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Abstract
Background: Bioassays are routinely used to evaluate the toxicity of test agents. Experimental designs for bioassays are 
largely encompassed by fi xed effects linear models. In toxicogenomics studies where DNA arrays measure mRNA levels, 
the tissue samples are typically generated in a bioassay. These measurements introduce additional sources of variation, 
which must be properly managed to obtain valid tests of treatment effects.

Results: An analysis of covariance model is developed which combines a fi xed-effects linear model for the bioassay with 
important variance components associated with DNA array measurements. These models can accommodate the dominant 
characteristics of measurements from DNA arrays, and they account for technical variation associated with normalization, 
spots, dyes, and batches as well as the biological variation associated with the bioassay. An example illustrates how the 
model is used to identify valid designs and to compare competing designs.

Conclusions: Many toxicogenomics studies are bioassays which measure gene expression using DNA arrays. These stud-
ies can be designed and analyzed using standard methods with a few modifi cations to account for characteristics of array 
measurements, such as multiple endpoints and normalization. As much as possible, technical variation associated with 
probes, dyes, and batches are managed by blocking treatments within these sources of variation. An example shows how 
some practical constraints can be accommodated by this modelling and how it allows one to objectively compare compet-
ing designs.

Background
Many toxicogenomics studies are intended to evaluate the response of the transcriptome to test agents. 
Observed changes in mRNA concentrations in tissues can indicate the mechanism of toxicity, at least 
in concept (Chin and Kong, 2002; Guerreiro et al. 2003; Hamadeh et al. 2002; Irwin et al. 2004; Lord 
et al. 2006; Luhe et al. 2005; Nuwaysir et al. 1999; Waring and Halbert, 2002; Waters et al. 2003). 
However, the analysis and interpretation of these studies confront many problems that are often com-
pounded by poor designs (Lay et al. 2006).

The response of an organism to applied treatments or selected characteristics is evaluated in a bioas-
say. The bioassay, that underlies most toxicogenomics studies conducted at the National Center for 
Toxicological Research, is to treat animals of specifi ed phenotypes (e.g. species, sex, strain) or condi-
tions (e.g. ages, calorie restricted) with various levels of test agents (e.g. doses, exposure regimes). The 
study designs are typical of bioassays routinely used in toxicology. In fact, tissues are often collected 
from bioassays primarily designed for more traditional purposes. Many design issues, such as sample 
size or power, can largely be addressed through standard procedures for multi-factor designs. The goal 
in this paper is to describe a heuristic model for the statistical analysis that integrates the usual approach 
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to designing bioassays with the added complications 
associated with measuring expression with DNA 
arrays.

DNA array technologies simultaneously mea-
sure transcript levels from thousands of genes per 
sample, and this ability to interrogate transcript 
levels for an entire genome motivates the interest 
in toxicogenomics studies. However, these mea-
surements are generated through chemical assays 
comprised of several steps, which are prone to 
technical variation (Yang and Speed, 2002). The 
study design must incorporate these technical 
sources of variation with the biological variation 
in the bioassay in a way that does not compromise 
treatment comparisons.

The data generated in these studies are analyzed 
‘by gene’, and the interpretation of the signifi cance 
of p-values associated with tests for treatment 
effects must cope with misclassification rates 
expected with such a large number of tests. In this 
setting, it is desirable to declare signifi cance based 
on false discovery rates (Allison et al. 2006; 
Benjamini and Hochberg, 1995; Delongchamp 
et al. 2004). The traditional power/sample size 
calculation for a single test remains useful to 
evaluate the relative merits of competing designs, 
but benefi ts from modifi cations, which arise by 
consideration of multiple testing.

It is common practice to transform, normalize 
and background correct the intensities from DNA 
arrays although there is no widespread agreement 
on the best procedures (Allison et al. 2006). Each 
procedure impacts the analysis, and this should be 
addressed in the design. While we have no special 
insight as to the best procedures, the specific 
procedures, which we use, are justifi ed in the con-
text of an overall analysis strategy. For actual 
examples of analyses, see (Delongchamp et al. 
2003; Delongchamp et al. 2005; Desai et al. 2007; 
Desai et al. 2004).

Hypotheses are tested using an analysis of 
covariance model to account for the variance 
removed by normalizing the measurements and to 
adjust for specifi ed sources of variation (Parrish 
and Delongchamp, 2006). These designs often use 
a standard reference sample (Desai et al. 2007; 
Desai et al. 2004). While a ‘reference’ design can 
be less effi cient than balanced incomplete block 
designs (Kerr and Churchill, 2001; Vinciotti et al. 
2005), they offer versatility with respect to treat-
ment layouts and sample sizes. A recent set of 
papers discusses some of these issues (Dobbin et al. 

2003b; Dobbin et al, 2005; Martin-Magniette et al. 
2005a; Martin-Magniette et al. 2005b). From our 
perspective, the goal is to design studies which 
reliably test treatment effects with adequate power, 
and the designs we use meet this goal. Designs, 
which estimate expression changes relative to a 
standard, facilitate across-study comparisons. 
Since functional genomic studies tend to be explor-
atory, follow-up studies should be anticipated and 
estimating effects relative to a standard has merit 
in this context.

