling in the experimental data and the objective of the
analysis. In the end, the fundamental issue is to develop practical approaches for optimally
learning the epistatic structure of biological systems in the face of the explosive combinatorial
complexity of possible epistatic interactions between mutations. Understanding the mathemat-
ical relationships between the different frameworks for analyzing epistasis is a key step in this
process.

Results

Basic definitions
We begin with a formal definition of genotype, phenotype, and the representation of muta-
tional effects. Consider a specific sequence comprised of N positions as a binary string g =
{gN,. . .,g1} with gi 2{0,1}, where “0” and “1” represent the "wild-type" and mutant state of each
position, respectively. This defines a total space of 2N genotypes. The analysis could be
expanded to the case of multiple substitutions per position, but we consider just the binary case
for clarity here. Each genotype g has an associated phenotype yg, which is of the form that the
independent action of two mutations means additivity in y. For notational simplicity, we will
simply write the genotype in a k-bit binary form, where k is the order of the mutations that are
considered. For example, the effect of a single mutation is simply y1−y0, the difference in the
phenotype between the mutant and “wild-type” states (Fig 1A). The effect of a double mutant
is given by y11−y00 (red arrow, Fig 1B), and its linkage through paths of single mutations is
defined by a two-dimensional graph (a square network) with four total genotypes. Similarly, a
triple mutant effect is y111−y000 (red arrow, Fig 1C), and its linkage through paths of single
mutations are enumerated on a three-dimensional graph (a cube) with eight total genotypes.
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More generally, and as described by Horowitz and Fersht [51], the phenotypic effect of any
arbitrary n-dimensional mutation can be represented by an n-dimensional graph with 2n total
genotypes. Understanding the relationship of the phenotypes of multiple mutants to that of the
underlying lower-order mutant states is the essence of epistasis and is described below.

The biochemical view of epistasis
A well-known approach in biochemistry for analyzing the cooperativity of amino acids in spec-
ifying protein structure and function is to use the formalism of thermodynamic mutant cycles
[10,51–53], one manifestation of the general principle of epistasis. In this approach, the "phe-
notype" is typically an equilibrium free energy ΔG (e.g., of thermodynamic stability or bio-
chemical activity), and the goal is to obtain information about the structural basis of this
phenotype through mutations that represent subtle perturbations of the “wild-type” state.
For pairs of mutations, the analysis involves measurements of four variants: “wild-type”
(y00 ¼ DG o

0), each single mutant (y01 ¼ DG o
1 and y10 ¼ DG o

2), and the double mutant
(y11 ¼ DG o

1;2), where the lower indices designate the mutated positions and the upper index

“o” indicates that free energies are relative to the usual biochemical standard state (Fig 1B).
From this, we can compute a coupling free energy between the two mutations (Δ2G1,2) as

the degree to which the effect of one mutation (Δ1G1) is different when the same mutation
occurs in the background of the other (Δ1G1|2):

D2G 1;2 ¼ D 1G 1 j2 � D 1G 1

¼ ðDG o
1;2 � DG o

2 Þ � ðDG o
1 � DG o

0 Þ ð1Þ

Whereas the ΔGo terms are individual measurements and Δ1G terms are the effects of single
mutations relative to “wild-type,” Δ2G is a second-order epistatic term describing the coopera-
tivity (or nonindependence) of two mutations with respect to the “wild-type” state. This

Fig 1. Definitions of genotype, phenotype, and effects of mutations. Representation of (A) single mutant,
(B) double mutant, and (C) triple mutant experiments. Phenotypes are denoted by yg, where g is the
underlying genotype. g = {gN,. . .,g1} with gi 2{0,1}; “0” or “1” indicates the state of the mutable site (e.g., amino
acid position). The effect of a single, double, and triple mutation is given by the red arrows. Pairwise (or
second-order) epistasis is defined as the differential effect of a mutation depending on the background in
which it occurs; for example, in (B) it is the degree to which the effect of one mutation (e.g., y10−y00) deviates
in the background of the second mutation (y11−y01). Thus, the expression for second-order epistasis is
(y11−y10)−(y01−y00). The third order and higher cases are considered in the main text.

doi:10.1371/journal.pcbi.1004771.g001
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analysis can be expanded to higher order (see [53]). For example, the third-order epistatic term
describing the cooperative action of three mutations 1, 2, and 3 (Δ3G1,2,3) is defined as the
degree to which the second order epistasis of any two mutations is different in the background
of the third mutation:

D3G 1;2;3 ¼ D 2G 1;2j3 � D 2G 1;2

¼ DG o
1;2;3 �

X3
i<j

DG o
i;j þ

X3

i

DG o
i � DG o

0

ð2Þ

Note that Δ3G requires measurement of eight individual genotypes (Fig 1C). More generally,
we can define an nth-order epistatic term (ΔnG), describing the cooperativity of nmutations,