Methods
At the design stage, a statistical model is a 
framework through which experimental design 
questions can be addressed. Our goal is to design 
a toxicogenomics study that allows valid treatment 
comparisons when confronted by several sources 
of variation. Given a design, the model allows one 
to incorporate the recognized sources of variation 
into expected mean squared errors for a statistical 
analysis. Before a design is implemented, its 
expected mean squares should demonstrate that an 
analysis with valid tests is possible. Usually several 
designs can give valid tests, and the model helps 
to choose among them. An example illustrates the 
design process.

Model for bioassay
It will be taken for granted that tissue samples and 
treatments have been suitably selected to address 
hypotheses of interest. For didactic purposes, we 
presume that the treatment layout of the bioassay 
is a fi xed effects linear model as this level of gen-
eralization accommodates the majority of toxicoge-
nomics studies conducted at NCTR. Under a fi xed 
effects linear model, the ‘expression’ data for an 
arbitrary gene has an expectation and variance that 
can be written as

 E(yi) = (Xi1 ··· Xip)β = Xiβ 
(1.1)

 var(yi) = σ 2 

At this juncture, yi denotes an observed measure-
ment of expression, suitably transformed, for 
experimental unit, i, obtained at treatment levels 
specifi ed through a design matrix, Xi, and σ 2 
denotes the within-treatment variance among 
experimental units.
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Equation (1.1) models an arbitrary gene. To 
“scale up” to the thousands of genes which are 
measured per experimental unit, the parameters, 
β and σ2, are assumed to be gene specifi c. The 
multivariate structure is ignored in practice, and 
statistical analyses are applied one gene at a time 
(Delongchamp et al. 2004; Wolfi nger et al. 2001). 
Consequently, Equation (1.1) is adequate for this 
discussion. From the computation perspective, fi xed 
effects linear models are widely implemented in 
well documented statistical packages. Our experi-
ence is with SAS, and these models are easily 
implemented using PROC GLM (SAS, 1999). 
Further, this basic design structure can accommo-
date more sophisticated analyses, which incorporate 
current trends in statistical methods for DNA array 
data (Allison et al. 2006). It is not too diffi cult to 
implement shrinkage/empirical Bayes adjustments 
to the variance (Smyth, 2004; Wright and Simon, 
2003), which will increase statistical power when 
sample sizes are small. We have also adapted these 
analyses to correlated groups of genes (e.g. gene 
ontology groupings) (Delongchamp et al. 2006).

Without further elaboration, we presume that the 
set of biological samples, {Xi: i  = 1, …, n}, defi nes 
a reasonably effi cient design with respect to the 
hypotheses of interest, and note that the properties 
of experimental designs have been well studied in 
this setting. In our work, ‘n’ is arrived at through a 
conventional sample size/power assessment, which 
addresses the issue of multiple testing by reducing 
the signifi cance level, e.g. power is computed at 
signifi cance level of 0.001 instead of 0.05 for a 
representative value of σ 2. This is elaborated 
through the example in Section 5.

Model for DNA arrays
For our purposes, a DNA array is a surface that is 
spotted with DNA. The spots are arranged in a grid 
at a regular spacing, the array. Each spot is DNA 
with a known nucleotide sequence that corresponds 
to part of a gene’s DNA sequence. Hereafter, the 
spotted sequence will be referred to as a probe. 
When a mixture of DNA species is hybridized to 
the arrayed probes, complementary sequences bind 
preferentially thereby sorting the mixture into its 
constituents. To measure a sample, which is a 
mixture of mRNA species, an aliquot of the total 
mRNA is transcribed into complementary DNA. 
This cDNA is labelled with a fl orescent dye or 
a radioactive isotope. The labelled-cDNA is 

hybridized to the probes, and the intensity of label 
bound to each probe is measured. More than one 
sample can be hybridized to an array by using dif-
ferent labels.

There are several commercially available plat-
forms that measure gene expression by hybridizing 
a labelled sample to a set of DNA probes, and their 
details can differ from the preceding description. 
Our experience has been with spotted arrays, both 
‘macro’ arrays, e.g. www.clontech.com (Bowyer 
et al. 2007; Delongchamp et al. 2003; Delongchamp 
et al. 2005) and oligonucleotides spotted on glass-
slide microarrays, such as ‘Mitochip’ (Desai et al. 
2007). Because of our experience, we describe the 
statistical model in the context of a spotted oligo-
nucleotide technology, specifi cally ‘Mitochip’. In 
large part, the statistical issues do not depend on 
how a DNA probe is created. That is, in situ syn-
thesized microarrays, such as arrays manufactured 
by Affymetrics: www.affymetrix.com, record a 
label-intensity at each ‘feature’, which has essen-
tially the same statistical properties as the spotted 
technologies. Affymetrics arrays measure multiple 
probes for each gene, both sequence matches and 
mismatches. To obtain a single expression 
measurement, it is necessary to collate intensities 
from many probes. Likewise, it is not necessary 
that the DNA probes are physically bound to a 
surface. For example, the Illumina bead platform, 
www.illumina.com, still obtains label-intensities 
associated with a set of DNA probes even though 
the beads are not arrayed. While PCR methods are 
technologically distinct, the modeling employed 
here extends quite easily to that technology (Desai 
et al. 2007).

Let P denote the set of probes on an array. Label 
intensities are observed at the location of each 
probe. These intensities need to be related to the 
mRNA concentrations in the original tissue. In 
general, a tissue sample can be assayed more than 
once. To accommodate this, we add a subscript to 
designate the aliquot measured on an array. The 
intensity observed at a probe (g) for an aliquot/ 
array (a) from experimental unit (i) will be 
designated Iga(i).

In evaluating a gene’s function, we attempt to 
observe how its mRNA concentration responds to 
manipulated conditions. The concentration of 
mRNA for gene (g) in a sample of tissue (i) will 
be denoted as Cgi. It is usually assumed that the 
intensity is proportional to the mRNA concentra-
tion in the sample, Iga(i) ∝ Cgi. In general, this 
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assumption is not correct unless background 
contributions to the intensity can be ignored and 
probe amounts are in excess of amounts in the 
aliquot hybridized to the array (Held et al. 2003; 
Held et al. 2006; Zhang et al. 2007). These issues 
are limitations of the technology that are not 
directly addressed by the design considerations 
discussed here.

For two samples, no difference in the expression 
of a gene is taken to mean that the mRNA concen-
trations are equal, that is Cgi = Cg j. The total con-
centration of mRNA in a sample is the sum of 
concentrations from the constituent mRNAs 
(genes). Since Cgi = 0 when a mRNA species is 
absent, the total concentration can be written as the 
sum over genes that comprise the genome. Let G 
denote this set, and write this sum as

 C•i = Cgi
g∈
∑

G

.  (1.2) 

Then the proportion of the total mRNA that arises 
from gene (g) is

 πgi = Cgi /C•i. (1.3)

An assay of gene expression begins with a fi xed 
amount (w μg) of the total mRNA, which was 
recovered from a tissue sample, so that πgi w μg of 
mRNA from gene ‘g’ is in the starting aliquot. Note 
that equal amounts of a specifi c mRNA in two start-
ing aliquots do not imply that the initial samples 
have equal expression since πgi w = πg j w does not 
imply that Cgi = Cg j . For equal amounts in aliquots 
to imply equal concentrations in samples, the total 
mRNA must be the same for both samples, that is 
C•i = C•j. This usually would not be the case if some 
genes in these samples have differential expression. 
In order to ‘normalize’ the amounts in aliquots so 
that they refl ect the concentrations in tissues, one 
needs to know or estimate the ratio, C•i /C•j.

The essential chemistry is the specifi city of 
DNA hybridizations. For every probe on the array, 
g ∈P, and gene in the genome, h ∈G, there is a 
binding affi nity, κgh. If the gene-specifi c amounts 
of labelled cDNA are proportional to the 
corresponding mRNA in the aliquot, the intensity 
will be proportional to the relative concentration 
of gene ‘g’, κgg πgi, plus a background, κ πgh hi

h h g

,
,∈ ≠

∑
G

which arises from binding with DNA from other 
genes in the sample. That is,

 
I w wga i gh hi gg gi gh hi

h h gh
( )

,

.∝ =
⎛

⎝⎜
⎞

⎠⎟∈ ≠∈
∑∑κ π κ π κ π+
GG

 

(1.4)
Successful sorting implies that the binding to 
probe ‘g’ is much larger for labelled cDNA from 
gene ‘g’ than for labelled cDNA from any other 
gene, i.e. κgg >> κgh when h ≠ g. Since the back-
ground should be small, it is of little consequence 
when the interrogated gene is highly expressed, 
in which case: Iga(i) ∝ πgi. Background is problem-
atic when πgi is also small. At least for this 
discussion, this problem with background is 
viewed as a limitation of the technology that 
biases estimated effects.

As an operational model, we ignore background 
and assume that the observed intensity is reason-
ably approximated as

 log2 Iga(i) ≈ Kga + log2 Cgi − log2 C•i. (1.5)

The observed log-intensity depends upon mRNA 
concentration in the sample, log2 Cgi, as well as 
a proportionality term associated with processing 
the aliquot, Kga, and a ‘normalizing’ term, 
log2 C•i.

Technical variation: spot, dye 
and batch effects
Whenever two samples are hybridized to a single 
array, they share some sources of variation. In 
particular, hybridization conditions, DNA binding 
sites, and spot alignments will be identical. 
Common conditions make intensities for these 
samples more alike than those from samples that 
have been measured on other arrays. That is, 
samples measured on different arrays exhibit more 
technical variation, which we refer to as a spot 
effect. In order to hybridize two samples on an 
array, they must be labelled with different dyes. 
There also is a dye effect. Spot and dye effects can 
be directly estimated by a dye-fl ip between two 
samples (Chen et al. 2004).