D n G1;...;n ¼ DG o
1;...;n þ ð�1Þ1

Xn
i1<i2<...<in�1

DG o
i1 ;i2 ;...;in�1

þð�1Þ2
Xn

i1<i2<...<in�2

DG o
i1 ;i2 ;...;in�2

þ . . .þ ð�1ÞnDG o
0

ð3Þ

It is possible to write this expansion in a compact matrix form:

λ ¼ Gy ð4Þ

where λ is the vector of 2n epistasis terms of all orders and y is the vector of 2n free energies
corresponding to phenotypes of all the individual variants listed in binary order. To illustrate,
for three mutations n = 3, we obtain

l000
l001
l010
l011
l100
l101
l110
l111

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

1 0 0 0 0 0 0 0

�1 1 0 0 0 0 0 0

�1 0 1 0 0 0 0 0

1 �1 �1 1 0 0 0 0

�1 0 0 0 1 0 0 0

1 �1 0 0 �1 1 0 0

1 0 �1 0 �1 0 1 0

�1 1 1 �1 1 �1 �1 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

�

y000

y001

y010

y011

y100

y101

y110

y111

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

In this representation, lower indices in y represent combinations of mutations (e.g.,

y011 ¼ DG o
1;2, a double mutant) and lower indices in λ represent epistatic order (e.g.,

l011 ¼ D2G 1;2, pairwise epistasis between mutations 1 and 2). Thus, Eqs 1 and 2 correspond to

multiplying y by the fourth or eighth row of G, respectively, to specify λ011 and λ111. Note that

y and λ contain precisely the same information re-written in a different form. The matrix G
represents an operator linking these two representations of the mutation data. We will return
to the nature of the operation in a later section. We can write a recursive definition for G that

defines the mapping between y and λ for all epistatic orders n:

Gnþ1 ¼
Gn

�Gn

0

Gn

 !
withG0 ¼ 1 ð5Þ

The inverse mapping is defined by y ¼ G�1λ. This relationship gives the effect of any com-

bination of mutants (in y) as a sum over epistatic terms (in λ). This yields, for example, for the
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energetic effect of three mutations 1, 2, and 3 (DG o
1;2;3 ¼ y111):

DG o
1;2;3 ¼ D3G 1;2;3 þ

X3

i<j

D 2G i;j þ
X3

i

D 1Gi þ DG o
0 ð6Þ

Thus, in the most general case, the free energy value of a multiple mutation requires knowl-
edge of the effect of the single mutations and all associated epistatic terms. For the triple mutant,
this means the “wild-type” phenotype, the three single mutant effects, the three two-way epistatic
interactions, and the single three-way epistatic term. This analysis highlights two important
properties of epistasis: (1) the lack of any epistatic interactions between mutations dramatically
simplifies the description of multiple mutations to just the sum over the underlying single muta-
tion effects, and (2) the absence of lower-order epistatic interactions (e.g., Δ2Gi,j = 0) does not
imply absence of higher-order epistatic terms.

The ensemble view of epistasis
In contrast to the biochemical definition, the significance of a mutation (and its epistatic inter-
actions) may also be defined not solely with regard to a single reference state as the "wild-type",
but as an average over many possible genotypes. As we show below, such averaging more
clearly identifies epistatic units within a protein and, in principle, can separate mutant effects
that are idiosyncratic to particular proteins from those that generally hold over the selected
ensemble of genotypes. The concept of averaging epistasis over genotypic backgrounds is
related to "statistical epistasis" in evolutionary biology, in which the effects of combinations of
mutations are averaged over genotypes present in a population [2]. It is also analogous to the
idea of the “schema average fitness” in the field of genetic algorithms (GA) [54], but as applied
in a biological context (see e.g., [45]).

In its complete form, background-averaged epistasis considers averages over all possible
genotypes for the remaining positions in the ensemble. For example, if n = 3, the epistasis
between two positions 1 and 2 is computed as an average over both states of the third position
(ε�11, with the averaging denoted by a subscript “�”) (see Fig 1C):

ε�11 ¼
1

2
f½ðy111 � y110Þ � ðy101 � y100Þ� þ ½ðy011 � y010Þ � ðy001 � y000Þ�g ð7Þ

Thus for n = 3, we can write all epistatic terms:

ε���

ε��1

ε�1�

ε�11

ε1��

ε1�1

ε11�

ε111

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼ V �

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

�

y000

y001

y010

y011

y100

y101

y110

y111

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

where V is a diagonal weighting matrix to account for averaging over different numbers of
terms as a function of the order of epistasis; vii ¼ ð�1Þqi=2n�qi , where qi is the order of the epi-
static contribution in row i. More generally, for any number of mutations n:

ε ¼ V H y ð8Þ
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where y is the same vector of phenotypes of variants as defined above, ε is the vector of back-
ground-averaged epistatic terms, andH is the operator for background-averaged epistasis,
defined recursively as

Hnþ1 ¼
Hn Hn

Hn �Hn

 !
withH0 ¼ 1 ð9Þ

The recursive definition for the weighting matrix V is

Vnþ1 ¼
1

2
Vn 0

0 �Vn

0
@

1
AwithV0 ¼ 1 ð10Þ

The matrixH has special significance; its action mathematically corresponds to a general-
ized Fourier decomposition [55,56] known as the Walsh-Hadamard transform and, therefore,
this operation can also be seen as a spectral analysis of the high-dimensional phenotypic land-
scape defined by the genotypes studied [47–50]. In this transform, the phenotypic effects of
combinations of mutations are represented as sums over averaged epistatic terms. We note
that strong parallels exist between the Fourier decomposition of a landscape and ANOVA, a
statistical analysis based on partitioning of variance among effects and interactions of different
orders (see S5 Text for details).

In summary, the definition of epistasis laid out in this section is a global definition over
sequence space, averaging the epistatic effects of mutations over the ensemble of all possible
variants. In contrast, the biochemical definition given in the previous section is a local one,
treating a particular variant as a reference for determining the epistatic effect of mutations.

Estimating epistasis with linear regression
A third approach for analyzing epistasis is linear regression. For example, when we have a com-
plete dataset of phenotypes of all 2n genotypes, we can use regression to define the extent to
which epistasis is captured by only considering terms to some order r<n. That is, whether
terms up to the rth order are sufficient for effectively capturing the full complexity of a biologi-
cal system. The standard form for a linear regression is a set of equations:

yg ¼ b0 þ
Xn
i¼1

bi gi þ
Xn
i<j

bij gi gj þ
Xn
i<j<k

bijk gi gj gk þ . . .þ 2g ð11Þ

for each genotype g. The β terms denote the regression coefficients corresponding to the (epi-
static) effects between subscripted positions and 2g is the residual noise term. In matrix form
this can be written as

y ¼ Xb þ 2 ð12Þ

where X tabulates which regression coefficients are summed over for genotypes g. For n = 3,
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regressing to full order, we can write

y000

y001

y010

y011

y100

y101

y110

y111

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

�

b000

b001

b010

b011

b100

b101

b110

b111

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

þ 2

following the same rule for the lower indices as before. X has the recursive definition:

Xnþ1 ¼
Xn 0

Xn Xn

 !
withX0 ¼ 1 ð13Þ

It is worth noting that the inverse of X is X−1 = G, the operator for biochemical epistasis
(Eq 5; see also S1 Text). Thus, the multidimensional mutant-cycle analysis is indistinguishable
from regression to full order (r = n), which is an exact mapping without residual noise (2 ¼ 0).

However, the usual aim of regression is to approximate the data with fewer coefficients than
there are data points, i.e., r<n. To express this, we simply remove the columns from X that
refer to the epistatic orders excluded from the regression (i.e.,>r): X is multiplied by a 2n -by-
mmatrix Q, the identity matrix with columns corresponding to epistatic orders higher than r

removed.m is the number of epistatic terms up to r and is given bym ¼
Xr

i¼0
ðni Þ. Thus for

regression to order r, we can define X̂ ¼ XQ, and write

y ¼ X̂ b̂ þ 2̂ ð14Þ

The linear regression is performed by solving the so-called normal equations

b̂ ¼ ðX̂TX̂Þ�1X̂Ty ð15Þ

where X̂T is the transpose of X̂ . The product X̂TX̂ is necessarily square and invertible as long as

X̂ is full column rank and hence X̂TX̂ is full rank. Note that in this analysis we compute epi-
static terms only up to the rth order, but use phenotype/fitness data of all 2n combinations of
mutants. The more general case, in which we estimate epistatic terms with less than 2n data
points, is distinct and is discussed below.

If the biochemical definition of epistasis is a local one, exploring the coupling of mutations
of all order with regard to one "wild-type" reference, and the ensemble view of epistasis is a
global one, assessing the coupling of mutations of all order averaged over all possible geno-
types, then the regression view of epistasis is an attempt to project to a lower dimension—cap-
turing epistasis as much as possible with low-order terms.

Link between the formalisms
The analysis presented above leads to a simple unifying concept underlying the calculations of
epistasis. In general, all the calculations are a mapping from the space of phenotypic measure-
ments of genotypes y to epistatic coefficients ω in a general form ω ¼ O epi y , where Oepi is the
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epistasis operator. We give the bottom line of the different operators below; their formal math-
ematical derivations can be found in S1 Text.