Consider two samples, i and j, which are mea-
sured with a dye flip on two arrays. Table 1 
illustrates the layout, where we let y = log2 I to 
streamline the notation. By measuring each 
sample twice, the array/spot effect and the dye 
effect are estimable and they can be eliminated 
from the estimate of the treatment effect. In this 
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context, the dye effect is defi ned to be the differ-
ence between the average of intensities for the 
respective dyes, i.e.

 2d = y11 + y12 − y21 − y22. 

Similarly, the array effect, treatment effect, and 
overall mean are defi ned as

 2a = y11 − y12 + y21 − y22 
  2t = y11 − y12 − y21 + y22 
 4m = y11 + y12 + y21 + y22. 

At least heuristically these equations can be related 
to Equation 1.5 as follows:

    y11 = (m + t/2) + (a/2 + d/2) ≈ log2 πi + K11 

  y12 = (m − t/2) + (−a/2 + d/2) ≈ log2 πj + K12 

 y21 = (m − t/2) + (a/2 − d/2) ≈ log2 πj + K21 

  y22 = (m + t/2) + (−a/2 − d/2) ≈ log2 πi + K22 
 

That is, the proportionality constant in Equation 
1.5 depends on spot and dye effects which can be 
estimated and eliminated via this dye fl ip. In par-
ticular,

t = log2 πi  − log2 πj  = (y11 + y22 )/2 − (y12 + y21)/2.

A dye-fl ip works well when there are two treat-
ments since the treatments can be blocked within 
spots and dyes (Delongchamp et al. 2005). How-
ever, it becomes increasingly diffi cult to manage 
technical sources as the number of treatments is 
increased. A straightforward solution is to do the 
dye fl ip with a standard sample, e.g. (Desai et al. 
2004), where the standard is characterized as a 
sample which has a constant expression level 
throughout the study.

A dye-fl ip with a standard uses two arrays per 
sample and doubles the cost and work of assaying 
each sample. However, each sample is measured 
twice, thereby reducing the technical error. This can 
be a reasonable way to increase the precision of 
estimated treatment effects whenever tissue samples 
are at a premium. At least conceptually, this type 
of dye fl ip eliminates spot effects and dye effects 
yielding adjusted estimates of expression in the 
samples relative to expression in the standard. In 
earlier work, there was an interest in mining data-
bases created from several studies, and estimates 
of expression relative to a common standard seemed 
desirable. In practice, the sequences used for 
probes, assay conditions, etc., change from study 
to study and these changes undermine the utility of 
measuring expression relative to a standard.

In current work, we usually label the sample with 
CY5 and a universal reference with CY3. The dif-
ference between the log-intensities of the sample and 
reference eliminates the spot effect but not the dye 
effect, y11 − y21 = t + d. The dye effect usually differs 
for each probe. Within a probe, this effect appears to 
be reasonably stable across samples, and in recent 
studies we presume it is a constant bias in the differ-
ence between the sample and the standard. Because 
we block on batches, a dye ‘bias’ only needs to be 
constant within batches to manage this effect.

In addition to variation associated with spots 
and dyes, we explicitly design studies to manage 
technical sources of variation that can be associated 
with concurrent processing conditions (batches). 
Samples assayed concurrently share processing 
conditions making their measurements more 
homogeneous than measurements made at other 
times. Some of these sources of variation may not 
be trivial resulting in a ‘batch’ effect. In general, 
all of the samples in a study cannot be processed 
concurrently. So, the batch effect should be incor-
porated into the experimental design.

Combined model
Let ygi be a difference between a sample and the 
standard,

 ygi = log2  Iga(i) 
− log2 Iga(s)

.  

This gives

     E[ ygi] ≈ E[d ] + log2 (Cgi /Cgs) − log2 (C•i /C•s)
 

  = E[d ] + Xiβg − log2 (C•i /C•s) (1.6)

Table 1. Dye fl ip between two samples. Table defi nes 
a dye fl ip for two samples on two arrays. The log-intensities 
for dye i and array j are denoted yij.

 Array 1  Array 2
Dye: CY3  Sample i: y11 Sample j: y12
Dye: CY5  Sample j: y21 Sample i: y22
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To eliminate log2 (C•i /C•s) from the statistical 
model, we use a normalizing covariate, zi. Many 
normalization methods can be implemented 
through an analysis of covariance (Parrish and 
Delongchamp, 2006). In the example, we normal-
ize using housekeeping genes and the following 
details are for that case.

Defi ne housekeeping genes, g ∈H, as a set of 
genes that satisfy Cgi = Cgj for all samples, i.e. genes 
which are not affected by the treatments. Let 
the normalizing covariate be the average of 
log-intensities for the housekeeping genes 
from a sample, i.e. z h yi gi

g
= −

∈
∑1

H
. Define log2 

C h C Cgi gs
g

H
H

= −

∈
∑1

2log ( / ) and note that this quan-
tity is the same for all samples, i = 1,…,n, because 
of the a priori assumption that these are housekeep-
ing genes. Equation (1.6) implies

 E( ) E ( .z d C C Ci i s= ⎡⎣ ⎤⎦ • •+ −log log / )2 2H  
(1.7)

By combining Equations (1.6) and (1.7), the expec-
tation of an observed intensity is

 E( ) E E( ).y d d C zgi i g i≈ + −⎡⎣ ⎤⎦ − +X ββ log2 H  
(1.8)

This relationship is an analysis of covariance 
model,

 E log ,( )2 I zga i i g g i
⎡⎣ ⎤⎦ = +X ββ γ  (1.9)

where the location shift (bias) implied by 
E d d C− −[ ] log2 H is absorbed into the overall mean 
of the linear model, Xiβg, and the parameter, γg, 
captures the attenuation associated with replacing 
the expectation, E(zi), with an estimate, zi.

This statistical model is an analysis of covariance 
model with two generic sources of variation, bio-
logical and technical. Biological variation should 
be estimated through replicate samples within treat-
ments. Technical variation arises from sources con-
nected with the sample-processing steps in the 
measurement of gene expression. These sources are 
associated with spots, dyes and batchs.

Example
The example discusses the design of a toxicoge-
nomics study to evaluate treatment effects on 

mRNA transcripts involved in mitochondrial 
function. It illustrates a situation where tissues are 
collected from a bioassay designed primarily for 
other purposes. In this case, a bioassay was con-
ducted at NCTR for the National Toxicology 
Program, which is assessing the carcinogenic 
potential of AZT when it is administered to prevent 
mother to child transmission of AIDS. Muscle tis-
sue was collected from 120 mice, 6 mice per treat-
ment from 20 treatments: 2 sexes × 2 sacrifi ce times 
× 5 levels of AZT exposure. AZT is known to affect 
the mitochondria and the microarray assay is 
intended to complement an overall toxicity assess-
ment by testing for treatment effects on transcript 
levels of 542 genes important to the structure and/
or function of mitochondria (Desai et al. 2007).

The 20 ‘treatments’ in this bioassay are arranged 
in a factorial design of 5 AZT dosing regimes in 
both sexes with tissues collected at either a one or 
two hour interval after the fi nal AZT exposure. This 
arrangement of treatments can be parameterized in 
several equivalent ways. Table 2 gives one param-
eterization, which serves as the basis of discussions 
to follow. Table 2 is a standard partitioning of the 
sums of squares into sources of variation, and it 
corresponds to a fi xed effects linear model, Equa-
tion (1.1). The statistical signifi cance of each source 
would be evaluated through an analysis of variance. 
In the context of measuring gene expression, this 
defi nes the statistical analysis of the data for an 
arbitrary gene if its mRNA concentrations in each 
mouse were measured with a simple additive error, 
i.e. Equation (1.1).

In the design we specifi cally want to account 
for biological variation associated with mice (σ m

2) 

Table 2. Expected mean squared errors for the 
bioassay. Table shows the expected mean squared 
errors associated with a fi xed-effects 2 × 2 × 5 factorial 
model for the factors: sex, time, AZT and their interac-
tions. This layout corresponds to a specifi c parameter-
ization satisfying Equation 1.1.

Source  DF  Expected mean square 
Sex  1 σ 2m + Q(Sex)
Time 1 σ 2m + Q(Time)
Sex * Time  1 σ 2m + Q(Sex * Time)
AZT  4 σ 2m + Q(AZT)
AZT * Sex  4 σ 2m + Q(AZT * Sex)
AZT * Time  4 σ 2m + Q(AZT * Time)
AZT * Sex * Time  4 σ 2m + Q(AZT * Sex * Time)
Mice within  20  σ 2m
treatment (n − 1)
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and technical variation associated with batches 
(σb

2), as well as spots and dyes. Effects of spots and 
dyes are eliminated by analyzing the difference 
between the log-intensities on the red and green 
channels. Variation (e.g. amount and uniformity of 
the spotting) associated with the probe is ‘removed’ 
by subtracting the CY5 log-intensity from the CY3 
log-intensity. The sample is labelled with CY5 and 
a universal reference is labelled with CY3, which 
effectively removes dye effects from treatment 
contrasts (Dobbin et al. 2003a; Dobbin et al. 
2003b).

In addition, each probe is spotted twice on the 
array providing a sub-sampling error. Conceptually, 
this source of variation is a lower bound on the 
technical variation which can be partitioned from 
the residual technical variation (σ 2). This error can 
be quite useful for diagnostic purposes, and it is 
routinely evaluated at the analysis stage (Delong-
champ et al. 2005). Because this level of detail does 
not alter the main design issues, this component 
was absorbed into the residual in the expected mean 
squares that are presented here. That is, the tabled 
expectations assume that the log-intensity differ-
ences for the two spots have been averaged.