The most general situation is that of the background-averaged epistasis with averaging over
the complete space of possible genotypes. In this case

O epi ¼ V H; ð16Þ

whereH is a 2n×2n matrix corresponding to the Walsh-Hadamard transform (n is the number
of mutated sites) and V is a matrix of weights to normalize for the different numbers of terms
for epistasis of different orders. The biochemical definition of epistasis using one "wild-type"
sequence as a reference is a sub-sampling of terms in the Hadamard transform. In this case

O epi ¼ V XT H; ð17Þ

where X is as defined in Eq 13. In essence, XT picks out the terms inH that concern the “wild-
type” background. Note that both these mappings are one-to-one, such that the number of epi-
static terms (in ω) is equal to the number of phenotypic measurements (in y) and no informa-
tion is lost. In contrast, regression to lower orders necessarily implies fewer epistatic terms than
data points, which means the mapping is compressive and information is lost. In this case

O epi ¼ V XTSH; ð18Þ

where S (�QQT) is the identity matrix but with zeros on the diagonal at the orders that are
higher than those over which we regress. From a computational point of view, it is interesting
to note that regression using the Hadamard transform makes matrix inversion unnecessary
(compare with Eq 15).

The fundamental point is that all three formalisms for computing epistasis are just versions
of the Walsh-Hadamard transform, with weights selected as appropriate for the choice of a sin-
gle reference sequence or restrictions on the order of epistatic terms considered. The mathe-
matical underpinnings of these relationships have been previously noted and explained [45,47–
50], though the connections to experimental studies in biochemistry and evolutionary biology
have been incomplete and underappreciated by the broader scientific community. For example,
ensemble and biochemical views of epistasis correspond to Fourier and Taylor expansions,
respectively, of multi-dimensional landscapes [47]. The former captures global landscape prop-
erties and the latter evaluates the local structure around a particular genotype. Interestingly,
the two representations are also mathematically interchangeable (up to weighting factors) by
simply changing the representation of genotypes from gi 2{0,1} to σi 2{−1,1} in an expansion
of the form of the regression equation (see Eq 11 and S4 Text). Understanding the connection
between the mathematical descriptions and experimental studies of phenotype landscapes as
practiced in different fields is important in guiding future work.

Empirical examples
To illustrate the different analyses of epistasis, we begin with a small case study of three spa-
tially proximal mutations that define a switch in ligand specificity in PSD95pdz3, a member of
the PDZ family of protein interaction modules (Fig 2A). Two mutations are located in the
PDZ3 domain itself (G330T and H372A) and one mutation is in its cognate ligand peptide (T-
2F). The phenotype is the binding affinity, Kd, and the absence of epistasis implies additivity in
the corresponding free energy, expressed as ΔGo = RTlnKd. (Binding affinities for this system
are measured in [57] and given in Fig 2B) These quantitative phenotypes are then transformed
into epistatic terms using Eqs 16–18 (Table 1).
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Fig 2. Examples of epistasis in a PDZ domain (A) and a K+ ion channel (B). (A) PDZ domains are small,
mixed αβ proteins that bind target peptide ligand (in yellow stick bonds) in a groove formed between the β2
and α2 elements (PSD95pdz3 shown, Protein Data Bank (PDB) accession 1BE9). The study discussed in the
main text and in Table 1 is focused on the epistatic interactions between three amino acid positions—two in
the PDZ domain (H372 and G330) and one in the ligand (T-2) (red spheres). (B) a thermodynamic cube
representing the energetics of mutations at the three positions; values are equilibrium dissociation constants
(Kd) for the target ligand (CRIPT [58]) in μM for all eight possible combination of mutations; errors represent
standard deviation. (C) structure of the homotetrameric KcsA K+ ion channel (PDB accession 1K4C),
showing the four positions selected for mutation in Sadovsky and Yifrach (in red spheres, shown only for one
subunit for clarity) [60]. Note that the experiments were carried out in the Shaker K+ ion channel, and the
positions in Shaker numbering are given in parentheses. The positions form a network that roughly links the
intracellular activation gate and the selectivity filter.

doi:10.1371/journal.pcbi.1004771.g002

Table 1. Interaction terms after applying the three different transforms to the PDZ–ligand dataset with three mutable positions: three-way mutant
cycle, background-averaged epistasis, and regression (to second order).