The design has to accommodate two logistic 
constraints. First, the amount of mRNA that can be 
extracted reliably from each sample is anticipated 
to be near the minimum required for a microarray 
assay. We formally considered 2 options, 1) using 
4 mice (assumes at least 4 among the 6 mice will 
have enough mRNA) or 2) pooling the mRNA from 
2 mice so that the 6 mice form 3 mRNA samples. 
The second constraint is that the microarray labora-
tory can concurrently process 6 to 8 tissue samples 
on DNA arrays. Consequently, arrays for 20 

treatments cannot be processed as a batch. Since 
the primary interest is in AZT effects, we chose to 
process 5 samples as a batch, one sample from each 
AZT treatment within a sacrifi ce time and sex.

Table 3 outlines the degrees of freedom and 
expected mean squares under the first option. 
Table 4 outlines the degrees of freedom and 
expected mean squares under the second option, 
where it is assumed that pooling 2 mice reduces the 
biological variance to σ m

2 2/ . Note that the fi rst option 
uses 80 arrays while the second option uses 60  
arrays. Also the fi rst option is more ‘iffy’ since one 
cannot guarantee that 4 of the samples will have 
enough mRNA for a microarray assay. Conse-
quently, option 2 is preferred unless the statistical 
power under option 1 is substantially better.

It is not entirely clear how to evaluate the power 
of competing designs because of the large number 
of comparisons (Tsai et al. 2005). In this setting, 
the signifi cance of a p-value is diffi cult to interpret. 
In our analyses, the genes are ordered by their 
p-value, and a gene with a smaller p-value is pre-
sumed to be more signifi cant (Delongchamp et al. 
2004). Signifi cant genes are identifi ed by a post 
hoc evaluation of the false discovery rate associ-
ated with any partition of the ordered genes into 
an ‘affected’ set and the remainder, presumed not 
to be affected. We implement this analysis strategy 
at the design stage by decreasing the signifi cance 
level used in a conventional power computation. 
In the power calculation, we want to detect most 
of the genes that have suffi ciently large treatment-
induced changes, say greater than 1.5 fold. That 
is, if a gene has a 1.5-fold treatment-induced 
change, the statistical test should have a reasonably 
small p-value, say p ≈ 1/(# genes on the array), 

Table 3. Expected mean squared errors for option 1 of the combined model. Table shows the expected 
mean squared errors associated with a combined model. This layout corresponds to a 2 × 2 × 5 factorial arrange-
ment of sex, time, AZT and their interactions with the 80 muscle samples processed in 16 batches (blocks); each 
batch has 5 samples, one sample for each AZT level within a sex and a sacrifi ce time.

Source  DF  Expected mean square (approx.) 
Mean: Housekeeping genes  1 σ 2 + 2σ 2m + Q(Slope)
Sex  1 σ 2 + 2σ 2m + 10σ 2b + Q(Sex)
Time 1 σ 2 + 2σ 2m + 10σ 2b + Q(Time)
Sex * Time 1 σ 2 + 2σ 2m + 10σ 2b + Q(Sex * Time)
Batch  12 σ 2 + 2σ 2m + 10σ 2b
AZT  4 σ 2 + 2σ 2m + Q(AZT)
AZT * Sex  4 σ 2 + 2σ 2m + Q(AZT * Sex)
AZT * Time  4 σ 2 + 2σ 2m + Q(AZT * Time)
AZT * Sex * Time  4 σ 2 + 2σ 2m + Q(AZT * Sex * Time)
Mice within treatment  47 σ 2 + 2σ 2m
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with a high probability (power). In this example 
where there are 542 mitochondrial genes on the 
array, we used p = 0.002 (1/500) for the power 
computations.

Obviously, power depends on the values of 
variance components in Tables 3 or 4, which are 
gene-specific and unknown (Tsai et al. 2005). 
Because so many important parameters are 
unknown, a comprehensive assessment of power 
is not attempted. For a ball park assessment of 
competing designs, the power of a two-sided t-test 
for an interesting contrast can be computed using 
the median values of variance components from a 
previous study. Typically, one must choose some-
what arbitrarily among available studies attempting 
to most closely match the array, tissue and mouse 
strain of the current study. In this case, data from 
an AZT study using the same array on liver samples 
from the same mouse strain were available (Desai 
et al. 2007). This study gave the following medians 
for variance components of the 542 mitochondrial 
genes on the array:
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Under the factorial design (Tables 3 or 4), there 
are a number of hypotheses and sub-hypotheses 
that can be tested. We evaluate the overall perfor-
mance of a design by specifying the power for a 
few contrasts, which we deem to be most important. 