Genotype1 Free Energy2 Interaction Terms3 Mutant Cycle Background-Averaged Epistasis Regression Terms
THG y λ ε β

000 -8.17 (0.07) *** -8.17 (0.07) -7.24 (0.03) -7.96 (0.06)

001 -7.58 (0.09) **1 0.59 (0.11) -0.51 (0.06) 0.17 (0.10)

010 -6.13 (0.14) *1* 2.05 (0.15) 0.23 (0.06) 1.63 (0.13)

011 -6.24 (0.07) *11 -0.70 (0.19) 0.13 (0.12) 0.13 (0.12)

100 -5.96 (0.03) 1** 2.22 (0.07) -0.41 (0.06) 1.80 (0.08)

101 -7.70 (0.11) 1*1 -2.33 (0.16) -1.50 (0.12) -1.50 (0.12)

110 -7.67 (0.09) 11* -3.76 (0.18) -2.92 (0.12) -2.92 (0.12)

111 -8.45 (0.06) 111 1.67 (0.25) 1.67 (0.25) 0 (0.00)

1 The three mutations are T-2F in the ligand and H372A and G330T in the protein, respectively. They are designated in this column as “THG.”
2 Free energies are in kcal/mol, with standard deviation in parentheses.
3 Interacting positions are in the same order as genotypes, e.g., “*11” indicates the epistasis between amino acid positions 372 and 330 in PSD95-PDZ3.

Standard deviations in epistatic terms are given in parentheses and calculated according to do ¼ ðO epi � O epi dy � dyÞ1=2, where δs designate the error

vectors and � stands for the element-wise product (see also S2 Text).

doi:10.1371/journal.pcbi.1004771.t001
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A number of simple mathematical relationships are evident in the data. First, regression is
carried out only to the second order, and therefore the third-order epistatic term for this analy-

sis does not exist (or, equivalently, is set to zero if the epistatic vector b̂ is defined to be of full
length 2n). Second, some numerical equalities exist. The regression terms at the highest order
(second, in this case) are equal to the corresponding terms for the averaged epistasis. This is
because XTS sets columns representing orders higher than the regression order to zero, leaving
rows corresponding to the highest regression order with only one non-zero element on the
diagonal. For these rows, the entries in the epistasis operators V XTS H and V H are equal.
Another more trivial equality is the highest-order term for the mutant-cycle and averaged epis-
tasis formalisms; there is only one contribution for the highest order and, therefore, no back-
grounds over which to average.

The data also illustrate the key properties of the different formalisms. The G330T, H372A,
and T-2F mutations represent a collectively cooperative set of perturbations, as indicated by a
significant third-order epistatic term by both mutant cycle and background-averaged defini-
tions (λ111 = ε111 = 1.67 kcal mol−1). But the three formalisms differ in the energetic value of
the lower-order epistatic terms. For example, G330T is essentially neutral for “wild-type”
ligand binding but shows a dramatic gain in affinity in the context of the T-2F ligand; thus, a
large second-order epistatic term by the biochemical definition (λ101 = −2.33 kcal mol−1). How-
ever, the coupling between G330T and T-2F is nearly negligible in the background of H372A;
as a consequence, the background-averaged second-order epistasis term ε1�1 is smaller (−1.5
kcal mol−1). Similarly, both biochemical and regression formalisms assign a large first-order
effect to the T-2F (1��) and H372A (�1�) single mutations, while the corresponding back-
ground-averaged terms are nearly insignificant. For example, the free energy effect of mutating
the ligand (T-2F, λ010) is 2.22 kcal mol−1 in the “wild-type” background, but is −1.54 kcal
mol−1 in the background of the H372A mutation—a nearly complete reversal of the effect of
this mutation depending on context. Thus, with background averaging, the first-order term for
T-2F (ε1��) is close to zero. This makes sense given the experiment described in Fig 2, and,
more broadly, given the known specificities in the PDZ family [59], the mutation should not be
thought of as a general determinant of ligand affinity. T-2F may have a disrupting effect on the
function from the perspective of a specific PDZ domain (the “wild-type”), but from the per-
spective of the protein family (in which various different functional domain–ligand combina-
tions are found) a phenylalanine at position -2 in the ligand is not necessarily detrimental to
binding affinity. Instead, it is a conditional determinant with an effect that depends on the
identity of the proximal amino acid in the PDZ domain.

The analysis of other combinatorial mutation datasets reinforces these conclusions. For
example, high-quality measurements comprising a fourth-order thermodynamic analysis of
epistasis is available for the Shaker potassium channel (data from [60] and [61], Fig 2C,
Table 2), where the phenotype observed is the activation free energy for opening of the ion
channel pore [61]. Using the standard biochemical formalism for epistasis, the work of Sada-
vosky and Yifrach [60] demonstrates large high-order epistasis between four mutations at sites
forming a path between the intracellular crossing of transmembrane helices (the so-called
“activation gate”) and the selectivity filter for ions (Fig 2C, [61]). The biologically interesting
finding is that for this system of mutations, the magnitude of epistasis rises with increasing

order of the epistasis; that is, Δ4G> Δ3G> Δ2G> Δ1G (Table 3, jλjmean), a result that suggests
the collective action of this systems of residues with regard to pore opening. We compared the
biochemical and background-averaged epistasis for this system of four mutations (Fig 2C,
Table 2, and complete analysis in S3 Text). The analysis shows that the background-averaged
epistasis enhances the essential point of Sadovsky and Yifrach; the fourth-order epistatic term
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dominates (Table 3, jεjmean), and all lower terms are weak. As in the case of the PDZ domain,
the reason for this is that the lower-order epistatic effects are conditional on the background of
other mutations and are correspondingly assigned less significance. This analysis clarifies the
notion that this system of residues comprises a collectively acting, cooperative network under-
lying channel gating.

These examples show that background averaging has the effect of “correcting”mutational
effects for the existence of higher-order epistatic interactions. Without background averaging,
the effect of a mutation (at any order) idiosyncratically depends on a particular reference

Table 2. Interaction terms based on the standardmutant cycle formalism (l) and on background-averaged epistasis (ε) for pore-opening free ener-
gies in the Shaker K+ voltage-gated channel. As for the PDZ domain (Table 1), background averaging modulates epistasis at each level given the exis-
tence of higher-order terms. Primary data are from [60] and [61].

Genotype1 ΔGopen
2 Interaction Terms Mutant Cycle2 Background-Averaged Epistasis2

y λ ε

0000 -1.97 (0.05) **** -1.97 (0.05) -8.33 (0.05)

0001 -7.05 (0.12) ***1 -5.08 (0.13) -0.64 (0.10)

0010 -13.57 (0.29) **1* -11.60 (0.29) -3.52 (0.10)

0011 -9.47 (0.25) **11 9.18 (0.40) 2.97 (0.20)

0100 -7.97 (0.34) *1** -6.00 (0.34) -1.09 (0.10)

0101 -8.11 (0.19) *1*1 4.94 (0.41) -1.13 (0.20)

0110 -10.01 (0.33) *11* 9.56 (0.56) 1.46 (0.20)

0111 -13.50 (0.32) *111 -12.53 (0.73) -3.00 (0.40)

1000 -7.04 (0.21) 1*** -5.07 (0.22) 1.25 (0.10)

1001 -6.58 (0.08) 1**1 5.54 (0.26) 1.02 (0.20)

1010 -8.42 (0.13) 1*1* 10.22 (0.38) 3.68 (0.20)

1011 -8.20 (0.16) 1*11 -9.42 (0.51) 0.12 (0.40)

1100 -5.05 (0.12) 11** 7.99 (0.42) 1.58 (0.20)

1101 -8.80 (0.09) 11*1 -9.15 (0.49) 0.39 (0.40)

1110 -10.07 (0.11) 111* -13.20 (0.63) -3.67 (0.40)

1111 -7.52 (0.04) 1111 19.07 (0.81) 19.07 (0.81)

1 The four mutations are T469A, A465V, E395A, and A391V (corresponding to the bits in the first column in left-to-right order).
2 Standard deviations of epistatic terms are given in parentheses and computed according to do ¼ ðO epi � O epi dy � dyÞ1=2 (see S2 Text).

doi:10.1371/journal.pcbi.1004771.t002

Table 3. Mean absolute values of interaction terms for the four-mutation network in the Shaker K+

channel. This analysis recapitulates the basic finding of Sadovsky and Yifrach [60] that these positions com-
prise a cooperative unit, a result that is further clarified with background averaging.

Epistatic Order1 Mutant Cycle2 Background-Averaged Epistasis2

jλjmean
jεjmean

0 1.97 (0.05) 8.33 (0.05)

1 6.94 (0.26) 1.63 (0.10)

2 7.91 (0.42) 1.98 (0.20)

3 11.08 (0.60) 1.79 (0.40)

4 19.07 (0.81) 19.07 (0.81)

1 Order over which the absolute values of epistatic terms are averaged.
2 Errors on the mean are given in parentheses.

doi:10.1371/journal.pcbi.1004771.t003
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genotype and will fail to account for higher-order epistasis that modulates the observed muta-
tional effect. Thus, background averaging provides a measure of the effects of mutation that
represents its general value over many related systems and, more appropriately, represents the
cooperative unit within which the mutation operates. Note that the degree of averaging
depends on the number of mutated sites and, thus, the interpretation of mutational effects will
depend on the scale of the experimental study. As we will discuss in the next section, finding
good averaging ensembles is crucial for background-averaged epistasis to be a useful quantity.
This is not only in terms of elucidating general physical mechanisms at play in the system but
also for being able to accurately predict the effects of mutations in an individual system.