Factorial designs have the most power to detect 
the main effects (in this case: ‘AZT’, ‘Sex’, and 
‘Time’), but contrasts among levels of the main 
effects are not the most interesting when interac-
tions are anticipated. In toxicological studies, the 
effect of a dosing regime is frequently believed to 
depend on the levels of other factors, which are 
included in the study to broaden the scope of 
the risk assessment. This is the case here where the 
mitochondrial toxicogenomics associated with 
AZT treatment may also depend on sex or sacrifi ce 
time (sacrifi ce times were based upon the pharma-
cokinetics of AZT metabolism in these mice). 
When interactions are signifi cant, interpretations 
of the results depend on contrasts within levels of 
other factors. With this appraisal in mind, we 
evaluated the power for two ‘key’ contrasts, an 
AZT contrast within a sex and sacrifi ce time and 
a sex contrast within a sacrifi ce time. These con-
trasts use different error terms (Tables 3 or 4); the 
AZT contrast uses ‘Mice within Treatments’ and 
the sex contrast uses ‘Batch’. Figure 1 plots the 
power as a function of fold-change for these two 
contrasts under both design options. All four curves 
have adequate power to pick up 1.5 fold-changes 
at the 0.002 level of signifi cance. Because both 
options have adequate power, option 2 was adopted 
as this design has better cost/logistic properties.

When substantial batch effects are present but 
ignored in the design and subsequent analyses, the 
computed F-ratios are unlikely to be valid tests of 
the nominal hypotheses. In general, the specifi c 
consequence of ignoring substantial batch effects 
would not be very tractable since they are unman-
aged in the design. However for the design in 

Table 4. Expected mean squared errors for option 2 of the combined model. Table shows the expected 
mean squared errors associated with a combined model. This layout corresponds to a 2 × 2 × 5 factorial arrange-
ment of sex, time, AZT and their interactions with the 60 pooled muscle samples (2 samples per pool) processed 
in 12 batches (blocks); each batch has 5 pools, one pool for each AZT level within a sex and a sacrifi ce time.

Source  DF  Expected mean square (approx.) 
Mean: Housekeeping genes  1  σ 2 + σ 2m + Q(Slope)
Sex  1  σ 2 + σ 2m + 10σ 2b + Q(Sex)
Time 1  σ 2 + σ 2m + 10σ 2b + Q(Time)
Sex * Time  1  σ 2 + σ 2m + 10σ 2b + Q(Sex * Time)
Batch  8  σ 2 + σ 2m + 10σ 2b
AZT  4  σ 2 + σ 2m + 10σ 2b + Q(AZT)
AZT * Sex  4  σ 2 + σ 2m + 10σ 2b + Q(AZT * Sex)
AZT * Time  4  σ 2 + σ 2m + 10σ 2b + Q(AZT * Time)
AZT * Sex * Time  4  σ 2 + σ 2m + 10σ 2b + Q(AZT * Sex * 
Time)
Mice within treatment  31  σ2 + σ 2m
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Table 4, the batch effects are nested within sex and 
time effects and the result of disregarding batch 
effects can easily be evaluated. Under this design, 
proper analyses partition the variation as presented 
in Table 4. If an analyst were to disregard the 
‘batches’ component such that this variation is 
simply added to the ‘mice within treatments’ com-
ponent, then the pooled error term would have an 
expected mean squared error of approximately 
σ 2 2 2 2+ σ σm b+ , which would be estimated with 
39 degrees of freedom. This ‘pooled’ estimate 
would misrepresent the appropriate error variances 
by over estimating the error variance of AZT treat-
ments and under estimating the error variance of 
sex or time effects. The F-ratios would not be valid 
tests of the nominal hypotheses and would result 
in fewer AZT effects, more sex effects and more 
time effects than appropriate.

Several other designs are valid. They were not 
formally considered because they represent 
different priorities as to what effects are important. 
For example, an alternative is to process the arrays 
separately as ‘batches’ of one, in that sense ignor-
ing batch. This design provides valid tests for the 
interesting factors by incorporating the variation 
associated with batches into the residual (Table 5). 
Compared to the design of Table 4, this design 

provides more precise estimates of the sex and time 
effects, but less precise estimates of AZT effects. 
Our preference for the design in Table 4 refl ects 
our desire to estimate AZT effects, and an a priori 
belief that sex and time effects are less important. 
In addition, the design in Table 5 does not utilize 
the lab effi ciently making this design more expen-
sive. The lab is capable of processing six to eight 
arrays as a batch and this design processes one.

Discussion
When DNA arrays are used to measure gene 
expression, several aspects of the technology 
should play a part in the experiment’s design. The 
observed intensities must be normalized for infer-
ences to properly refl ect treatment differences. 
Since normalization removes a major part of the 
variation, implementing the adjustment as a covari-
ate gives a direct assessment of its impact. The 
assay of samples involves several steps and arrays 
processed concurrently produce measurements that 
are more homogeneous. Whenever samples are 
assayed in batches, the design should manage this 
effect. Likewise, when multiple (usually two) 
samples are hybridized to an array the measure-
ments will be more homogeneous. Consequently, 

Figure 1. Power versus fold change for two key contrasts. The fi gure plots the power for a two-sided t-test at the 0.002 signifi cance level 
as a function of the fold change. Blue lines give the power for a sex difference within a sacrifi ce time, and red lines give the power for a dif-
ference between two AZT levels within a sex and sacrifi ce time. Solid lines use the error for Option 1 (Table 3) and the dashed lines use the 
error for Option 2 (Table 4).
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designs need to address variation from batches, 
dyes and arrays as well as the variation among 
samples (experimental units).