The epistatic structure of larger systems
The analytical expressions in Eqs 16–18 involve the measurement of phenotypes (y) for all 2n

combinatorial mutants, a fact that exposes two fundamental problems. First, it is only practical
when n is small. In such cases (e.g., Fig 2, n = 3 or 4), the data can be combinatorially complete,
permitting a full analysis—the local and global structure of epistasis, possible evolutionary tra-
jectories, and adaptive trade-offs [62,63]. But for the typical size of protein domains (n*150),
the combinatorial complexity of mutations precludes the collection of complete datasets. Sec-
ond, even if it were possible, the sampling of all genotypes is not desired; indeed, the majority
of systems in such an ensemble are unlikely to be functional, and averages over them are not
meaningful with regard to learning the epistatic structure of native systems. How then can we
apply these epistasis formalisms in practice, especially with regard to background averaging?

To develop general principles, we begin with two obvious approaches that lead to well-
defined alternative expressions for averaged epistasis. First, consider the case in which the data
are only "locally complete;" that is, we have all possible mutants up to a certain order p�n. We
can then define a measure that is intermediate between epistasis with a single reference geno-
type and epistasis with full background averaging, which we will refer to as the partial back-
ground-averaged epistasis. For example, for three positions (n = 3) with data complete only up
to order (p = 2), the partial background-averaged effect of the first position (rightmost lower
index) is calculated as ε��1,p = (y001−y000+y011−y010+y101−y100)/3. Compared to the full back-
ground-averaged epistasis, the partial averages just leave out the last term, y111−y110, which rep-
resents the unavailable phenotype of the triple mutant y111. More generally, we can define this
measure of epistasis as another special case of the Hadamard transform:

εp ¼ W
p
ðZ

p
�HÞy; ð19Þ

where � designates the element-wise product.Wp is again a diagonal weighting vector, now
given by wii ¼ ð�1Þqi=Tp;qi

, where qi is the epistatic order associated with row i, as defined ear-

lier, and Tp;qi
¼
Xp�qi

j¼0
ðn�qi
j Þ. Note that p�qi because mutants of order higher than p are con-

sidered absent in the dataset.
The matrix Zp simply serves to multiply by zero the terms in the Hadamard matrix that

include orders higher than p. Interestingly, the Zp matrices display a self-similar hierarchical
pattern (Fig 3) and are related to Sierpinski triangles (see [64]). This permits a recursive defini-
tion in both n and p for the product Zp�H, which we will designate as Fn,p:

Fn;p ¼
F

n�1;p
F

n�1;p�1

F
n�1;p�1

�F
n�1;p�1

 !
ð20Þ

with Fn,p =Hn for n�p, and Fn,0 is a 2
n×2n matrix of zeros, except for a 1 in the upper left
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corner. This analysis assumes that data are complete up to order p. If not, analytical schemes
for background-averaged epistasis such as Eqs 19 and 20 are not obvious.

A second analytically tractable case for incomplete data arises in regression, in which the
idea is to estimate epistatic terms up to a specified order from available data. This involves solv-
ing a set of equations similar to the normal equations:

~b ¼ Q ð~XT ~XÞ�1 ~XTM y ð21Þ

whereM is an s×2n matrix constructed from the 2n by 2n identity matrix by deleting the 2n−s

rows corresponding to the unavailable phenotypic data, and ~X ¼ MX Q, with Q defined as
above. In order for this system of equations to be solvable, a necessary constraint is that s�m;
that is, the number of data points available should be larger than or equal to the number of
regression parameters. In addition, the data must be such that it is possible to uniquely solve
for all epistatic terms in the regression. For example, if two mutations always co-occur in the
data, it is obviously impossible to calculate their independent effects. In such cases, the number

of solutions to Eq 21 is infinite (~XT ~X is not invertible).
In practice, even with "high-throughput" assays, we can only hope to measure a tiny fraction

of all combinatorial mutants due to the vast number of possibilities. In this situation, the prob-
lem of inferring epistasis by regression may be further constrained by imposing additional con-
ditions, termed regularization. For example, kernel ridge regression [65] and least absolute
shrinkage and selection operator (LASSO) [66] include a weighted norm of the regression coef-
ficients in the minimization procedure. Regularization comes with its own set of caveats [67],
but its application is, unlike the approaches in Eqs 19 and 21, not conditional on specific struc-
ture of the data or depth of coverage.

However, none of these approaches directly address the problem of optimally defining
appropriate ensembles of genotypes over which averages should be taken. In principle, the idea
should be to perform background averaging over a representative ensemble of systems that
show invariance of functional properties of interest. How can we generally find such ensembles
without the impractical notion of exhaustive functional analysis of the space of possible geno-
types? One idea is motivated by the empirical finding of sparsity in the pattern of key epistatic
interactions within biological systems. Indeed, evidence suggests that, in proteins, the architec-
ture is to have a small subset of amino acids that shows strong and distributed epistatic cou-
plings surrounded by a majority of amino acids that are more weakly and locally coupled
[60,68–71]. Thus, protein sequences can show extraordinary divergence while preserving

Fig 3. Examples of matrices Zp introduced to calculate the partial background-averaged epistasis for
n = 3. (A) Z2 for when data for mutants up to second-order is available and (B) Z1 for when only first-order
mutants are available. Both matrices are self-similar, which allows their generation for arbitrary order, and are
related to the logic Sierpinski triangle. For example, Z2 = 1−AΣ, where A is the anti-diagonal identity matrix
and Σ is the Sierpinski matrix (i.e., multigrade AND in Boolean logic) for three inputs.

doi:10.1371/journal.pcbi.1004771.g003
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folding and function, and only a small set of epistatic constraints can suffice to computationally
build synthetic proteins that recapitulate these properties [72,73]. More generally, the notion of
a sparse core of strong couplings surrounded by a milieu of weak couplings has been argued to
be a signature of evolvable systems [74]. If it can be more generally verified, the notion of spar-
sity can be exploited to define relevant strategies for optimally learning the epistatic structure
of natural systems. For example, one approach is to minimize the so-called ‘1 -norm (the sum
of absolute values of the epistatic coefficients [66]) in a constrained optimization, while project-
ing onto background-averaged epistatic terms:

min
ε

jjεjj1 subject to y ¼ H�1 V�1 ε ð22Þ

This procedure is akin to the technique of compressive sensing [75,76], a powerful approach
used in signal processing to recognize the low-dimensional space in which the relevant features
of a high-dimensional dataset occur given sparsity of these features. The application of this the-
ory for mapping biological epistasis has, to our knowledge, not been reported before, but its
value might be explored with focused high-order mutational analyses in specific well-chosen
model systems. This has the potential to link the study of epistasis to a formal theory of signal
reconstruction [75,76], which may help define optimal strategies for data collection. The neces-
sary technologies for developing these ideas are now becoming available.

It is worth pointing out that a class of approaches that use ensemble-averaged information
to understand complex biological systems has been developed and experimentally tested. Sta-
tistical methods that operate on multiple sequence alignments [71,77–82] calculate quantities
that estimate the coevolution of amino acids in the sampling of sequences comprising the
alignment. In this regard, coevolution can be seen as a form of background-averaged pairwise
epistasis in which the ensemble of genotypes for averaging is defined by homology. Impor-
tantly, these approaches have been successful at revealing a hierarchy of cooperative interac-
tions between amino acids that range from local structural contacts in protein tertiary
structures [81–83] to more global functional modes [71,84,85]. Coevolution only provides
averaged pairwise epistatic terms, but studies show that it is possible to use this information to
computationally design artificial sequences that fold and biochemically function in a manner
similar to their natural counterparts [72,73]. Thus, for defining good experimental approaches
to elucidating epistatic structures, a conceptual advance may come from formally mapping the
constrained optimization problem described in Eq 22 to the kind of ensemble averaging that
underlies the statistical coevolution approaches.

Discussion
A fundamental problem is to define the epistatic structure of biological systems, which holds
the key to understanding how phenotype arises from genotype. Here we describe a unified
mathematical foundation for epistasis in which different approaches are versions of a single
mathematical formalism—the weighted Walsh-Hadamard transform. In the most general case,
this transform corresponds to an averaging of mutant effects over all possible genetic back-
grounds at every order of epistasis. This approach corrects the effect of mutations at every level
of epistasis for higher order terms. Importantly, it represents the degree to which the effects of
mutations are transferable from one model system to another—the usual purpose of most
mutagenesis studies. In contrast, the thermodynamic mutant cycle (commonly used in bio-
chemistry) [51] constitutes a special case of taking a single reference genotype and thus no
averaging [60,61,86–90]. This analysis represents the effects of mutations that are specific to a
particular model system. Regression (commonly used in evolutionary biology) is an attempt to
capture features of a system with epistatic terms up to a defined lower order, often to bound
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the extent of epistasis or to predict the effects of combinations of mutations [33,91]. The simi-
larity of the regression operator to that of the mutant cycle (see Eq 13) indicates that this
approach is also focused around the local mutational environment of a chosen reference
sequence.

Overall, background averaging would seem to provide the most informative representation
of the general effect of a mutation. However, with the exception of very small-scale studies
focused on the local mutational environment of extant systems, it is both impractical and logi-
cally flawed to collect combinatorially complete mutation datasets for any system. Thus, the
essence of the problem is to define optimal strategies for collecting data on ensembles of geno-
types that is sufficient for discovering the biologically relevant epistatic structure of systems.

The notion of sparsity of epistatic interactions provides a general basis for developing such a
strategy, and it will be interesting to test practical applications of this concept (e.g., Eq 22) in
future work. Defining optimal data collection strategies will not only provide practical tools to
probe specific systems but also might guide us to principles underlying the "design" of these
systems through the process of evolution and help the rational design of new systems. The
mathematical relations discussed here provide a foundation to advance such understanding.
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