We view toxicogenomics studies as assays of 
mRNA in tissue samples nested within a bioassay 
of treatments. The purpose of the study is to estimate 
treatment differences in gene expression. Statistical 
tests of treatment effects require a valid assessment 
of within-treatment variation, which will generally 
be the variation among tissue samples from treated 
animals. As the example illustrates, tissue samples 
can be pooled but the design needs to estimate the 
variation among experimental units (pools in this 
example). The technical sources of variation associ-
ated with each mRNA assay (array) primarily need 
to be managed so that variance among experimen-
tal units can be estimated. We accomplish this by 
blocking on samples that are processed concurrently 
and samples measured on the same array.

As the example illustrates, samples often come 
from studies which were originally designed for 
reasons other than studying gene expression. In 
such cases, the design is constrained by the avail-
able samples. The use of standard samples adjusts 
simply for probe-specifi c effects and designs hav-
ing valid tests, which adjust for batch, array, and 
dye, can be found for virtually any sample size.

Although background expression can be ignored 
at the design stage, some kind of strategy should 
address background at the analysis stage. A com-
mon strategy is to subtract an estimate of the 
background from the observed intensity. This 
strategy is not recommended for a couple of rea-
sons. First, the usual estimates of background 
available to the analyst simply do not measure the 
appropriate background. Second, subtraction 

generates negative intensities which cannot be 
log-transformed and implemented in the planned 
analysis. In essence, our strategy is to only pursue 
treatment effects among those probes for which 
background expression is judged to be negligible 
(Delongchamp et al. 2005). Actually, all probes are 
analyzed but those with ‘background’ levels of 
expression for all samples are classifi ed as ‘not 
expressed’. The results of analyses on these genes 
are separated from those for the ‘expressed’ genes. 
The ‘not expressed’ genes can and often do indicate 
problems with the statistical model (Delongchamp 
et al. 2004). Genes that are not expressed cannot 
be differentially expressed. So, the empirical dis-
tribution of p-values from tests of treatment effects 
should follow the null distribution. When this 
empirical distribution is not consistent with a uni-
form distribution, one of several potential problems 
is an inappropriate design.

Normalization is necessary and a diffi cult prob-
lem in practice. We have avoided the issues by 
assuming the existence of a normalizing covariate. 
This is a reasonable approach when developing an 
experiment’s design, but at the time of analysis one 
needs to produce a covariate. There are a number 
of methods which have been proposed for normal-
ization and many can be implemented through an 
analysis of covariance (Parrish and Delongchamp, 
2006). Normalization methods potentially mitigate 
effects more properly considered as batch effects 
or array effects in addition to addressing the adjust-
ment discussed in this paper. We caution against 
relying on normalization adjustments in lieu of 
blocking because they can introduce large biases 
(Delongchamp and Kodell, 2004; Parrish and 
Delongchamp, 2006).

Table 5. Expected mean squared errors for option 2 of the combined model with one array per batch.
Table shows the expected mean squared errors associated with a combined model. This layout corresponds to 
a 2 × 2 × 5 factorial arrangement of sex, time, AZT and their interactions with the 60 pooled muscle samples 
(2 samples per pool) processed in 60 batches (blocks); each batch has 1 pool.

Source  DF  Expected mean square (approx.) 
Mean: Housekeeping genes  1  σ 2 + σ 2b + σ 2m + Q(Slope)
Sex  1  σ 2 + σ 2b + σ 2m + Q(Sex)
Time 1  σ 2 + σ 2b + σ 2m + Q(Time)
Sex * Time  1  σ 2 + σ 2b + σ 2m + Q(Sex * Time)
AZT  4  σ 2 + σ 2b + σ 2m + Q(AZT)
AZT * Sex  4  σ 2 + σ 2b + σ 2m + Q(AZT * Sex)
AZT * Time  4  σ 2 + σ 2b + σ 2m + Q(AZT * Time)
AZT * Sex * Time  4  σ 2 + σ 2b + σ 2m + Q(AZT * Sex * Time)
Mice within treatment  39  σ 2 + σ 2b + σ 2m
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Conclusions
Many toxicogenomics studies are bioassays which 
measure gene expression using DNA arrays. These 
studies can be designed and analyzed using stan-
dard methods with a few modifi cations to account 
for characteristics of array measurements, such as 
multiple endpoints and normalization. As much as 
possible, technical variation associated with 
probes, dyes, and batches are managed by blocking 
treatments within these sources of variation. An 
example shows how some practical constraints can 
be accommodated by this modelling and how it 
allows one to objectively compare competing 
designs.
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